Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- README.md +83 -0
- assets/icon.jpg +0 -0
- assets/model_pipe.png +3 -0
- assets/rmis_curve.png +3 -0
- base.py +434 -0
- config.json +17 -0
- configuration_fisher.py +22 -0
- images.py +215 -0
- model.safetensors +3 -0
- modeling_fisher.py +254 -0
- modules.py +273 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
assets/model_pipe.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
assets/rmis_curve.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,86 @@
|
|
1 |
---
|
|
|
2 |
license: mit
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: en
|
3 |
license: mit
|
4 |
+
tags:
|
5 |
+
- pytorch
|
6 |
---
|
7 |
+
|
8 |
+
<h1 align="center">
|
9 |
+
FISHER
|
10 |
+
</h1>
|
11 |
+
|
12 |
+
<div align="center">
|
13 |
+
<img src="assets/rmis_curve.png" alt="Model Performances on the RMIS Benchmark" style="width:80%; max-width: 1000px">
|
14 |
+
</div>
|
15 |
+
|
16 |
+
|
17 |
+
## Introduction
|
18 |
+
|
19 |
+
<div align="center">
|
20 |
+
<img src="assets/model_pipe.png" alt="Model Performances on the RMIS Benchmark" style="width:100%; max-width: 1500px">
|
21 |
+
</div>
|
22 |
+
|
23 |
+
FISHER is a **F**oundation model for **I**ndustrial **S**ignal compre**HE**nsive **R**epresentation, which models heterogeneous industrial signals (sound, vibration, voltage, etc.) in a unified manner. FISHER accepts arbitrary sampling rates and models the increment of sampling rate as the concatenation of sub-band information, which first splits a STFT spectrogram into sub-bands before processsing it by the ViT encoder. FISHER is trained by teacher student EMA self-distillation.
|
24 |
+
|
25 |
+
To evaluate the model, we develop the RMIS benchmark, which will also be open-sourced in the near future. FISHER achieves the SOTA performances on the RMIS benchmark with much more efficient scaling properties.
|
26 |
+
|
27 |
+
## Inference
|
28 |
+
|
29 |
+
Please use the following code to infer the signal representation by FISHER.
|
30 |
+
|
31 |
+
```python
|
32 |
+
import torch
|
33 |
+
import torchaudio
|
34 |
+
import torch.nn.functional as F
|
35 |
+
from transformers import AutoModel
|
36 |
+
|
37 |
+
model = AutoModel.from_pretrained('jiangab/FISHER-mini-0723', trust_remote_code=True)
|
38 |
+
model = model.cuda()
|
39 |
+
model.eval()
|
40 |
+
|
41 |
+
wav, sr = torchaudio.load('/path/to/local/signal.wav')
|
42 |
+
# You can replace it with your custom loading function for other signals
|
43 |
+
|
44 |
+
wav = wav - wav.mean()
|
45 |
+
STFT = torchaudio.transforms.Spectrogram(
|
46 |
+
n_fft=25 * sr // 1000,
|
47 |
+
win_length=None,
|
48 |
+
hop_length=10 * sr // 1000,
|
49 |
+
power=1,
|
50 |
+
center=False
|
51 |
+
)
|
52 |
+
spec = torch.log(torch.abs(STFT(wav)) + 1e-10)
|
53 |
+
spec = spec.transpose(-2, -1) # [1, time, freq]
|
54 |
+
spec = (spec + 3.017344307886898) / (2.1531635155379805 * 2)
|
55 |
+
|
56 |
+
# time-wise cutoff
|
57 |
+
if spec.shape[-2] > 1024:
|
58 |
+
spec = spec[:, :1024]
|
59 |
+
# freq-wise padding
|
60 |
+
if spec.shape[-1] < model.cfg.band_width:
|
61 |
+
spec = F.pad(spec, (0, model.cfg.band_width - spec.shape[-1]))
|
62 |
+
spec = spec.unsqueeze(1).cuda()
|
63 |
+
|
64 |
+
with torch.no_grad():
|
65 |
+
# Use autocast for mixed precision inference. You can disable it for full precision.
|
66 |
+
with torch.autocast('cuda'):
|
67 |
+
repre = model.extract_features(spec)
|
68 |
+
print(repre.shape)
|
69 |
+
```
|
70 |
+
|
71 |
+
## Acknowledgements
|
72 |
+
|
73 |
+
FISHER is developed based on [EAT](https://github.com/cwx-worst-one/EAT) and [fairseq](https://github.com/facebookresearch/fairseq). We thank these authors for open-sourcing their works.
