jeff-gao commited on
Commit
973fe9f
·
verified ·
1 Parent(s): 0489415

Model save

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-1.5B-Instruct
3
+ library_name: transformers
4
+ model_name: Qwen2.5-1.5B-Open-R1-Distill
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - sft
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Qwen2.5-1.5B-Open-R1-Distill
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="jeff-gao/Qwen2.5-1.5B-Open-R1-Distill", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/wiz-llm/huggingface/runs/jltfpdg4)
31
+
32
+
33
+ This model was trained with SFT.
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.15.0
38
+ - Transformers: 4.48.3
39
+ - Pytorch: 2.5.1
40
+ - Datasets: 3.3.0
41
+ - Tokenizers: 0.21.0
42
+
43
+ ## Citations
44
+
45
+
46
+
47
+ Cite TRL as:
48
+
49
+ ```bibtex
50
+ @misc{vonwerra2022trl,
51
+ title = {{TRL: Transformer Reinforcement Learning}},
52
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
53
+ year = 2020,
54
+ journal = {GitHub repository},
55
+ publisher = {GitHub},
56
+ howpublished = {\url{https://github.com/huggingface/trl}}
57
+ }
58
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 6.086450124265882e+17,
3
+ "train_loss": 0.7795855527453952,
4
+ "train_runtime": 1563.698,
5
+ "train_samples": 16610,
6
+ "train_samples_per_second": 13.828,
7
+ "train_steps_per_second": 0.288
8
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-1.5B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 1536,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 8960,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 21,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 2,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": true,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.48.3",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 151936
29
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.48.3"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2dcd2f149cdef4158a6f23e8179407ab9d448909d1b650d4ffc367022325264b
3
+ size 3087467144
special_tokens_map.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": "<|im_end|>"
25
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|im_end|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 6.086450124265882e+17,
3
+ "train_loss": 0.7795855527453952,
4
+ "train_runtime": 1563.698,
5
+ "train_samples": 16610,
6
+ "train_samples_per_second": 13.828,
7
+ "train_steps_per_second": 0.288
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,798 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9988901220865705,
5
+ "eval_steps": 100,
6
+ "global_step": 450,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.011098779134295227,
13
+ "grad_norm": 0.32028938698735326,
14
+ "learning_rate": 2.222222222222222e-06,
15
+ "loss": 1.1057,
16
+ "mean_token_accuracy": 0.7074955803776843,
17
+ "step": 5
18
+ },
19
+ {
20
+ "epoch": 0.022197558268590455,
21
+ "grad_norm": 0.19534757580522985,
22
+ "learning_rate": 4.444444444444444e-06,
23
+ "loss": 1.0688,
24
+ "mean_token_accuracy": 0.7163213776876576,
25
+ "step": 10
26
+ },
27
+ {
28
+ "epoch": 0.033296337402885685,
