Fill-Mask
PyTorch
English
modernbert
File size: 40,053 Bytes
3310347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
---
license: mit
language:
- en
pipeline_tag: fill-mask
---
# Ettin: an Open Suite of Paired Encoders and Decoders

[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Paper](https://img.shields.io/badge/Paper-Arxiv-red)](https://arxiv.org/abs/2507.11412)
[![Models](https://img.shields.io/badge/🤗%20Hugging%20Face-12%20Models-blue)](https://huggingface.co/jhu-clsp)
[![Data](https://img.shields.io/badge/🤗%20Training%20Data-2T%20Tokens-green)](https://huggingface.co/datasets/jhu-clsp)
[![GitHub](https://img.shields.io/badge/GitHub-Code-black)](https://github.com/jhu-clsp/ettin-encoder-vs-decoder)

> 🎯 **TL;DR**: State-of-the-art paired encoder and decoder models (17M-1B params) trained identically for fair comparison with open data. Encoders beat ModernBERT. Decoders beat Llama 3.2/SmolLM2.

📄 [Paper](https://arxiv.org/abs/2507.11412) | 🚀 [GitHub Repository](https://github.com/jhu-clsp/ettin-encoder-vs-decoder)

This model is part of the Ettin suite - the first collection of paired encoder-only and decoder-only models trained with identical data, architecture, and training recipes. Ettin enables fair comparisons between encoder and decoder architectures across multiple scales, providing state-of-the-art performance for open-data models in their respective size categories.

## Table of Contents
- [Performance Highlights](#performance-highlights)
- [Quick Start](#quick-start)
- [Model Description](#model-description)
- [Training Data](#training-data)
- [Model Family](#model-family)
  - [Encoder Models](#encoder-models)
  - [Decoder Models](#decoder-models)
  - [Cross-Objective Models](#cross-objective-models)
- [Accessing Training Checkpoints](#accessing-training-checkpoints)
- [Research Applications](#research-applications)
- [Training Details](#training-details)
- [Model Architecture](#model-architecture)
- [Usage Examples](#usage-examples)
- [Fine-tuning Examples](#fine-tuning-examples)
- [Citation](#citation)

## 📊 Performance Highlights

### Encoder Tasks (vs. ModernBERT)
- **GLUE Average**: 88.9 vs 88.4 (Base), 90.8 vs 90.4 (Large)
- **MTEB v2 English Retrieval**: 45.7 vs 43.9 (Base), 48.4 vs 47.0 (Large)
- **Code Search and Long Context**: Superior performance on CodeSearchNet and MLDR

### Decoder Tasks (vs. SmolLM2 & Llama 3.2)
- **Average Score**: 46.2 vs 45.2 (SmolLM2-135M)
- **1B Model**: 59.0 vs 56.6 (Llama 3.2-1B)
- **Generative Tasks**: Competitive across all model sizes

### Key Finding
**Architecture-specific advantages persist**: A 400M encoder outperforms a 1B decoder on classification tasks, while a 400M decoder outperforms a 1B encoder on generation tasks.

## 🚀 Quick Start

### Installation
```bash
pip install torch>=1.9.0
# until the new pip release, install from main to use decoders (transformers>=4.54.X will contain it)
# encoders work with transformers>=4.48.0
pip install git+https://github.com/huggingface/transformers.git
```

### 30-Second Examples

**Encoder for Classification/Embeddings:**
```python
from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/ettin-encoder-150m")
model = AutoModel.from_pretrained("jhu-clsp/ettin-encoder-150m")
```

**Decoder for Text Generation:**
```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/ettin-decoder-150m")
model = AutoModelForCausalLM.from_pretrained("jhu-clsp/ettin-decoder-150m")
```

## Model Description

Ettin models are designed to provide a foundation for comparing encoder-only and decoder-only architectures. Unlike previous comparisons that were limited by different training data, architectures, and recipes, Ettin models use:

1. **Identical training data** - Same high-quality mixture across all models
2. **Open Training Data** - Data is available now with batch-level training data for each of the 250+ checkpoints
3. **Matched architectures** - Only differing in attention patterns (bidirectional vs causal) and training objectives (MLM vs CLM)
4. **Consistent training recipe** - Three-phase training with 2T tokens
5. **Multiple scales** - From 17M to 1B parameters

This approach allows for true apples-to-apples comparisons between encoder and decoder models, revealing the inherent strengths of each architecture.

