Create config.json
Browse files- config.json +32 -0
config.json
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "resnet",
|
| 3 |
+
"task": "image-classification",
|
| 4 |
+
"framework": "pytorch",
|
| 5 |
+
"pipeline_tag": "image-classification",
|
| 6 |
+
"num_classes": 3,
|
| 7 |
+
"class_labels": ["fa", "p_def", "blb"],
|
| 8 |
+
"input_shape": [224, 224, 3],
|
| 9 |
+
"preprocessing": {
|
| 10 |
+
"resize": 256,
|
| 11 |
+
"center_crop": 224,
|
| 12 |
+
"normalize": [0.485, 0.456, 0.406],
|
| 13 |
+
"normalize_std": [0.229, 0.224, 0.225]
|
| 14 |
+
},
|
| 15 |
+
"metrics": {
|
| 16 |
+
"validation_accuracy": "93.82%",
|
| 17 |
+
"per_class_accuracy": {
|
| 18 |
+
"fa": "100.00%",
|
| 19 |
+
"p_def": "86.21%",
|
| 20 |
+
"blb": "95.00%"
|
| 21 |
+
}
|
| 22 |
+
},
|
| 23 |
+
"license": "apache-2.0",
|
| 24 |
+
"tags": [
|
| 25 |
+
"image-classification",
|
| 26 |
+
"crop-anomaly-detection",
|
| 27 |
+
"agriculture",
|
| 28 |
+
"resnet50",
|
| 29 |
+
"deep-learning"
|
| 30 |
+
],
|
| 31 |
+
"description": "ResNet50 model for 3-class anomaly detection. The model classifies images as Fall Armyworm (fa), Phosphorus Deficiency (p_def), or Bacterial Leaf Blight (blb)."
|
| 32 |
+
}
|