29
+ "grad_norm": 0.1962807122200424,
30
+ "learning_rate": 6.666666666666667e-06,
31
+ "loss": 1.0285,
32
+ "mean_token_accuracy": 0.7219675252672673,
33
+ "step": 15
34
+ },
35
+ {
36
+ "epoch": 0.04439511653718091,
37
+ "grad_norm": 0.17661044382753963,
38
+ "learning_rate": 8.888888888888888e-06,
39
+ "loss": 0.9569,
40
+ "mean_token_accuracy": 0.7338179788852269,
41
+ "step": 20
42
+ },
43
+ {
44
+ "epoch": 0.05549389567147614,
45
+ "grad_norm": 0.13298871259606682,
46
+ "learning_rate": 1.1111111111111113e-05,
47
+ "loss": 0.96,
48
+ "mean_token_accuracy": 0.7289285538378297,
49
+ "step": 25
50
+ },
51
+ {
52
+ "epoch": 0.06659267480577137,
53
+ "grad_norm": 0.10139226456438258,
54
+ "learning_rate": 1.3333333333333333e-05,
55
+ "loss": 0.9003,
56
+ "mean_token_accuracy": 0.7429319064764655,
57
+ "step": 30
58
+ },
59
+ {
60
+ "epoch": 0.07769145394006659,
61
+ "grad_norm": 0.09671244610636456,
62
+ "learning_rate": 1.555555555555556e-05,
63
+ "loss": 0.8848,
64
+ "mean_token_accuracy": 0.7450362054794413,
65
+ "step": 35
66
+ },
67
+ {
68
+ "epoch": 0.08879023307436182,
69
+ "grad_norm": 0.10358003016336022,
70
+ "learning_rate": 1.7777777777777777e-05,
71
+ "loss": 0.8681,
72
+ "mean_token_accuracy": 0.7483839065381315,
73
+ "step": 40
74
+ },
75
+ {
76
+ "epoch": 0.09988901220865705,
77
+ "grad_norm": 0.07881610121393638,
78
+ "learning_rate": 2e-05,
79
+ "loss": 0.8442,
80
+ "mean_token_accuracy": 0.7542158990266088,
81
+ "step": 45
82
+ },
83
+ {
84
+ "epoch": 0.11098779134295228,
85
+ "grad_norm": 0.07695709459998314,
86
+ "learning_rate": 1.9992479525042305e-05,
87
+ "loss": 0.8202,
88
+ "mean_token_accuracy": 0.7594429564506759,
89
+ "step": 50
90
+ },
91
+ {
92
+ "epoch": 0.1220865704772475,
93
+ "grad_norm": 0.0770940463572419,
94
+ "learning_rate": 1.996992941167792e-05,
95
+ "loss": 0.8204,
96
+ "mean_token_accuracy": 0.7596416663786116,
97
+ "step": 55
98
+ },
99
+ {
100
+ "epoch": 0.13318534961154274,
101
+ "grad_norm": 0.07120273045521322,
102
+ "learning_rate": 1.9932383577419432e-05,
103
+ "loss": 0.819,
104
+ "mean_token_accuracy": 0.7587201214083239,
105
+ "step": 60
106
+ },
107
+ {
108
+ "epoch": 0.14428412874583796,
109
+ "grad_norm": 0.07558536731907865,
110
+ "learning_rate": 1.9879898494768093e-05,
111
+ "loss": 0.8027,
112
+ "mean_token_accuracy": 0.7628218193365146,
113
+ "step": 65
114
+ },
115
+ {
116
+ "epoch": 0.15538290788013318,
117
+ "grad_norm": 0.0724884828137313,
118
+ "learning_rate": 1.9812553106273848e-05,
119
+ "loss": 0.8126,
120
+ "mean_token_accuracy": 0.7601266253946841,
121
+ "step": 70
122
+ },
123
+ {
124
+ "epoch": 0.16648168701442842,
125
+ "grad_norm": 0.0721988261195697,
126
+ "learning_rate": 1.973044870579824e-05,
127
+ "loss": 0.8027,
128
+ "mean_token_accuracy": 0.7625601714037885,
129
+ "step": 75
130
+ },
131
+ {
132
+ "epoch": 0.17758046614872364,
133
+ "grad_norm": 0.07812772834648507,
134
+ "learning_rate": 1.9633708786158803e-05,
135
+ "loss": 0.803,
136
+ "mean_token_accuracy": 0.7625912882794786,
137
+ "step": 80
138
+ },
139
+ {
140
+ "epoch": 0.18867924528301888,
141
+ "grad_norm": 0.06226943817830889,
142