## Training Data

The training data is publicly available and split across different phases:

- **Pre-training Data**: [jhu-clsp/ettin-pretraining-data](https://huggingface.co/datasets/jhu-clsp/ettin-pretraining-data) - 1.7T tokens of diverse data mixture
- **Mid-training/Extension Data**: [jhu-clsp/ettin-extension-data](https://huggingface.co/datasets/jhu-clsp/ettin-extension-data) - 250B tokens of higher-quality filtered data
- **Decay Phase Data**: [jhu-clsp/ettin-decay-data](https://huggingface.co/datasets/jhu-clsp/ettin-decay-data) - 100B tokens of premium data sources
- **Training Data Order**: [jhu-clsp/ettin-data-order](https://huggingface.co/datasets/jhu-clsp/ettin-data-order) - Batch-level training order (columns: input_ids, step)

## Model Family

### Encoder Models

| Size | Model | Parameters | Best For | Download |
|:-----|:------|:-----------|:---------|:---------|
| XXS | [ettin-encoder-17m](https://huggingface.co/jhu-clsp/ettin-encoder-17m) | 17M | Mobile/Edge devices | [![Download](https://img.shields.io/badge/🤗-Download-blue)](https://huggingface.co/jhu-clsp/ettin-encoder-17m) |
| XS | [ettin-encoder-32m](https://huggingface.co/jhu-clsp/ettin-encoder-32m) | 32M | Fast inference | [![Download](https://img.shields.io/badge/🤗-Download-blue)](https://huggingface.co/jhu-clsp/ettin-encoder-32m) |
| Small | [ettin-encoder-68m](https://huggingface.co/jhu-clsp/ettin-encoder-68m) | 68M | Balanced performance | [![Download](https://img.shields.io/badge/🤗-Download-blue)](https://huggingface.co/jhu-clsp/ettin-encoder-68m) |
| Base | [ettin-encoder-150m](https://huggingface.co/jhu-clsp/ettin-encoder-150m) | 150M | Standard use cases | [![Download](https://img.shields.io/badge/🤗-Download-blue)](https://huggingface.co/jhu-clsp/ettin-encoder-150m) |
| Large | [ettin-encoder-400m](https://huggingface.co/jhu-clsp/ettin-encoder-400m) | 400M | High accuracy needs | [![Download](https://img.shields.io/badge/🤗-Download-blue)](https://huggingface.co/jhu-clsp/ettin-encoder-400m) |
| XL | [ettin-encoder-1b](https://huggingface.co/jhu-clsp/ettin-encoder-1b) | 1B | Best performance | [![Download](https://img.shields.io/badge/🤗-Download-blue)](https://huggingface.co/jhu-clsp/ettin-encoder-1b) |

### Decoder Models

| Size | Model | Parameters | Best For | Download |
|:-----|:------|:-----------|:---------|:---------|
| XXS | [ettin-decoder-17m](https://huggingface.co/jhu-clsp/ettin-decoder-17m) | 17M | Lightweight generation | [![Download](https://img.shields.io/badge/🤗-Download-blue)](https://huggingface.co/jhu-clsp/ettin-decoder-17m) |
| XS | [ettin-decoder-32m](https://huggingface.co/jhu-clsp/ettin-decoder-32m) | 32M | Quick prototyping | [![Download](https://img.shields.io/badge/🤗-Download-blue)](https://huggingface.co/jhu-clsp/ettin-decoder-32m) |
| Small | [ettin-decoder-68m](https://huggingface.co/jhu-clsp/ettin-decoder-68m) | 68M | Efficient generation | [![Download](https://img.shields.io/badge/🤗-Download-blue)](https://huggingface.co/jhu-clsp/ettin-decoder-68m) |
| Base | [ettin-decoder-150m](https://huggingface.co/jhu-clsp/ettin-decoder-150m) | 150M | Standard generation | [![Download](https://img.shields.io/badge/🤗-Download-blue)](https://huggingface.co/jhu-clsp/ettin-decoder-150m) |
| Large | [ettin-decoder-400m](https://huggingface.co/jhu-clsp/ettin-decoder-400m) | 400M | Quality generation | [![Download](https://img.shields.io/badge/🤗-Download-blue)](https://huggingface.co/jhu-clsp/ettin-decoder-400m) |
| XL | [ettin-decoder-1b](https://huggingface.co/jhu-clsp/ettin-decoder-1b) | 1B | Best generation | [![Download](https://img.shields.io/badge/🤗-Download-blue)](https://huggingface.co/jhu-clsp/ettin-decoder-1b) |

### Cross-Objective Models

These models demonstrate what happens when you continue training encoders as decoders (and vice versa). **Important**: Load these models using the architecture they were *converted to*, not their original architecture.