|
74 |
+
|
75 |
+
## Citation
|
76 |
+
|
77 |
+
If you find FISHER useful, please cite the following paper.
|
78 |
+
|
79 |
+
```bibtex
|
80 |
+
@article{fan2025fisher,
|
81 |
+
title={FISHER: A Foundation Model for Multi-Modal Industrial Signal Comprehensive Representation},
|
82 |
+
author={Fan, Pingyi and Jiang, Anbai and Zhang, Shuwei and Lv, Zhiqiang and Han, Bing and Zheng, Xinhu and Liang, Wenrui and Li, Junjie and Zhang, Wei-Qiang and Qian, Yanmin and Chen, Xie and Lu, Cheng and Liu, Jia},
|
83 |
+
journal={arXiv preprint arXiv:2507.16696},
|
84 |
+
year={2025}
|
85 |
+
}
|
86 |
+
```
|
assets/icon.jpg
ADDED
![]() |
assets/model_pipe.png
ADDED
![]() |
Git LFS Details
|
assets/rmis_curve.png
ADDED
![]() |
Git LFS Details
|
base.py
ADDED
@@ -0,0 +1,434 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
from collections import namedtuple
|
8 |
+
from dataclasses import dataclass
|
9 |
+
from functools import partial
|
10 |
+
from omegaconf import MISSING, II
|
11 |
+
from typing import Optional, Callable
|
12 |
+
from enum import Enum, auto
|
13 |
+
|
14 |
+
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
|
18 |
+
class Modality(Enum):
|
19 |
+
AUDIO = auto()
|
20 |
+
IMAGE = auto()
|
21 |
+
TEXT = auto()
|
22 |
+
|
23 |
+
|
24 |
+
@dataclass
|
25 |
+
class D2vModalityConfig:
|
26 |
+
type: Modality = MISSING
|
27 |
+
prenet_depth: int = 0
|
28 |
+
prenet_layerdrop: float = 0.0
|
29 |
+
prenet_dropout: float = 0.0
|
30 |
+
start_drop_path_rate: float = 0.0
|
31 |
+
end_drop_path_rate: float = 0.0
|
32 |
+
|
33 |
+
num_extra_tokens: int = 1
|
34 |
+
init_extra_token_zero: bool = False
|
35 |
+
|
36 |
+
mask_noise_std: float = 0.01
|
37 |
+
mask_prob_min: Optional[float] = None
|
38 |
+
mask_prob: float = 0.8
|
39 |
+
inverse_mask: bool = True
|
40 |
+
mask_prob_adjust: float = 0.07
|
41 |
+
keep_masked_pct: float = 0.0
|
42 |
+
flexible_mask: bool = False
|
43 |
+
|
44 |
+
mask_length: int = 5
|
45 |
+
add_masks: bool = False
|
46 |
+
remove_masks: bool = False
|
47 |
+
mask_dropout: float = 0.0
|
48 |
+
encoder_zero_mask: bool = True
|
49 |
+
|
50 |
+
mask_channel_prob: float = 0.0
|
51 |
+
mask_channel_length: int = 64
|
52 |
+
|
53 |
+
ema_local_encoder: bool = True # used in data2vec_multi
|
54 |
+
ema_local_decoder: bool = False
|
55 |
+
local_grad_mult: float = 1.0
|
56 |
+
flatten: str = 'freq'
|
57 |
+
max_length: int = 128
|
58 |
+
max_freq: int = 50
|
59 |
+
|
60 |
+
use_alibi_encoder: bool = False
|
61 |
+
alibi_scale: float = 1.0
|
62 |
+
learned_alibi: bool = False
|
63 |
+
alibi_max_pos: Optional[int] = None
|
64 |
+
learned_alibi_scale: bool = False
|
65 |
+
learned_alibi_scale_per_head: bool = False
|
66 |
+
learned_alibi_scale_per_layer: bool = False
|
67 |
+
|
68 |
+
num_alibi_heads: int = II("model.num_heads")
|
69 |
+
model_depth: int = II("model.depth")
|
70 |
+
|
71 |
+
|
72 |
+
MaskInfo = namedtuple("MaskInfo", ["x_unmasked", "mask", "ids_restore", "ids_keep"])
|
73 |
+
|
74 |
+
|
75 |
+
class ModalitySpecificEncoder(nn.Module):