+ "learning_rate": 1.9522478853384154e-05,
143
+ "loss": 0.7936,
144
+ "mean_token_accuracy": 0.7635993724131902,
145
+ "step": 85
146
+ },
147
+ {
148
+ "epoch": 0.1997780244173141,
149
+ "grad_norm": 0.0695985028428393,
150
+ "learning_rate": 1.9396926207859085e-05,
151
+ "loss": 0.7841,
152
+ "mean_token_accuracy": 0.7661331851833721,
153
+ "step": 90
154
+ },
155
+ {
156
+ "epoch": 0.21087680355160932,
157
+ "grad_norm": 0.07119143212066893,
158
+ "learning_rate": 1.9257239692688907e-05,
159
+ "loss": 0.7904,
160
+ "mean_token_accuracy": 0.7651270507722707,
161
+ "step": 95
162
+ },
163
+ {
164
+ "epoch": 0.22197558268590456,
165
+ "grad_norm": 0.06900642736695052,
166
+ "learning_rate": 1.9103629409661468e-05,
167
+ "loss": 0.7805,
168
+ "mean_token_accuracy": 0.7667522330276506,
169
+ "step": 100
170
+ },
171
+ {
172
+ "epoch": 0.22197558268590456,
173
+ "eval_loss": 0.8109510540962219,
174
+ "eval_mean_token_accuracy": 0.7568694476131612,
175
+ "eval_runtime": 2.9489,
176
+ "eval_samples_per_second": 43.744,
177
+ "eval_steps_per_second": 3.73,
178
+ "step": 100
179
+ },
180
+ {
181
+ "epoch": 0.23307436182019978,
182
+ "grad_norm": 0.07584475595205237,
183
+ "learning_rate": 1.8936326403234125e-05,
184
+ "loss": 0.7819,
185
+ "mean_token_accuracy": 0.7674415677558553,
186
+ "step": 105
187
+ },
188
+ {
189
+ "epoch": 0.244173140954495,
190
+ "grad_norm": 0.06583872042093958,
191
+ "learning_rate": 1.8755582313020912e-05,
192
+ "loss": 0.7819,
193
+ "mean_token_accuracy": 0.766467737858396,
194
+ "step": 110
195
+ },
196
+ {
197
+ "epoch": 0.25527192008879024,
198
+ "grad_norm": 0.07082657098771901,
199
+ "learning_rate": 1.8561668995302668e-05,
200
+ "loss": 0.7831,
201
+ "mean_token_accuracy": 0.76569958171409,
202
+ "step": 115
203
+ },
204
+ {
205
+ "epoch": 0.2663706992230855,
206
+ "grad_norm": 0.06762014391699019,
207
+ "learning_rate": 1.8354878114129368e-05,
208
+ "loss": 0.7729,
209
+ "mean_token_accuracy": 0.7691614712931135,
210
+ "step": 120
211
+ },
212
+ {
213
+ "epoch": 0.27746947835738067,
214
+ "grad_norm": 0.06572171584857384,
215
+ "learning_rate": 1.8135520702629677e-05,
216
+ "loss": 0.7727,
217
+ "mean_token_accuracy": 0.7692371318506055,
218
+ "step": 125
219
+ },
220
+ {
221
+ "epoch": 0.2885682574916759,
222
+ "grad_norm": 0.07387797497484562,
223
+ "learning_rate": 1.7903926695187595e-05,
224
+ "loss": 0.7748,
225
+ "mean_token_accuracy": 0.767360264364967,
226
+ "step": 130
227
+ },
228
+ {
229
+ "epoch": 0.29966703662597116,
230
+ "grad_norm": 0.0648507090395773,
231
+ "learning_rate": 1.766044443118978e-05,
232
+ "loss": 0.7876,
233
+ "mean_token_accuracy": 0.7646269472458946,
234
+ "step": 135
235
+ },
236
+ {
237
+ "epoch": 0.31076581576026635,
238
+ "grad_norm": 0.07594530254646713,
239
+ "learning_rate": 1.740544013109005e-05,
240
+ "loss": 0.763,
241
+ "mean_token_accuracy": 0.7709959638413746,
242
+ "step": 140
243
+ },
244
+ {
245
+ "epoch": 0.3218645948945616,
246
+ "grad_norm": 0.0732533507550857,
247
+ "learning_rate": 1.7139297345578992e-05,
248
+ "loss": 0.783,
249
+ "mean_token_accuracy": 0.7649811510602629,
250
+ "step": 145
251