#### Encoders Trained from Decoders (Decoder → MLM)
**Load as encoders** using `AutoModel` or `AutoModelForMaskedLM`:

| Size | Model | Parameters | Description | Download |
|:-----|:------|:-----------|:------------|:---------|
| XXS | [ettin-encoder-from-decoder-17m](https://huggingface.co/jhu-clsp/ettin-encoder-from-decoder-17m) | 17M | Decoder → MLM continued training | [![Download](https://img.shields.io/badge/🤗-Download-blue)](https://huggingface.co/jhu-clsp/ettin-encoder-from-decoder-17m) |
| XS | [ettin-encoder-from-decoder-32m](https://huggingface.co/jhu-clsp/ettin-encoder-from-decoder-32m) | 32M | Decoder → MLM continued training | [![Download](https://img.shields.io/badge/🤗-Download-blue)](https://huggingface.co/jhu-clsp/ettin-encoder-from-decoder-32m) |
| Small | [ettin-encoder-from-decoder-68m](https://huggingface.co/jhu-clsp/ettin-encoder-from-decoder-68m) | 68M | Decoder → MLM continued training | [![Download](https://img.shields.io/badge/🤗-Download-blue)](https://huggingface.co/jhu-clsp/ettin-encoder-from-decoder-68m) |
| Base | [ettin-encoder-from-decoder-150m](https://huggingface.co/jhu-clsp/ettin-encoder-from-decoder-150m) | 150M | Decoder → MLM continued training | [![Download](https://img.shields.io/badge/🤗-Download-blue)](https://huggingface.co/jhu-clsp/ettin-encoder-from-decoder-150m) |
| Large | [ettin-encoder-from-decoder-400m](https://huggingface.co/jhu-clsp/ettin-encoder-from-decoder-400m) | 400M | Decoder → MLM continued training | [![Download](https://img.shields.io/badge/🤗-Download-blue)](https://huggingface.co/jhu-clsp/ettin-encoder-from-decoder-400m) |
| XL | [ettin-encoder-from-decoder-1b](https://huggingface.co/jhu-clsp/ettin-encoder-from-decoder-1b) | 1B | Decoder → MLM continued training | [![Download](https://img.shields.io/badge/🤗-Download-blue)](https://huggingface.co/jhu-clsp/ettin-encoder-from-decoder-1b) |

#### Decoders Trained from Encoders (Encoder → CLM)
**Load as decoders** using `AutoModelForCausalLM`:

| Size | Model | Parameters | Description | Download |
|:-----|:------|:-----------|:------------|:---------|
| XXS | [ettin-decoder-from-encoder-17m](https://huggingface.co/jhu-clsp/ettin-decoder-from-encoder-17m) | 17M | Encoder → CLM continued training | [![Download](https://img.shields.io/badge/🤗-Download-blue)](https://huggingface.co/jhu-clsp/ettin-decoder-from-encoder-17m) |
| XS | [ettin-decoder-from-encoder-32m](https://huggingface.co/jhu-clsp/ettin-decoder-from-encoder-32m) | 32M | Encoder → CLM continued training | [![Download](https://img.shields.io/badge/🤗-Download-blue)](https://huggingface.co/jhu-clsp/ettin-decoder-from-encoder-32m) |
| Small | [ettin-decoder-from-encoder-68m](https://huggingface.co/jhu-clsp/ettin-decoder-from-encoder-68m) | 68M | Encoder → CLM continued training | [![Download](https://img.shields.io/badge/🤗-Download-blue)](https://huggingface.co/jhu-clsp/ettin-decoder-from-encoder-68m) |
| Base | [ettin-decoder-from-encoder-150m](https://huggingface.co/jhu-clsp/ettin-decoder-from-encoder-150m) | 150M | Encoder → CLM continued training | [![Download](https://img.shields.io/badge/🤗-Download-blue)](https://huggingface.co/jhu-clsp/ettin-decoder-from-encoder-150m) |
| Large | [ettin-decoder-from-encoder-400m](https://huggingface.co/jhu-clsp/ettin-decoder-from-encoder-400m) | 400M | Encoder → CLM continued training | [![Download](https://img.shields.io/badge/🤗-Download-blue)](https://huggingface.co/jhu-clsp/ettin-decoder-from-encoder-400m) |
| XL | [ettin-decoder-from-encoder-1b](https://huggingface.co/jhu-clsp/ettin-decoder-from-encoder-1b) | 1B | Encoder → CLM continued training | [![Download](https://img.shields.io/badge/🤗-Download-blue)](https://huggingface.co/jhu-clsp/ettin-decoder-from-encoder-1b) |

**Example Usage for Cross-Objective Models:**
```python
# Encoder-from-decoder: Load as encoder
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/ettin-encoder-from-decoder-150m")
model = AutoModel.from_pretrained("jhu-clsp/ettin-encoder-from-decoder-150m")

# Decoder-from-encoder: Load as decoder  
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/ettin-decoder-from-encoder-150m")
model = AutoModelForCausalLM.from_pretrained("jhu-clsp/ettin-decoder-from-encoder-150m")
```

## Accessing Training Checkpoints

Beyond the final models listed above, we provide access to intermediate training checkpoints for research and analysis purposes. These checkpoints allow you to study model behavior and performance throughout the training process. You can get the checkpoints either in HF format or raw for continued pre-training (e.g. Composer format).

#### Raw Checkpoints
All raw training checkpoints are available in the [jhu-clsp/ettin-checkpoints](https://huggingface.co/datasets/jhu-clsp/ettin-checkpoints) dataset.