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
modality_cfg: D2vModalityConfig,
|
79 |
+
embed_dim: int,
|
80 |
+
local_encoder: nn.Module,
|
81 |
+
project_features: nn.Module,
|
82 |
+
fixed_positional_encoder: Optional[nn.Module],
|
83 |
+
relative_positional_encoder: Optional[nn.Module], # None
|
84 |
+
context_encoder: nn.Module,
|
85 |
+
decoder: Optional[nn.Module],
|
86 |
+
get_alibi_bias: Optional[Callable[[int, int, str, str], torch.Tensor]],
|
87 |
+
):
|
88 |
+
super().__init__()
|
89 |
+
|
90 |
+
self.modality_cfg = modality_cfg
|
91 |
+
self.local_encoder = local_encoder
|
92 |
+
self.project_features = project_features
|
93 |
+
self.fixed_positional_encoder = fixed_positional_encoder
|
94 |
+
self.relative_positional_encoder = relative_positional_encoder
|
95 |
+
self.context_encoder = context_encoder
|
96 |
+
|
97 |
+
self.decoder = decoder
|
98 |
+
self.get_alibi_bias = get_alibi_bias if modality_cfg.use_alibi_encoder else None
|
99 |
+
|
100 |
+
self.local_grad_mult = self.modality_cfg.local_grad_mult
|
101 |
+
|
102 |
+
self.extra_tokens = None
|
103 |
+
if modality_cfg.num_extra_tokens > 0:
|
104 |
+
self.extra_tokens = nn.Parameter(
|
105 |
+
torch.zeros(1, modality_cfg.num_extra_tokens, embed_dim)
|
106 |
+
)
|
107 |
+
if not modality_cfg.init_extra_token_zero:
|
108 |
+
nn.init.normal_(self.extra_tokens)
|
109 |
+
elif self.extra_tokens.size(1) > 1:
|
110 |
+
nn.init.normal_(self.extra_tokens[:, 1:])
|
111 |
+
|
112 |
+
self.alibi_scale = None
|
113 |
+
if self.get_alibi_bias is not None:
|
114 |
+
self.alibi_scale = nn.Parameter(
|
115 |
+
torch.full(
|
116 |
+
(
|
117 |
+
(modality_cfg.prenet_depth + modality_cfg.model_depth)
|
118 |
+
if modality_cfg.learned_alibi_scale_per_layer
|
119 |
+
else 1,
|
120 |
+
1,
|
121 |
+
self.modality_cfg.num_alibi_heads
|
122 |
+
if modality_cfg.learned_alibi_scale_per_head
|
123 |
+
else 1,
|
124 |
+
1,
|
125 |
+
1,
|
126 |
+
),
|
127 |
+
modality_cfg.alibi_scale,
|
128 |
+
dtype=torch.float,
|
129 |
+
),
|
130 |
+
requires_grad=modality_cfg.learned_alibi_scale,
|
131 |
+
)
|
132 |
+
|
133 |
+
if modality_cfg.learned_alibi and self.get_alibi_bias is not None:
|
134 |
+
assert modality_cfg.alibi_max_pos is not None
|
135 |
+
alibi_bias = self.get_alibi_bias(
|
136 |
+
batch_size=1,
|
137 |
+
time_steps=modality_cfg.alibi_max_pos,
|
138 |
+
heads=modality_cfg.num_alibi_heads,
|
139 |
+
scale=1.0,
|
140 |
+
dtype=torch.float,
|
141 |
+
device="cpu",
|
142 |
+
)
|
143 |
+
self.alibi_bias = nn.Parameter(alibi_bias)
|
144 |
+
self.get_alibi_bias = partial(
|
145 |
+
_learned_alibi_bias, alibi_bias=self.alibi_bias
|
146 |
+
)
|
147 |
+
|
148 |
+
def upgrade_state_dict_named(self, state_dict, name):
|
149 |
+
k = f"{name}.alibi_scale"
|
150 |
+
if k in state_dict and state_dict[k].dim() == 4:
|
151 |
+
state_dict[k] = state_dict[k].unsqueeze(0)
|
152 |
+
|
153 |
+
return state_dict
|
154 |
+
|
155 |
+
def convert_padding_mask(self, x, padding_mask):
|
156 |
+
