Improve model card for MLLMSeg: Add metadata, abstract, and usage example (#1)
Browse files- Improve model card for MLLMSeg: Add metadata, abstract, and usage example (5bd60312454c0e21f3264af59a5e4468f60991b3)
Co-authored-by: Niels Rogge <[email protected]>
    	
        README.md
    CHANGED
    
    | @@ -1,3 +1,176 @@ | |
| 1 | 
            -
            ---
         | 
| 2 | 
            -
            license: mit
         | 
| 3 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            license: mit
         | 
| 3 | 
            +
            pipeline_tag: image-segmentation
         | 
| 4 | 
            +
            library_name: transformers
         | 
| 5 | 
            +
            ---
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # MLLMSeg: Unlocking the Potential of MLLMs in Referring Expression Segmentation via a Light-weight Mask Decoder
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            This repository contains the `MLLMSeg_InternVL2_5_8B_RES` model presented in the paper [Unlocking the Potential of MLLMs in Referring Expression Segmentation via a Light-weight Mask Decoder](https://huggingface.co/papers/2508.04107).
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            Reference Expression Segmentation (RES) aims to segment image regions specified by referring expressions. While Multimodal Large Language Models (MLLMs) excel in semantic understanding, their token-generation paradigm often struggles with pixel-level dense prediction. MLLMSeg addresses this by fully exploiting the inherent visual detail features encoded in the MLLM vision encoder without introducing an extra visual encoder. It proposes a detail-enhanced and semantic-consistent feature fusion module (DSFF) and establishes a light-weight mask decoder (only 34M network parameters) to optimally leverage detailed spatial features and semantic features for precise mask prediction. Extensive experiments demonstrate that MLLMSeg generally surpasses both SAM-based and SAM-free competitors, striking a better balance between performance and cost.
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            Code: https://github.com/jcwang0602/MLLMSeg
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            <p align="center">
         | 
| 16 | 
            +
              <img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/method.png" width="800">
         | 
| 17 | 
            +
            </p>
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            ## Usage
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            You can use this model with the `transformers` library. Below is an example demonstrating how to load and use the `MLLMSeg_InternVL2_5_8B_RES` model for inference.
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            ```python
         | 
| 24 | 
            +
            import torch
         | 
| 25 | 
            +
            from PIL import Image
         | 
| 26 | 
            +
            from transformers import AutoModel, AutoTokenizer
         | 
| 27 | 
            +
            import torchvision.transforms as T
         | 
| 28 | 
            +
            from torchvision.transforms.functional import InterpolationMode
         | 
| 29 | 
            +
            import requests
         | 
| 30 | 
            +
            from io import BytesIO
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            # Define image preprocessing utility functions
         | 
| 33 | 
            +
            IMAGENET_MEAN = (0.485, 0.456, 0.406)
         | 
| 34 | 
            +
            IMAGENET_STD = (0.229, 0.224, 0.225)
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            def build_transform(input_size):
         | 
| 37 | 
            +
                MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
         | 
| 38 | 
            +
                transform = T.Compose([
         | 
| 39 | 
            +
                    T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
         | 
| 40 | 
            +
                    T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
         | 
| 41 | 
            +
                    T.ToTensor(),
         | 
| 42 | 
            +
                    T.Normalize(mean=MEAN, std=STD)
         | 
| 43 | 
            +
                ])
         | 
| 44 | 
            +
                return transform
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
         | 
| 47 | 
            +
                best_ratio_diff = float('inf')
         | 
| 48 | 
            +
                best_ratio = (1, 1)
         | 
| 49 | 
            +
                area = width * height
         | 
| 50 | 
            +
                for ratio in target_ratios:
         | 
| 51 | 
            +
                    target_aspect_ratio = ratio[0] / ratio[1]
         | 
| 52 | 
            +
                    ratio_diff = abs(aspect_ratio - target_aspect_ratio)
         | 
| 53 | 
            +
                    if ratio_diff < best_ratio_diff:
         | 
| 54 | 
            +
                        best_ratio_diff = ratio_diff
         | 
| 55 | 
            +
                        best_ratio = ratio
         | 
| 56 | 
            +
                    elif ratio_diff == best_ratio_diff:
         | 
| 57 | 
            +
                        if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
         | 
| 58 | 
            +
                            best_ratio = ratio
         | 
| 59 | 
            +
                return best_ratio
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
         | 
| 62 | 
            +
                orig_width, orig_height = image.size
         | 
| 63 | 
            +
                aspect_ratio = orig_width / orig_height
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                target_ratios = set(
         | 
| 66 | 
            +
                    (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
         | 
| 67 | 
            +
                    i * j <= max_num and i * j >= min_num)
         | 
| 68 | 
            +
                target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                target_aspect_ratio = find_closest_aspect_ratio(
         | 
| 71 | 
            +
                    aspect_ratio, target_ratios, orig_width, orig_height, image_size)
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                target_width = image_size * target_aspect_ratio[0]
         | 
| 74 | 
            +
                target_height = image_size * target_aspect_ratio[1]
         | 
| 75 | 
            +
                blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                resized_img = image.resize((target_width, target_height))
         | 
| 78 | 
            +
                processed_images = []
         | 
| 79 | 
            +
                for i in range(blocks):
         | 
| 80 | 
            +
                    box = (
         | 
| 81 | 
            +
                        (i % (target_width // image_size)) * image_size,
         | 
| 82 | 
            +
                        (i // (target_width // image_size)) * image_size,
         | 
| 83 | 
            +
                        ((i % (target_width // image_size)) + 1) * image_size,
         | 
| 84 | 
            +
                        ((i // (target_width // image_size)) + 1) * image_size
         | 
| 85 | 
            +
                    )
         | 
| 86 | 
            +
                    split_img = resized_img.crop(box)
         | 
| 87 | 
            +
                    processed_images.append(split_img)
         | 
| 88 | 
            +
                assert len(processed_images) == blocks
         | 
| 89 | 
            +
                if use_thumbnail and len(processed_images) != 1:
         | 
| 90 | 
            +
                    thumbnail_img = image.resize((image_size, image_size))
         | 
| 91 | 
            +
                    processed_images.append(thumbnail_img)
         | 
| 92 | 
            +
                return processed_images
         | 
| 93 | 
            +
             | 
| 94 | 
            +
            def load_image(image_file, input_size=448, max_num=12):
         | 
| 95 | 
            +
                if image_file.startswith(('http://', 'https://')):
         | 
| 96 | 
            +
                    response = requests.get(image_file)
         | 
| 97 | 
            +
                    image = Image.open(BytesIO(response.content)).convert('RGB')
         | 
| 98 | 
            +
                else:
         | 
| 99 | 
            +
                    image = Image.open(image_file).convert('RGB')
         | 
| 100 | 
            +
                
         | 
| 101 | 
            +
                transform = build_transform(input_size=input_size)
         | 
| 102 | 
            +
                images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
         | 
| 103 | 
            +
                pixel_values = [transform(image) for image in images]
         | 
| 104 | 
            +
                pixel_values = torch.stack(pixel_values)
         | 
| 105 | 
            +
                return pixel_values
         | 
| 106 | 
            +
             | 
| 107 | 
            +
            # Load model and tokenizer
         | 
| 108 | 
            +
            model_path = "jcwang0602/MLLMSeg_InternVL2_5_8B_RES"
         | 
| 109 | 
            +
            model = AutoModel.from_pretrained(
         | 
| 110 | 
            +
                model_path,
         | 
| 111 | 
            +
                torch_dtype=torch.bfloat16,
         | 
| 112 | 
            +
                low_cpu_mem_usage=True,
         | 
| 113 | 
            +
                trust_remote_code=True
         | 
| 114 | 
            +
            ).eval().cuda()
         | 
| 115 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False)
         | 
| 116 | 
            +
             | 
| 117 | 
            +
            # Load an example image (replace with your image path or URL)
         | 
| 118 | 
            +
            image_path = "https://github.com/jcwang0602/MLLMSeg/raw/main/assets/res_0.png" # Example image from the repo
         | 
| 119 | 
            +
            pixel_values = load_image(image_path, max_num=6).to(torch.bfloat16).cuda()
         | 
| 120 | 
            +
             | 
| 121 | 
            +
            # Define the referring expression
         | 
| 122 | 
            +
            question = "Please segment the person in the screenshot."