+ },
252
+ {
253
+ "epoch": 0.33296337402885684,
254
+ "grad_norm": 0.06649981966991503,
255
+ "learning_rate": 1.686241637868734e-05,
256
+ "loss": 0.7699,
257
+ "mean_token_accuracy": 0.7692172433619623,
258
+ "step": 150
259
+ },
260
+ {
261
+ "epoch": 0.34406215316315203,
262
+ "grad_norm": 0.0663190385068203,
263
+ "learning_rate": 1.657521368569064e-05,
264
+ "loss": 0.7701,
265
+ "mean_token_accuracy": 0.7685507996235139,
266
+ "step": 155
267
+ },
268
+ {
269
+ "epoch": 0.3551609322974473,
270
+ "grad_norm": 0.07086248919589423,
271
+ "learning_rate": 1.627812124672099e-05,
272
+ "loss": 0.7916,
273
+ "mean_token_accuracy": 0.762897097306175,
274
+ "step": 160
275
+ },
276
+ {
277
+ "epoch": 0.3662597114317425,
278
+ "grad_norm": 0.06620650991928366,
279
+ "learning_rate": 1.5971585917027864e-05,
280
+ "loss": 0.7802,
281
+ "mean_token_accuracy": 0.7649210363933718,
282
+ "step": 165
283
+ },
284
+ {
285
+ "epoch": 0.37735849056603776,
286
+ "grad_norm": 0.06905926805248713,
287
+ "learning_rate": 1.5656068754865388e-05,
288
+ "loss": 0.7677,
289
+ "mean_token_accuracy": 0.7696914957690235,
290
+ "step": 170
291
+ },
292
+ {
293
+ "epoch": 0.38845726970033295,
294
+ "grad_norm": 0.07914298364560284,
295
+ "learning_rate": 1.5332044328016916e-05,
296
+ "loss": 0.7672,
297
+ "mean_token_accuracy": 0.7682120122871129,
298
+ "step": 175
299
+ },
300
+ {
301
+ "epoch": 0.3995560488346282,
302
+ "grad_norm": 0.07115670436565744,
303
+ "learning_rate": 1.5000000000000002e-05,
304
+ "loss": 0.7774,
305
+ "mean_token_accuracy": 0.7662370568414045,
306
+ "step": 180
307
+ },
308
+ {
309
+ "epoch": 0.41065482796892344,
310
+ "grad_norm": 0.06396528657795297,
311
+ "learning_rate": 1.4660435197025391e-05,
312
+ "loss": 0.7478,
313
+ "mean_token_accuracy": 0.7749828723486186,
314
+ "step": 185
315
+ },
316
+ {
317
+ "epoch": 0.42175360710321863,
318
+ "grad_norm": 0.0628671379282561,
319
+ "learning_rate": 1.4313860656812537e-05,
320
+ "loss": 0.7527,
321
+ "mean_token_accuracy": 0.7723581904090526,
322
+ "step": 190
323
+ },
324
+ {
325
+ "epoch": 0.4328523862375139,
326
+ "grad_norm": 0.06693399129139697,
327
+ "learning_rate": 1.396079766039157e-05,
328
+ "loss": 0.7709,
329
+ "mean_token_accuracy": 0.768176693477312,
330
+ "step": 195
331
+ },
332
+ {
333
+ "epoch": 0.4439511653718091,
334
+ "grad_norm": 0.06898843383807368,
335
+ "learning_rate": 1.3601777248047105e-05,
336
+ "loss": 0.7558,
337
+ "mean_token_accuracy": 0.7725129471022092,
338
+ "step": 200
339
+ },
340
+ {
341
+ "epoch": 0.4439511653718091,
342
+ "eval_loss": 0.7829984426498413,
343
+ "eval_mean_token_accuracy": 0.7632673514716071,
344
+ "eval_runtime": 2.5178,
345
+ "eval_samples_per_second": 51.234,
346
+ "eval_steps_per_second": 4.369,
347
+ "step": 200
348
+ },
349
+ {
350
+ "epoch": 0.4550499445061043,
351
+ "grad_norm": 0.06712291331425221,
352
+ "learning_rate": 1.3237339420583213e-05,
353
+ "loss": 0.7423,
354
+ "mean_token_accuracy": 0.7751750598902079,
355
+ "step": 205
356
+ },
357
+ {
358
+ "epoch": 0.46614872364039955,
359
+ "grad_norm": 0.07066852759980123,
360
+ "learning_rate": 1.2868032327110904e-05,