#### HuggingFace Format Checkpoints
Each model repository contains multiple tagged versions representing different training stages:

- **`step{number}`** - Pretraining phase checkpoints (e.g., `step599525`, `step596528`)
- **`ext{number}`** - Extension/mid-training phase checkpoints (e.g., `ext1000`, `ext2000`) 
- **`decay{number}`** - Decay phase checkpoints (e.g., `decay100`, `decay500`)

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load a specific pretraining checkpoint
model = AutoModelForCausalLM.from_pretrained(
    "jhu-clsp/ettin-decoder-400m", 
    revision="step590532"  # Specific checkpoint tag
)

# Load an extension phase checkpoint
model = AutoModelForCausalLM.from_pretrained(
    "jhu-clsp/ettin-decoder-400m", 
    revision="ext1000"
)

# Load a decay phase checkpoint  
model = AutoModelForCausalLM.from_pretrained(
    "jhu-clsp/ettin-decoder-400m", 
    revision="decay100"
)
```

This checkpoint availability enables detailed analysis of training dynamics, loss curves, and capability emergence across the complete 2T token training process.


## 🔬 Research Applications

### What Makes Ettin Unique

Ettin provides the first **controlled comparison** of encoder vs. decoder architectures:

- **Identical Training Data**: Same 2T token mixture across all models
- **Matched Architectures**: Only attention patterns and objectives differ  
- **Open Everything**: Training data, model weights, and batch-level training order
- **Multiple Scales**: Fair comparison from 17M to 1B parameters
- **250+ Checkpoints**: Complete training trajectory analysis

### Use Cases for Researchers

- **Architecture Studies**: Compare encoder vs decoder capabilities fairly
- **Training Dynamics**: Analyze 250+ checkpoints with batch-level data ordering  
- **Scaling Laws**: Study how architectural advantages change with scale
- **Transfer Learning**: Investigate cross-objective training effectiveness
- **Replication Studies**: First open replication of ModernBERT training recipe

### Reproducibility

All training artifacts are publicly available:
- Training data with exact batch ordering
- Model checkpoints every 8.5B tokens
- Complete hyperparameter configurations
- Training code and evaluation scripts

## Training Details

**Data:** High-quality mixture including DCLM, Dolma v1.7, scientific papers, code, and curated sources totaling 2T+ tokens

**Architecture:** Transformer with RoPE, GLU activations, and prenorm layers

**Training Phases:**
- **Pre-training**: 1.7T tokens with diverse data mixture
- **Mid-training**: 250B tokens with higher-quality filtered data and context extension to 8K
- **Decay phase**: 100B tokens with premium data sources

**Key Features:**
- Context length: Up to 8K tokens
- Vocabulary: 50,368 tokens (ModernBERT tokenizer)
- Deep but efficient architectures following MobileLLM principles

## Model Architecture

| Parameter | 17M | 32M | 68M | 150M | 400M | 1B |
|:----------|:----|:----|:----|:-----|:-----|:---|
| Layers | 7 | 10 | 19 | 22 | 28 | 28 |
| Hidden Size | 256 | 384 | 512 | 768 | 1024 | 1792 |
| Intermediate Size | 384 | 576 | 768 | 1152 | 2624 | 3840 |
| Attention Heads | 4 | 6 | 8 | 12 | 16 | 28 |



## Usage Examples

### Encoder: Masked Language Modeling
<details>
<summary>Click to expand <strong>encoder</strong> usage examples</summary>

```python
from transformers import AutoTokenizer, AutoModelForMaskedLM
import torch

# Load MLM model
tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/ettin-encoder-150m")
model = AutoModelForMaskedLM.from_pretrained("jhu-clsp/ettin-encoder-150m")

def predict_masked_token(text):
    inputs = tokenizer(text, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
    
    # Get predictions for [MASK] tokens
    mask_indices = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)
    predictions = outputs.logits[mask_indices]
    
    # Get top 5 predictions
    top_tokens = torch.topk(predictions, 5, dim=-1)
    return [tokenizer.decode(token) for token in top_tokens.indices[0]]

# Example
masked_text = "The capital of France is [MASK]."
predictions = predict_masked_token(masked_text)
print(f"Predictions: {predictions}")
```

</details>

### Decoder: Text Generation

<details>
<summary>Click to expand <strong>decoder text generation</strong></summary>
  
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Load model and tokenizer  
tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/ettin-decoder-150m")
model = AutoModelForCausalLM.from_pretrained("jhu-clsp/ettin-decoder-150m")

# Set pad token if needed
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

def generate_text(prompt, max_length=100, temperature=0.7):
    inputs = tokenizer(prompt, return_tensors="pt")
    
    with torch.no_grad():
        outputs = model.generate(
            inputs.input_ids,
            max_length=max_length,
            temperature=temperature,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id,
            num_return_sequences=1
        )
    
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# Example usage
prompt = "The future of artificial intelligence is"
generated = generate_text(prompt)
print(generated)
```