return padding_mask
|
157 |
+
|
158 |
+
def local_features(self, features):
|
159 |
+
x = self.local_encoder(features)
|
160 |
+
x = self.project_features(x) # nn.Identity()
|
161 |
+
return x
|
162 |
+
|
163 |
+
def contextualized_features(
|
164 |
+
self,
|
165 |
+
x,
|
166 |
+
padding_mask,
|
167 |
+
mask, # True
|
168 |
+
remove_masked, # train: True; infer: False
|
169 |
+
clone_batch: int = 1,
|
170 |
+
mask_seeds: Optional[torch.Tensor] = None,
|
171 |
+
precomputed_mask=None,
|
172 |
+
):
|
173 |
+
|
174 |
+
if padding_mask is not None:
|
175 |
+
padding_mask = self.convert_padding_mask(x, padding_mask) # [b,t,f] => [b,seq]
|
176 |
+
|
177 |
+
local_features = x
|
178 |
+
if mask and clone_batch == 1:
|
179 |
+
local_features = local_features.clone()
|
180 |
+
|
181 |
+
orig_B, orig_T, _ = x.shape
|
182 |
+
pre_mask_B = orig_B
|
183 |
+
mask_info = None
|
184 |
+
|
185 |
+
x_pos = None
|
186 |
+
# x: [B, seq_len, embed_dim]
|
187 |
+
if self.fixed_positional_encoder is not None: # models.modules.FixPositionalEncoder
|
188 |
+
x = x + self.fixed_positional_encoder(x, padding_mask)[:, :x.size(1), :]
|
189 |
+
|
190 |
+
if self.relative_positional_encoder is not None:
|
191 |
+
x_pos = self.relative_positional_encoder(x)
|
192 |
+
|
193 |
+
masked_padding_mask = padding_mask
|
194 |
+
|
195 |
+
alibi_bias = None
|
196 |
+
alibi_scale = self.alibi_scale
|
197 |
+
|
198 |
+
if self.get_alibi_bias is not None:
|
199 |
+
alibi_bias = self.get_alibi_bias(
|
200 |
+
batch_size=pre_mask_B,
|
201 |
+
time_steps=orig_T,
|
202 |
+
heads=self.modality_cfg.num_alibi_heads,
|
203 |
+
dtype=torch.float32,
|
204 |
+
device=x.device,
|
205 |
+
)
|
206 |
+
|
207 |
+
if alibi_scale is not None:
|
208 |
+
alibi_scale = alibi_scale.clamp_min(0)
|
209 |
+
if alibi_scale.size(0) == 1:
|
210 |
+
alibi_bias = alibi_bias * alibi_scale.squeeze(0).type_as(alibi_bias)
|
211 |
+
alibi_scale = None
|
212 |
+
|
213 |
+
if clone_batch > 1:
|
214 |
+
alibi_bias = alibi_bias.repeat_interleave(clone_batch, 0)
|
215 |
+
|
216 |
+
if mask_info is not None and remove_masked:
|
217 |
+
alibi_bias = masked_alibi(alibi_bias, mask_info)
|
218 |
+
|
219 |
+
if self.extra_tokens is not None:
|
220 |
+
num = self.extra_tokens.size(1)
|
221 |
+
x = torch.cat([self.extra_tokens.expand(x.size(0), -1, -1), x], dim=1)
|
222 |
+
if masked_padding_mask is not None:
|
223 |
+
# B x T
|
224 |
+
masked_padding_mask = F.pad(masked_padding_mask, (num, 0))
|
225 |
+
if alibi_bias is not None:
|
226 |
+
# B x H x T x T
|
227 |
+
alibi_bias = F.pad(alibi_bias, (num, 0, num, 0))
|
228 |
+
|
229 |
+
x = self.context_encoder(
|
230 |
+
x,
|
231 |
+
masked_padding_mask,
|
232 |
+
alibi_bias,
|
233 |
+
alibi_scale[: self.modality_cfg.prenet_depth]
|
234 |
+
if alibi_scale is not None
|
235 |
+
else None,
|
236 |
+
)
|
237 |
+
|
238 |
+
return {
|
239 |
+
"x": x,
|
240 |
+
"local_features": local_features,
|
241 |
+
"padding_mask": masked_padding_mask,
|
242 |
+
"alibi_bias": alibi_bias,
|
243 |
+