361
+ "loss": 0.7847,
362
+ "mean_token_accuracy": 0.7637066112136016,
363
+ "step": 210
364
+ },
365
+ {
366
+ "epoch": 0.4772475027746948,
367
+ "grad_norm": 0.06797517881945832,
368
+ "learning_rate": 1.2494411440579814e-05,
369
+ "loss": 0.7627,
370
+ "mean_token_accuracy": 0.7701866684088337,
371
+ "step": 215
372
+ },
373
+ {
374
+ "epoch": 0.48834628190899,
375
+ "grad_norm": 0.0740366450868316,
376
+ "learning_rate": 1.211703872229411e-05,
377
+ "loss": 0.7554,
378
+ "mean_token_accuracy": 0.7726324974593143,
379
+ "step": 220
380
+ },
381
+ {
382
+ "epoch": 0.49944506104328523,
383
+ "grad_norm": 0.06603564857589732,
384
+ "learning_rate": 1.1736481776669307e-05,
385
+ "loss": 0.7703,
386
+ "mean_token_accuracy": 0.7674938853021173,
387
+ "step": 225
388
+ },
389
+ {
390
+ "epoch": 0.5105438401775805,
391
+ "grad_norm": 0.06456424170382646,
392
+ "learning_rate": 1.1353312997501313e-05,
393
+ "loss": 0.7681,
394
+ "mean_token_accuracy": 0.7680860839714745,
395
+ "step": 230
396
+ },
397
+ {
398
+ "epoch": 0.5216426193118757,
399
+ "grad_norm": 0.0680877993193484,
400
+ "learning_rate": 1.0968108707031792e-05,
401
+ "loss": 0.7568,
402
+ "mean_token_accuracy": 0.7713919990696916,
403
+ "step": 235
404
+ },
405
+ {
406
+ "epoch": 0.532741398446171,
407
+ "grad_norm": 0.06457964510433087,
408
+ "learning_rate": 1.0581448289104759e-05,
409
+ "loss": 0.7489,
410
+ "mean_token_accuracy": 0.7742981274310832,
411
+ "step": 240
412
+ },
413
+ {
414
+ "epoch": 0.5438401775804661,
415
+ "grad_norm": 0.06309191183030195,
416
+ "learning_rate": 1.0193913317718245e-05,
417
+ "loss": 0.7518,
418
+ "mean_token_accuracy": 0.7737425585967734,
419
+ "step": 245
420
+ },
421
+ {
422
+ "epoch": 0.5549389567147613,
423
+ "grad_norm": 0.06092764730736236,
424
+ "learning_rate": 9.806086682281759e-06,
425
+ "loss": 0.761,
426
+ "mean_token_accuracy": 0.7695176080139992,
427
+ "step": 250
428
+ },
429
+ {
430
+ "epoch": 0.5660377358490566,
431
+ "grad_norm": 0.06517875424025751,
432
+ "learning_rate": 9.418551710895243e-06,
433
+ "loss": 0.7451,
434
+ "mean_token_accuracy": 0.7737921205376608,
435
+ "step": 255
436
+ },
437
+ {
438
+ "epoch": 0.5771365149833518,
439
+ "grad_norm": 0.06586926609081382,
440
+ "learning_rate": 9.03189129296821e-06,
441
+ "loss": 0.7272,
442
+ "mean_token_accuracy": 0.7790233444795842,
443
+ "step": 260
444
+ },
445
+ {
446
+ "epoch": 0.5882352941176471,
447
+ "grad_norm": 0.06455882882155867,
448
+ "learning_rate": 8.646687002498692e-06,
449
+ "loss": 0.7493,
450
+ "mean_token_accuracy": 0.7728544867539606,
451
+ "step": 265
452
+ },
453
+ {
454
+ "epoch": 0.5993340732519423,
455
+ "grad_norm": 0.06419037506595338,
456
+ "learning_rate": 8.263518223330698e-06,
457
+ "loss": 0.7447,
458
+ "mean_token_accuracy": 0.774466472618278,
459
+ "step": 270
460
+ },
461
+ {
462
+ "epoch": 0.6104328523862376,
463
+ "grad_norm": 0.06483038923609051,
464
+ "learning_rate": 7.882961277705897e-06,
465
+ "loss": 0.7467,
466
+ "mean_token_accuracy": 0.7736083802309587,
467
+ "step": 275
468
+ },
469
+ {
470
+ "epoch": 0.6215316315205327,
471
+ "grad_norm": 0.06889145412976934,
472