         | 
| 123 | 
            +
             | 
| 124 | 
            +
            # Set generation configuration
         | 
| 125 | 
            +
            generation_config = dict(max_new_tokens=1024, do_sample=False, temperature=0.0)
         | 
| 126 | 
            +
             | 
| 127 | 
            +
            # Generate response and segmentation mask
         | 
| 128 | 
            +
            # The output_segmentation_mask=True parameter is crucial for getting the mask directly.
         | 
| 129 | 
            +
            response, history, pred_mask = model.chat(
         | 
| 130 | 
            +
                tokenizer, pixel_values, question, generation_config, history=None, return_history=True, output_segmentation_mask=True
         | 
| 131 | 
            +
            )
         | 
| 132 | 
            +
             | 
| 133 | 
            +
            print(f'User: {question}\
         | 
| 134 | 
            +
            Assistant: {response}')
         | 
| 135 | 
            +
            # `pred_mask` will contain the predicted segmentation mask. It's a torch.Tensor.
         | 
| 136 | 
            +
            # You can save or visualize it. For example, to save it as an image:
         | 
| 137 | 
            +
            # from torchvision.utils import save_image
         | 
| 138 | 
            +
            # save_image(pred_mask.float(), "segmentation_mask.png")
         | 
| 139 | 
            +
            ```
         | 
| 140 | 
            +
             | 
| 141 | 
            +
            ## Performance Metrics
         | 
| 142 | 
            +
             | 
| 143 | 
            +
            ### Referring Expression Segmentation
         | 
| 144 | 
            +
            <img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/tab_res.png" width="800">
         | 
| 145 | 
            +
             | 
| 146 | 
            +
            ### Referring Expression Comprehension
         | 
| 147 | 
            +
            <img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/tab_rec.png" width="800">
         | 
| 148 | 
            +
             | 
| 149 | 
            +
            ### Generalized Referring Expression Segmentation
         | 
| 150 | 
            +
            <img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/tab_gres.png" width="800">
         | 
| 151 | 
            +
             | 
| 152 | 
            +
            ## Visualization
         | 
| 153 | 
            +
            ### Referring Expression Segmentation
         | 
| 154 | 
            +
            <img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/res.png" width="800">
         | 
| 155 | 
            +
             | 
| 156 | 
            +
            ### Referring Expression Comprehension
         | 
| 157 | 
            +
            <img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/rec.png" width="800">
         | 
| 158 | 
            +
             | 
| 159 | 
            +
            ### Generalized Referring Expression Segmentation
         | 
| 160 | 
            +
            <img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/gres.png" width="800">
         | 
| 161 | 
            +
             | 
| 162 | 
            +
            ## Citation
         | 
| 163 | 
            +
             | 
| 164 | 
            +
            If our work is useful for your research, please consider citing:
         | 
| 165 | 
            +
             | 
| 166 | 
            +
            ```bibtex
         | 
| 167 | 
            +
            @misc{wang2025unlockingpotentialmllmsreferring,
         | 
| 168 | 
            +
                  title={Unlocking the Potential of MLLMs in Referring Expression Segmentation via a Light-weight Mask Decoder}, 
         | 
| 169 | 
            +
                  author={Jingchao Wang and Zhijian Wu and Dingjiang Huang and Yefeng Zheng and Hong Wang},
         | 
| 170 | 
            +
                  year={2025},
         | 
| 171 | 
            +
                  eprint={2508.04107},
         | 
| 172 | 
            +
                  archivePrefix={arXiv},
         | 
| 173 | 
            +
                  primaryClass={cs.CV},
         | 
| 174 | 
            +
                  url={https://arxiv.org/abs/2508.04107}, 
         | 
| 175 | 
            +
            }
         | 
| 176 | 
            +
            ```
         | 