</details>


## Fine-tuning Examples

### Encoders
<details><summary>Click to see how to finetune this into a dense embedding model using Sentence Transformers</summary> 

```python
import argparse

from datasets import load_dataset
from sentence_transformers import (
    SentenceTransformer,
    SentenceTransformerTrainer,
    SentenceTransformerTrainingArguments,
)
from sentence_transformers.evaluation import TripletEvaluator
from sentence_transformers.losses import CachedMultipleNegativesRankingLoss
from sentence_transformers.training_args import BatchSamplers

def main():
    # parse the lr & model name
    parser = argparse.ArgumentParser()
    parser.add_argument("--lr", type=float, default=8e-5)
    parser.add_argument("--model_name", type=str, default="jhu-clsp/ettin-encoder-150m")
    args = parser.parse_args()
    lr = args.lr
    model_name = args.model_name
    model_shortname = model_name.split("/")[-1]

    # 1. Load a model to finetune
    model = SentenceTransformer(model_name)

    # 2. Load a dataset to finetune on
    dataset = load_dataset(
        "sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1",
        "triplet-hard",
        split="train",
    )
    dataset_dict = dataset.train_test_split(test_size=1_000, seed=12)
    train_dataset = dataset_dict["train"].select(range(1_250_000))
    eval_dataset = dataset_dict["test"]

    # 3. Define a loss function
    loss = CachedMultipleNegativesRankingLoss(model, mini_batch_size=16)  # Increase mini_batch_size if you have enough VRAM

    run_name = f"{model_shortname}-DPR-{lr}"
    # 4. (Optional) Specify training arguments
    args = SentenceTransformerTrainingArguments(
        # Required parameter:
        output_dir=f"output/{model_shortname}/{run_name}",
        # Optional training parameters:
        num_train_epochs=1,
        per_device_train_batch_size=512,
        per_device_eval_batch_size=512,
        warmup_ratio=0.05,
        fp16=False,  # Set to False if GPU can't handle FP16
        bf16=True,  # Set to True if GPU supports BF16
        batch_sampler=BatchSamplers.NO_DUPLICATES,  # (Cached)MultipleNegativesRankingLoss benefits from no duplicates
        learning_rate=lr,
        # Optional tracking/debugging parameters:
        save_strategy="steps",
        save_steps=500,
        save_total_limit=2,
        logging_steps=500,
        run_name=run_name,  # Used in `wandb`, `tensorboard`, `neptune`, etc. if installed
    )

    # 5. (Optional) Create an evaluator & evaluate the base model
    dev_evaluator = TripletEvaluator(
        anchors=eval_dataset["query"],
        positives=eval_dataset["positive"],
        negatives=eval_dataset["negative"],
        name="msmarco-co-condenser-dev",
    )
    dev_evaluator(model)

    # 6. Create a trainer & train
    trainer = SentenceTransformerTrainer(
        model=model,
        args=args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        loss=loss,
        evaluator=dev_evaluator,
    )
    trainer.train()

    # 7. (Optional) Evaluate the trained model on the evaluator after training
    dev_evaluator(model)

    # 8. Save the model
    model.save_pretrained(f"output/{model_shortname}/{run_name}/final")

    # 9. (Optional) Push it to the Hugging Face Hub
    model.push_to_hub(run_name, private=False)

if __name__ == "__main__":
    main()
```
</details>


<details><summary>Click to see how to finetune this into a multi-vector embedding model with PyLate</summary>

```python
from datasets import load_dataset
from pylate import losses, models, utils
from sentence_transformers import (
    SentenceTransformerTrainer,
    SentenceTransformerTrainingArguments,
)

def main():
    # Load the datasets required for knowledge distillation (train, queries, documents)
    train = load_dataset(
        path="lightonai/ms-marco-en-bge",
        name="train",
    )

    queries = load_dataset(
        path="lightonai/ms-marco-en-bge",
        name="queries",
    )

    documents = load_dataset(
        path="lightonai/ms-marco-en-bge",
        name="documents",
    )

    # Set the transformation to load the documents/queries texts using the corresponding ids on the fly
    train.set_transform(
        utils.KDProcessing(queries=queries, documents=documents).transform,
    )

    # Define the base model, training parameters, and output directory
    num_train_epochs = 1
    lr = 8e-5
    batch_size = 16
    accum_steps = 1
    model_name = "jhu-clsp/ettin-encoder-150m"
    model_shortname = model_name.split("/")[-1]

    # Set the run name for logging and output directory
    run_name = f"{model_shortname}-colbert-KD-{lr}"
    output_dir = f"output/{model_shortname}/{run_name}"

    # Initialize the ColBERT model from the base model
    model = models.ColBERT(model_name_or_path=model_name)

    # Configure the training arguments (e.g., epochs, batch size, learning rate)
    args = SentenceTransformerTrainingArguments(
        output_dir=output_dir,
        num_train_epochs=num_train_epochs,
        per_device_train_batch_size=batch_size,
        fp16=False,  # Set to False if you get an error that your GPU can't run on FP16
        bf16=True,  # Set to True if you have a GPU that supports BF16
        run_name=run_name,
        logging_steps=10,
        learning_rate=lr,
        gradient_accumulation_steps=accum_steps,
        warmup_ratio=0.05,
    )

    # Use the Distillation loss function for training
    train_loss = losses.Distillation(model=model)

    # Initialize the trainer
    trainer = SentenceTransformerTrainer(
        model=model,
        args=args,
        train_dataset=train,
        loss=train_loss,
        data_collator=utils.ColBERTCollator(tokenize_fn=model.tokenize),
    )

    # Start the training process
    trainer.train()

    model.save_pretrained(f"{output_dir}/final")

if __name__ == "__main__":
    main()