+ "learning_rate": 7.505588559420188e-06,
473
+ "loss": 0.7423,
474
+ "mean_token_accuracy": 0.7752051151920257,
475
+ "step": 280
476
+ },
477
+ {
478
+ "epoch": 0.632630410654828,
479
+ "grad_norm": 0.06931221562176564,
480
+ "learning_rate": 7.131967672889101e-06,
481
+ "loss": 0.7766,
482
+ "mean_token_accuracy": 0.7648978880464531,
483
+ "step": 285
484
+ },
485
+ {
486
+ "epoch": 0.6437291897891232,
487
+ "grad_norm": 0.0645937272519637,
488
+ "learning_rate": 6.762660579416791e-06,
489
+ "loss": 0.7529,
490
+ "mean_token_accuracy": 0.7729185441854456,
491
+ "step": 290
492
+ },
493
+ {
494
+ "epoch": 0.6548279689234184,
495
+ "grad_norm": 0.06415673551420226,
496
+ "learning_rate": 6.3982227519528986e-06,
497
+ "loss": 0.7601,
498
+ "mean_token_accuracy": 0.7699141088391924,
499
+ "step": 295
500
+ },
501
+ {
502
+ "epoch": 0.6659267480577137,
503
+ "grad_norm": 0.06845419068799381,
504
+ "learning_rate": 6.039202339608432e-06,
505
+ "loss": 0.7519,
506
+ "mean_token_accuracy": 0.77195855669696,
507
+ "step": 300
508
+ },
509
+ {
510
+ "epoch": 0.6659267480577137,
511
+ "eval_loss": 0.7694035172462463,
512
+ "eval_mean_token_accuracy": 0.7656926514001757,
513
+ "eval_runtime": 2.5109,
514
+ "eval_samples_per_second": 51.376,
515
+ "eval_steps_per_second": 4.381,
516
+ "step": 300
517
+ },
518
+ {
519
+ "epoch": 0.6770255271920089,
520
+ "grad_norm": 0.06481669897887246,
521
+ "learning_rate": 5.686139343187468e-06,
522
+ "loss": 0.7368,
523
+ "mean_token_accuracy": 0.7768982703775535,
524
+ "step": 305
525
+ },
526
+ {
527
+ "epoch": 0.6881243063263041,
528
+ "grad_norm": 0.06555414493127953,
529
+ "learning_rate": 5.339564802974615e-06,
530
+ "loss": 0.7496,
531
+ "mean_token_accuracy": 0.7741114122022307,
532
+ "step": 310
533
+ },
534
+ {
535
+ "epoch": 0.6992230854605993,
536
+ "grad_norm": 0.06321637577126818,
537
+ "learning_rate": 5.000000000000003e-06,
538
+ "loss": 0.7379,
539
+ "mean_token_accuracy": 0.7763521164662632,
540
+ "step": 315
541
+ },
542
+ {
543
+ "epoch": 0.7103218645948945,
544
+ "grad_norm": 0.06534174478047594,
545
+ "learning_rate": 4.66795567198309e-06,
546
+ "loss": 0.7186,
547
+ "mean_token_accuracy": 0.7821842581348311,
548
+ "step": 320
549
+ },
550
+ {
551
+ "epoch": 0.7214206437291898,
552
+ "grad_norm": 0.0656418642194091,
553
+ "learning_rate": 4.343931245134616e-06,
554
+ "loss": 0.7429,
555
+ "mean_token_accuracy": 0.7750543137352807,
556
+ "step": 325
557
+ },
558
+ {
559
+ "epoch": 0.732519422863485,
560
+ "grad_norm": 0.06142434056090795,
561
+ "learning_rate": 4.028414082972141e-06,
562
+ "loss": 0.7432,
563
+ "mean_token_accuracy": 0.775647557164172,
564
+ "step": 330
565
+ },
566
+ {
567
+ "epoch": 0.7436182019977803,
568
+ "grad_norm": 0.06566009724006543,
569
+ "learning_rate": 3.7218787532790167e-06,
570
+ "loss": 0.7527,
571
+ "mean_token_accuracy": 0.7717515416461624,
572
+ "step": 335
573
+ },
574
+ {
575
+ "epoch": 0.7547169811320755,
576
+ "grad_norm": 0.06813787133901092,
577
+ "learning_rate": 3.424786314309365e-06,
578
+ "loss": 0.7397,
579
+ "mean_token_accuracy": 0.7761784463020833,
580
+ "step": 340
581
+ },
582
+ {
