jbilcke-hf HF Staff commited on
Commit
ffd9d14
·
verified ·
1 Parent(s): 4f3ad04

Update handler.py

Browse files
Files changed (1) hide show
  1. handler.py +15 -0
handler.py CHANGED
@@ -154,6 +154,13 @@ class EndpointHandler:
154
 
155
  #apply_teacache(self.image_to_video)
156
 
 
 
 
 
 
 
 
157
  else:
158
  # Initialize models with bfloat16 precision
159
  self.text_to_video = LTXPipeline.from_pretrained(
@@ -163,6 +170,14 @@ class EndpointHandler:
163
 
164
  #apply_teacache(self.text_to_video)
165
 
 
 
 
 
 
 
 
 
166
  # Initialize LoRA tracking
167
  self._current_lora_model = None
168
 
 
154
 
155
  #apply_teacache(self.image_to_video)
156
 
157
+ # Compilation requires some time to complete, so it is best suited for
158
+ # situations where you prepare your pipeline once and then perform the
159
+ # same type of inference operations multiple times.
160
+ # For example, calling the compiled pipeline on a different image size
161
+ # triggers compilation again which can be expensive.
162
+ self.image_to_video.unet = torch.compile(self.image_to_video.unet, mode="reduce-overhead", fullgraph=True)
163
+
164
  else:
165
  # Initialize models with bfloat16 precision
166
  self.text_to_video = LTXPipeline.from_pretrained(
 
170
 
171
  #apply_teacache(self.text_to_video)
172
 
173
+ # Compilation requires some time to complete, so it is best suited for
174
+ # situations where you prepare your pipeline once and then perform the
175
+ # same type of inference operations multiple times.
176
+ # For example, calling the compiled pipeline on a different image size
177
+ # triggers compilation again which can be expensive.
178
+ self.text_to_video.unet = torch.compile(self.text_to_video.unet, mode="reduce-overhead", fullgraph=True)
179
+
180
+
181
  # Initialize LoRA tracking
182
  self._current_lora_model = None
183