```
</details>

<details><summary>Click to see how to finetune this into a sparse retrieval model using Sentence Transformers</summary>

```python
import logging

from datasets import load_dataset

from sentence_transformers import (
    SparseEncoder,
    SparseEncoderModelCardData,
    SparseEncoderTrainer,
    SparseEncoderTrainingArguments,
)
from sentence_transformers.sparse_encoder.evaluation import SparseNanoBEIREvaluator
from sentence_transformers.sparse_encoder.losses import SparseMultipleNegativesRankingLoss, SpladeLoss
from sentence_transformers.training_args import BatchSamplers

logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)

# 1. Load a model to finetune with 2. (Optional) model card data
model = SparseEncoder(
    "jhu-clsp/ettin-encoder-150m",
    model_card_data=SparseEncoderModelCardData(
        language="en",
        license="apache-2.0",
    )
)

# 3. Load a dataset to finetune on
full_dataset = load_dataset("sentence-transformers/natural-questions", split="train").select(range(100_000))
dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12)
train_dataset = dataset_dict["train"]
eval_dataset = dataset_dict["test"]

# 4. Define a loss function
loss = SpladeLoss(
    model=model,
    loss=SparseMultipleNegativesRankingLoss(model=model),
    query_regularizer_weight=5e-5,
    document_regularizer_weight=3e-5,
)

# 5. (Optional) Specify training arguments
run_name = "splade-distilbert-base-uncased-nq"
args = SparseEncoderTrainingArguments(
    # Required parameter:
    output_dir=f"models/{run_name}",
    # Optional training parameters:
    num_train_epochs=1,
    per_device_train_batch_size=16,
    per_device_eval_batch_size=16,
    learning_rate=2e-5,
    warmup_ratio=0.1,
    fp16=True,  # Set to False if you get an error that your GPU can't run on FP16
    bf16=False,  # Set to True if you have a GPU that supports BF16
    batch_sampler=BatchSamplers.NO_DUPLICATES,  # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
    # Optional tracking/debugging parameters:
    eval_strategy="steps",
    eval_steps=1000,
    save_strategy="steps",
    save_steps=1000,
    save_total_limit=2,
    logging_steps=200,
    run_name=run_name,  # Will be used in W&B if `wandb` is installed
)

# 6. (Optional) Create an evaluator & evaluate the base model
dev_evaluator = SparseNanoBEIREvaluator(dataset_names=["msmarco", "nfcorpus", "nq"], batch_size=16)

# 7. Create a trainer & train
trainer = SparseEncoderTrainer(
    model=model,
    args=args,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
    loss=loss,
    evaluator=dev_evaluator,
)
trainer.train()

# 8. Evaluate the model performance again after training
dev_evaluator(model)

# 9. Save the trained model
model.save_pretrained(f"models/{run_name}/final")

# 10. (Optional) Push it to the Hugging Face Hub
model.push_to_hub(run_name)

