|
import argparse |
|
|
|
import time |
|
from pathlib import Path |
|
from PIL import Image |
|
|
|
import torch |
|
|
|
from models.experimental import attempt_load |
|
from utils.datasets import LoadImages |
|
from utils.general import ( |
|
check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, plot_one_box, strip_optimizer) |
|
from utils.torch_utils import select_device, load_classifier, time_synchronized |
|
|
|
|
|
def detect(): |
|
out, source, weights, view_img, save_txt, imgsz = \ |
|
opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size |
|
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt') |
|
|
|
|
|
device = select_device(opt.device) |
|
half = device.type != 'cpu' |
|
|
|
|
|
model = attempt_load(weights, map_location=device) |
|
imgsz = check_img_size(imgsz, s=model.stride.max()) |
|
if half: |
|
model.half() |
|
|
|
|
|
dataset = LoadImages(source, img_size=imgsz) |
|
|
|
|
|
names = model.module.names if hasattr(model, 'module') else model.names |
|
|
|
|
|
t0 = time.time() |
|
img = torch.zeros((1, 3, imgsz, imgsz), device=device) |
|
_ = model(img.half() if half else img) if device.type != 'cpu' else None |
|
for path, img, im0s, vid_cap in dataset: |
|
if img is None: |
|
print("Image not found:", path) |
|
continue |
|
try: |
|
img = torch.from_numpy(img).to(device) |
|
img = img.half() if half else img.float() |
|
img /= 255.0 |
|
if img.ndimension() == 3: |
|
img = img.unsqueeze(0) |
|
|
|
|
|
pred = model(img, augment=opt.augment)[0] |
|
|
|
|
|
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) |
|
|
|
|
|
for i, det in enumerate(pred): |
|
if webcam: |
|
p, s, im0 = path[i], '%g: ' % i, im0s[i].copy() |
|
else: |
|
p, s, im0 = path, '', im0s |
|
|
|
save_path = str(Path(out) / Path(p).name) |
|
s += '%gx%g ' % img.shape[2:] |
|
|
|
if det is not None and len(det): |
|
|
|
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() |
|
|
|
|
|
for c in det[:, -1].unique(): |
|
n = (det[:, -1] == c).sum() |
|
s += '%g %ss, ' % (n, names[int(c)]) |
|
|
|
|
|
for *xyxy, _, _ in det: |
|
box = (int(xyxy[0]), int(xyxy[1]), int(xyxy[2]), int(xyxy[3])) |
|
process(p, save_path, box) |
|
break |
|
else: |
|
process(p, save_path) |
|
except KeyboardInterrupt: |
|
raise |
|
except: |
|
print("Error processing file", path) |
|
|
|
print('Done. (%.3fs)' % (time.time() - t0)) |
|
|
|
def process(in_file, out_file, box=None): |
|
img = Image.open(in_file) |
|
|
|
if box is None: |
|
box = [0,0,img.size[0],img.size[0]] |
|
|
|
img_pad = 25 |
|
|
|
box_l = int(box[0]) - img_pad |
|
box_t = int(box[1]) - img_pad |
|
box_r = int(box[2]) + img_pad |
|
box_b = int(box[3]) + img_pad |
|
|
|
|
|
box_l = max(0, box_l) |
|
box_t = max(0, box_t) |
|
box_r = min(img.size[0], box_r) |
|
box_b = min(img.size[1], box_b) |
|
|
|
|
|
box_w = int(box_r-box_l) |
|
box_h = int(box_b-box_t) |
|
|
|
print("image size", img.size) |
|
print("original box", (box_l, box_t, box_r, box_b)) |
|
print("original box size", box_w, "x", box_h) |
|
|
|
|
|
box_d = min(box_w, box_h) |
|
|
|
|
|
box_l = int(box_l + (box_w - box_d)/2) |
|
box_t = int(box_t + (box_h - box_d)/2) |
|
box_r = int(box_l + box_d) |
|
box_b = int(box_t + box_d) |
|
|
|
box_w = int(box_r-box_l) |
|
box_h = int(box_b-box_t) |
|
|
|
print("adjusted box", (box_l, box_t, box_r, box_b)) |
|
print("adjusted size", box_w, "x", box_h) |
|
|
|
im_new = img.crop((box_l, box_t, box_r, box_b)).resize((300,300), Image.Resampling.LANCZOS) |
|
im_new.save(out_file) |
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--weights', nargs='+', type=str, default='weights/yolov5x_anime.pt', help='model.pt path(s)') |
|
parser.add_argument('--source', type=str, help='source', required=True) |
|
parser.add_argument('--output', type=str, help='output folder', required=True) |
|
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') |
|
parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold') |
|
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS') |
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
parser.add_argument('--view-img', action='store_true', help='display results') |
|
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') |
|
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3') |
|
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') |
|
parser.add_argument('--augment', action='store_true', help='augmented inference') |
|
parser.add_argument('--update', action='store_true', help='update all models') |
|
opt = parser.parse_args() |
|
print(opt) |
|
|
|
with torch.no_grad(): |
|
if opt.update: |
|
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']: |
|
detect() |
|
strip_optimizer(opt.weights) |
|
else: |
|
detect() |
|
|