583
+ "epoch": 0.7658157602663707,
584
+ "grad_norm": 0.061296004900329354,
585
+ "learning_rate": 3.1375836213126653e-06,
586
+ "loss": 0.7547,
587
+ "mean_token_accuracy": 0.7708365795261976,
588
+ "step": 345
589
+ },
590
+ {
591
+ "epoch": 0.7769145394006659,
592
+ "grad_norm": 0.06086151158973008,
593
+ "learning_rate": 2.8607026544210115e-06,
594
+ "loss": 0.7449,
595
+ "mean_token_accuracy": 0.7737567810246656,
596
+ "step": 350
597
+ },
598
+ {
599
+ "epoch": 0.7880133185349611,
600
+ "grad_norm": 0.06066361422328344,
601
+ "learning_rate": 2.594559868909956e-06,
602
+ "loss": 0.7526,
603
+ "mean_token_accuracy": 0.7728921789426538,
604
+ "step": 355
605
+ },
606
+ {
607
+ "epoch": 0.7991120976692564,
608
+ "grad_norm": 0.061244946934632546,
609
+ "learning_rate": 2.339555568810221e-06,
610
+ "loss": 0.7428,
611
+ "mean_token_accuracy": 0.7745905285585644,
612
+ "step": 360
613
+ },
614
+ {
615
+ "epoch": 0.8102108768035516,
616
+ "grad_norm": 0.059950100330008936,
617
+ "learning_rate": 2.0960733048124082e-06,
618
+ "loss": 0.735,
619
+ "mean_token_accuracy": 0.7771190685426068,
620
+ "step": 365
621
+ },
622
+ {
623
+ "epoch": 0.8213096559378469,
624
+ "grad_norm": 0.062267646898023575,
625
+ "learning_rate": 1.8644792973703252e-06,
626
+ "loss": 0.757,
627
+ "mean_token_accuracy": 0.7711234095884432,
628
+ "step": 370
629
+ },
630
+ {
631
+ "epoch": 0.832408435072142,
632
+ "grad_norm": 0.05795250590930739,
633
+ "learning_rate": 1.6451218858706374e-06,
634
+ "loss": 0.7396,
635
+ "mean_token_accuracy": 0.7762826225755755,
636
+ "step": 375
637
+ },
638
+ {
639
+ "epoch": 0.8435072142064373,
640
+ "grad_norm": 0.05646366375927419,
641
+ "learning_rate": 1.4383310046973365e-06,
642
+ "loss": 0.742,
643
+ "mean_token_accuracy": 0.7754256081182773,
644
+ "step": 380
645
+ },
646
+ {
647
+ "epoch": 0.8546059933407325,
648
+ "grad_norm": 0.05933272693822518,
649
+ "learning_rate": 1.2444176869790925e-06,
650
+ "loss": 0.7457,
651
+ "mean_token_accuracy": 0.7742744235316502,
652
+ "step": 385
653
+ },
654
+ {
655
+ "epoch": 0.8657047724750278,
656
+ "grad_norm": 0.057540816299949595,
657
+ "learning_rate": 1.0636735967658785e-06,
658
+ "loss": 0.736,
659
+ "mean_token_accuracy": 0.7765978708392828,
660
+ "step": 390
661
+ },
662
+ {
663
+ "epoch": 0.876803551609323,
664
+ "grad_norm": 0.05844756012864216,
665
+ "learning_rate": 8.963705903385344e-07,
666
+ "loss": 0.7183,
667
+ "mean_token_accuracy": 0.7822006045277151,
668
+ "step": 395
669
+ },
670
+ {
671
+ "epoch": 0.8879023307436182,
672
+ "grad_norm": 0.05810320914079056,
673
+ "learning_rate": 7.427603073110967e-07,
674
+ "loss": 0.7442,
675
+ "mean_token_accuracy": 0.7742584918108283,
676
+ "step": 400
677
+ },
678
+ {
679
+ "epoch": 0.8879023307436182,
680
+ "eval_loss": 0.7638587951660156,
681
+ "eval_mean_token_accuracy": 0.7671856273651642,
682
+ "eval_runtime": 2.5128,
683
+ "eval_samples_per_second": 51.338,
684
+ "eval_steps_per_second": 4.378,
685
+ "step": 400
686
+ },
687
+ {
688
+ "epoch": 0.8990011098779135,
689
+ "grad_norm": 0.05687291272451405,
690
+ "learning_rate": 6.030737921409169e-07,
691
+ "loss": 0.7355,