```
</details>

<details><summary>Click to see how to finetune this into a reranker model using Sentence Transformers</summary>

```python
import logging
import traceback

import torch
from datasets import load_dataset

from sentence_transformers import SentenceTransformer
from sentence_transformers.cross_encoder import (
    CrossEncoder,
    CrossEncoderModelCardData,
    CrossEncoderTrainer,
    CrossEncoderTrainingArguments,
)
from sentence_transformers.cross_encoder.evaluation import (
    CrossEncoderNanoBEIREvaluator,
    CrossEncoderRerankingEvaluator,
)
from sentence_transformers.cross_encoder.losses import BinaryCrossEntropyLoss
from sentence_transformers.evaluation import SequentialEvaluator
from sentence_transformers.util import mine_hard_negatives

# Set the log level to INFO to get more information
logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)


def main():
    model_name = "jhu-clsp/ettin-encoder-150m"

    train_batch_size = 64
    num_epochs = 1
    num_hard_negatives = 5  # How many hard negatives should be mined for each question-answer pair

    # 1a. Load a model to finetune with 1b. (Optional) model card data
    model = CrossEncoder(
        model_name,
        model_card_data=CrossEncoderModelCardData(
            language="en",
            license="apache-2.0",
        ),
    )
    print("Model max length:", model.max_length)
    print("Model num labels:", model.num_labels)

    # 2a. Load the GooAQ dataset: https://huggingface.co/datasets/sentence-transformers/gooaq
    logging.info("Read the gooaq training dataset")
    full_dataset = load_dataset("sentence-transformers/gooaq", split="train").select(range(100_000))
    dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12)
    train_dataset = dataset_dict["train"]
    eval_dataset = dataset_dict["test"]
    logging.info(train_dataset)
    logging.info(eval_dataset)

    # 2b. Modify our training dataset to include hard negatives using a very efficient embedding model
    embedding_model = SentenceTransformer("sentence-transformers/static-retrieval-mrl-en-v1", device="cpu")
    hard_train_dataset = mine_hard_negatives(
        train_dataset,
        embedding_model,
        num_negatives=num_hard_negatives,  # How many negatives per question-answer pair
        margin=0,  # Similarity between query and negative samples should be x lower than query-positive similarity
        range_min=0,  # Skip the x most similar samples
        range_max=100,  # Consider only the x most similar samples
        sampling_strategy="top",  # Sample the top negatives from the range
        batch_size=4096,  # Use a batch size of 4096 for the embedding model
        output_format="labeled-pair",  # The output format is (query, passage, label), as required by BinaryCrossEntropyLoss
        use_faiss=True,
    )
    logging.info(hard_train_dataset)

    # 2c. (Optionally) Save the hard training dataset to disk
    # hard_train_dataset.save_to_disk("gooaq-hard-train")
    # Load again with:
    # hard_train_dataset = load_from_disk("gooaq-hard-train")

    # 3. Define our training loss.
    # pos_weight is recommended to be set as the ratio between positives to negatives, a.k.a. `num_hard_negatives`
    loss = BinaryCrossEntropyLoss(model=model, pos_weight=torch.tensor(num_hard_negatives))

    # 4a. Define evaluators. We use the CrossEncoderNanoBEIREvaluator, which is a light-weight evaluator for English reranking
    nano_beir_evaluator = CrossEncoderNanoBEIREvaluator(
        dataset_names=["msmarco", "nfcorpus", "nq"],
        batch_size=train_batch_size,
    )

    # 4b. Define a reranking evaluator by mining hard negatives given query-answer pairs
    # We include the positive answer in the list of negatives, so the evaluator can use the performance of the
    # embedding model as a baseline.
    hard_eval_dataset = mine_hard_negatives(
        eval_dataset,
        embedding_model,
        corpus=full_dataset["answer"],  # Use the full dataset as the corpus
        num_negatives=30,  # How many documents to rerank
        batch_size=4096,
        include_positives=True,
        output_format="n-tuple",
        use_faiss=True,
    )
    logging.info(hard_eval_dataset)
    reranking_evaluator = CrossEncoderRerankingEvaluator(
        samples=[
            {
                "query": sample["question"],
                "positive": [sample["answer"]],
                "documents": [sample[column_name] for column_name in hard_eval_dataset.column_names[2:]],
            }
            for sample in hard_eval_dataset
        ],
        batch_size=train_batch_size,
        name="gooaq-dev",
        # Realistic setting: only rerank the positives that the retriever found
        # Set to True to rerank *all* positives
        always_rerank_positives=False,
    )

    # 4c. Combine the evaluators & run the base model on them
    evaluator = SequentialEvaluator([reranking_evaluator, nano_beir_evaluator])
    evaluator(model)

    # 5. Define the training arguments
    short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1]
    run_name = f"reranker-{short_model_name}-gooaq-bce"
    args = CrossEncoderTrainingArguments(
        # Required parameter:
        output_dir=f"models/{run_name}",
        # Optional training parameters:
        num_train_epochs=num_epochs,
        per_device_train_batch_size=train_batch_size,
        per_device_eval_batch_size=train_batch_size,
        learning_rate=2e-5,
        warmup_ratio=0.1,
        fp16=False,  # Set to False if you get an error that your GPU can't run on FP16
        bf16=True,  # Set to True if you have a GPU that supports BF16
        dataloader_num_workers=4,
        load_best_model_at_end=True,
        metric_for_best_model="eval_gooaq-dev_ndcg@10",
        # Optional tracking/debugging parameters:
        eval_strategy="steps",
        eval_steps=1000,
        save_strategy="steps",
        save_steps=1000,
        save_total_limit=2,
        logging_steps=200,
        logging_first_step=True,
        run_name=run_name,  # Will be used in W&B if `wandb` is installed
        seed=12,
    )

    # 6. Create the trainer & start training
    trainer = CrossEncoderTrainer(
        model=model,
        args=args,
        train_dataset=hard_train_dataset,
        loss=loss,
        evaluator=evaluator,
    )
    trainer.train()

    # 7. Evaluate the final model, useful to include these in the model card
    evaluator(model)

    # 8. Save the final model
    final_output_dir = f"models/{run_name}/final"
    model.save_pretrained(final_output_dir)

    # 9. (Optional) save the model to the Hugging Face Hub!
    # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first
    try:
        model.push_to_hub(run_name)
    except Exception:
        logging.error(
            f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run "
            f"`huggingface-cli login`, followed by loading the model using `model = CrossEncoder({final_output_dir!r})` "
            f"and saving it using `model.push_to_hub('{run_name}')`."
        )


if __name__ == "__main__":
    main()

