--- license: mit --- # TA-SAE Model Card This repository contains the trained Temporal-Aware Sparse AutoEncoder (TA-SAE) models for different layers. ## Model Description TA-SAE is a specialized autoencoder model designed for temporal feature extraction and compression. Each layer model represents a different level of feature abstraction in the network. ## Usage ### Installation ```python pip install huggingface_hub ``` ### Loading Models #### Download a specific file: ```python from huggingface_hub import hf_hub_download # Download specific layer model file_path = hf_hub_download( repo_id="jeix/TA-SAE", filename="PixArt/SAE-Layer0/model.safetensors" ) ``` #### Download all files for a specific layer: ```python from huggingface_hub import snapshot_download # Download all files for layer0 local_dir = snapshot_download( repo_id="jeix/TA-SAE", repo_type="model", allow_patterns="PixArt/SAE-Layer0/*" ) ``` #### Download all layers: ```python local_dir = snapshot_download( repo_id="jeix/TA-SAE", repo_type="model", allow_patterns="PixArt/SAE-Layer*/*" ) ``` ### Using Command Line #### Install CLI tool ```bash pip install -U huggingface_hub ``` #### Download specific file ```bash huggingface-cli download jeix/TA-SAE --local-dir ./download --include "PixArt/SAE-Layer0/model.safetensors" ``` ## Model Files Description Each layer directory contains the following files: - `model.safetensors`: The main model weights - `optimizer.bin`: Optimizer state - `scheduler.bin`: Learning rate scheduler state - `random_states_0.pkl`: Random state information - `scaler.pt`: Data scaling parameters