692
+ "mean_token_accuracy": 0.7774604937569412,
693
+ "step": 405
694
+ },
695
+ {
696
+ "epoch": 0.9100998890122086,
697
+ "grad_norm": 0.05899588715439542,
698
+ "learning_rate": 4.775211466158469e-07,
699
+ "loss": 0.7319,
700
+ "mean_token_accuracy": 0.7774400412989902,
701
+ "step": 410
702
+ },
703
+ {
704
+ "epoch": 0.9211986681465039,
705
+ "grad_norm": 0.05577638815550462,
706
+ "learning_rate": 3.662912138411967e-07,
707
+ "loss": 0.7178,
708
+ "mean_token_accuracy": 0.7821916392303806,
709
+ "step": 415
710
+ },
711
+ {
712
+ "epoch": 0.9322974472807991,
713
+ "grad_norm": 0.05865365285983047,
714
+ "learning_rate": 2.6955129420176193e-07,
715
+ "loss": 0.7309,
716
+ "mean_token_accuracy": 0.778973121325068,
717
+ "step": 420
718
+ },
719
+ {
720
+ "epoch": 0.9433962264150944,
721
+ "grad_norm": 0.06038263301804733,
722
+ "learning_rate": 1.874468937261531e-07,
723
+ "loss": 0.7372,
724
+ "mean_token_accuracy": 0.7765551528106018,
725
+ "step": 425
726
+ },
727
+ {
728
+ "epoch": 0.9544950055493896,
729
+ "grad_norm": 0.059800638962906945,
730
+ "learning_rate": 1.201015052319099e-07,
731
+ "loss": 0.7291,
732
+ "mean_token_accuracy": 0.7794756294446461,
733
+ "step": 430
734
+ },
735
+ {
736
+ "epoch": 0.9655937846836848,
737
+ "grad_norm": 0.056012625483331906,
738
+ "learning_rate": 6.761642258056977e-08,
739
+ "loss": 0.7255,
740
+ "mean_token_accuracy": 0.7798846256811043,
741
+ "step": 435
742
+ },
743
+ {
744
+ "epoch": 0.97669256381798,
745
+ "grad_norm": 0.055552002158992475,
746
+ "learning_rate": 3.0070588322079765e-08,
747
+ "loss": 0.7351,
748
+ "mean_token_accuracy": 0.7766328434320331,
749
+ "step": 440
750
+ },
751
+ {
752
+ "epoch": 0.9877913429522752,
753
+ "grad_norm": 0.05677914033692145,
754
+ "learning_rate": 7.520474957699586e-09,
755
+ "loss": 0.7351,
756
+ "mean_token_accuracy": 0.7767306519256947,
757
+ "step": 445
758
+ },
759
+ {
760
+ "epoch": 0.9988901220865705,
761
+ "grad_norm": 0.06170289905752787,
762
+ "learning_rate": 0.0,
763
+ "loss": 0.7528,
764
+ "mean_token_accuracy": 0.7717083040396344,
765
+ "step": 450
766
+ },
767
+ {
768
+ "epoch": 0.9988901220865705,
769
+ "step": 450,
770
+ "total_flos": 6.086450124265882e+17,
771
+ "train_loss": 0.7795855527453952,
772
+ "train_runtime": 1563.698,
773
+ "train_samples_per_second": 13.828,
774
+ "train_steps_per_second": 0.288
775
+ }
776
+ ],
777
+ "logging_steps": 5,
778
+ "max_steps": 450,
779
+ "num_input_tokens_seen": 0,
780
+ "num_train_epochs": 1,
781
+ "save_steps": 500,
782
+ "stateful_callbacks": {
783
+ "TrainerControl": {
784
+ "args": {
785
+ "should_epoch_stop": false,
786
+ "should_evaluate": false,
787
+ "should_log": false,
788
+ "should_save": false,
789
+ "should_training_stop": false
790
+ },
791
+ "attributes": {}
792
+ }
793
+ },
794
+ "total_flos": 6.086450124265882e+17,
795
+ "train_batch_size": 2,
796
+ "trial_name": null,
797
+ "trial_params": null
798
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72122ccf30f93fbe97f780dc2c7f02967ca49a5b985b874b480e08ff0d47af57
3
+ size 7416
vocab.json ADDED
The diff for this file is too large to render. See raw diff