```
</details>

### Decoders

<details>
<summary>Click to expand decoder training code</summary>

# Full training
```bash
python trl/scripts/sft.py \
    --model_name_or_path jhu-clsp/ettin-decoder-17m \
    --dataset_name trl-lib/Capybara \
    --learning_rate 2.0e-5 \
    --num_train_epochs 1 \
    --packing \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 8 \
    --gradient_checkpointing \
    --eos_token '<|im_end|>' \
    --eval_strategy steps \
    --eval_steps 100 \
    --output_dir ettin-decoder-17m \
    --push_to_hub
```

# LoRA
```bash
python trl/scripts/sft.py \
    --model_name_or_path jhu-clsp/ettin-decoder-17m \
    --dataset_name trl-lib/Capybara \
    --learning_rate 2.0e-4 \
    --num_train_epochs 1 \
    --packing \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 8 \
    --gradient_checkpointing \
    --eos_token '<|im_end|>' \
    --eval_strategy steps \
    --eval_steps 100 \
    --use_peft \
    --lora_r 32 \
    --lora_alpha 16 \
    --output_dir ettin-decoder-17m \
    --push_to_hub
```

with `sft.py`:
```python
import argparse

from datasets import load_dataset
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
from transformers.models.auto.modeling_auto import MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES

from trl import (
    ModelConfig,
    ScriptArguments,
    SFTConfig,
    SFTTrainer,
    TrlParser,
    clone_chat_template,
    get_kbit_device_map,
    get_peft_config,
    get_quantization_config,
)


def main(script_args, training_args, model_args):
    ################
    # Model init kwargs & Tokenizer
    ################
    quantization_config = get_quantization_config(model_args)
    model_kwargs = dict(
        revision=model_args.model_revision,
        trust_remote_code=model_args.trust_remote_code,
        attn_implementation=model_args.attn_implementation,
        torch_dtype=model_args.torch_dtype,
        use_cache=False if training_args.gradient_checkpointing else True,
        device_map=get_kbit_device_map() if quantization_config is not None else None,
        quantization_config=quantization_config,
    )

    # Create model
    config = AutoConfig.from_pretrained(model_args.model_name_or_path)
    valid_image_text_architectures = MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES.values()

    if config.architectures and any(arch in valid_image_text_architectures for arch in config.architectures):
        from transformers import AutoModelForImageTextToText

        model_kwargs.pop("use_cache", None)  # Image models do not support cache
        model = AutoModelForImageTextToText.from_pretrained(model_args.model_name_or_path, **model_kwargs)
    else:
        model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, **model_kwargs)

    # Create tokenizer
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, use_fast=True
    )

    # Set default chat template if needed
    if tokenizer.chat_template is None:
        # TODO: source should be passed as an argument
        model, tokenizer = clone_chat_template(model, tokenizer, "Qwen/Qwen3-0.6B")

    ################
    # Dataset
    ################
    dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)

    ################
    # Training
    ################
    trainer = SFTTrainer(
        model=model,
        args=training_args,
        train_dataset=dataset[script_args.dataset_train_split],
        eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
        processing_class=tokenizer,
        peft_config=get_peft_config(model_args),
    )

    trainer.train()

    # Save and push to hub
    trainer.save_model(training_args.output_dir)
    if training_args.push_to_hub:
        trainer.push_to_hub(dataset_name=script_args.dataset_name)


def make_parser(subparsers: argparse._SubParsersAction = None):
    dataclass_types = (ScriptArguments, SFTConfig, ModelConfig)
    if subparsers is not None:
        parser = subparsers.add_parser("sft", help="Run the SFT training script", dataclass_types=dataclass_types)
    else:
        parser = TrlParser(dataclass_types)
    return parser


if __name__ == "__main__":
    parser = make_parser()
    # When using the trl cli, this script may be run with additional arguments, corresponding accelerate arguments.
    # To ensure that their parsing does not interfere with the script arguments, parse the arguments with
    # `return_remaining_strings=True`, then ignore the remaining strings.
    script_args, training_args, model_args, _ = parser.parse_args_and_config(return_remaining_strings=True)
    main(script_args, training_args, model_args)

```
</details>

## Citation

If you use Ettin models in your research, please cite our work:

```bibtex
@misc{weller2025seqvsseqopen,
      title={Seq vs Seq: An Open Suite of Paired Encoders and Decoders}, 
      author={Orion Weller and Kathryn Ricci and Marc Marone and Antoine Chaffin and Dawn Lawrie and Benjamin Van Durme},
      year={2025},
      eprint={2507.11412},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2507.11412}, 
}
```