"alibi_scale": alibi_scale[self.modality_cfg.prenet_depth :]
|
244 |
+
if alibi_scale is not None and alibi_scale.size(0) > 1
|
245 |
+
else alibi_scale,
|
246 |
+
"encoder_mask": mask_info,
|
247 |
+
}
|
248 |
+
|
249 |
+
def forward(
|
250 |
+
self,
|
251 |
+
features,
|
252 |
+
padding_mask,
|
253 |
+
mask: bool,
|
254 |
+
remove_masked: bool,
|
255 |
+
clone_batch: int = 1,
|
256 |
+
mask_seeds: Optional[torch.Tensor] = None,
|
257 |
+
precomputed_mask=None,
|
258 |
+
):
|
259 |
+
x = self.local_features(features) # patch embed
|
260 |
+
# x: [bs, time*freq, embed_dim], e.g. [12, 512, 768]
|
261 |
+
out = self.contextualized_features(
|
262 |
+
x,
|
263 |
+
padding_mask,
|
264 |
+
mask,
|
265 |
+
remove_masked,
|
266 |
+
clone_batch,
|
267 |
+
mask_seeds,
|
268 |
+
precomputed_mask,
|
269 |
+
) # add mask, discarded masked, context encoder (only layer norm)
|
270 |
+
return out
|
271 |
+
|
272 |
+
def reset_parameters(self):
|
273 |
+
pass
|
274 |
+
|
275 |
+
def remove_pretraining_modules(self, keep_decoder=False):
|
276 |
+
if not keep_decoder:
|
277 |
+
self.decoder = None
|
278 |
+
|
279 |
+
|
280 |
+
def get_annealed_rate(start, end, curr_step, total_steps):
|
281 |
+
if curr_step >= total_steps:
|
282 |
+
return end
|
283 |
+
r = end - start
|
284 |
+
pct_remaining = 1 - curr_step / total_steps
|
285 |
+
return end - r * pct_remaining
|
286 |
+
|
287 |
+
|
288 |
+
|
289 |
+
def get_alibi(
|
290 |
+
max_positions: int,
|
291 |
+
attention_heads: int,
|
292 |
+
dims: int = 1,
|
293 |
+
distance: str = "manhattan",
|
294 |
+
):
|
295 |
+
def get_slopes(n):
|
296 |
+
def get_slopes_power_of_2(n):
|
297 |
+
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
|
298 |
+
ratio = start
|
299 |
+
return [start * ratio**i for i in range(n)]
|
300 |
+
|
301 |
+
# In the paper, we only train models that have 2^a heads for some
|
302 |
+
# a. This function has some good properties that only occur when
|
303 |
+
# the input is a power of 2. To maintain that even when the number
|
304 |
+
# of heads is not a power of 2, we use this workaround.
|
305 |
+
if math.log2(n).is_integer():
|
306 |
+
return get_slopes_power_of_2(n)
|
307 |
+
else:
|
308 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(n))
|
309 |
+
return (
|
310 |
+
get_slopes_power_of_2(closest_power_of_2)
|
311 |
+
+ get_slopes(2 * closest_power_of_2)[0::2][: n - closest_power_of_2]
|
312 |
+
)
|
313 |
+
|
314 |
+
maxpos = max_positions
|
315 |
+
attn_heads = attention_heads
|
316 |
+
slopes = torch.Tensor(get_slopes(attn_heads))
|
317 |
+
|
318 |
+
if dims == 1:
|
319 |
+
# prepare alibi position linear bias. Note that wav2vec2 is non
|
320 |
+
# autoregressive model so we want a symmetric mask with 0 on the
|
321 |
+
# diagonal and other wise linear decreasing valuees
|
322 |
+
pos_bias = (
|
323 |
+
torch.abs(
|
324 |
+
torch.arange(maxpos).unsqueeze(0) - torch.arange(maxpos).unsqueeze(1)
|
325 |
+
)
|
326 |
+
* -1
|
327 |
+
)
|
328 |
+
elif dims == 2:
|
329 |
+
if distance == "manhattan":
|
330 |
+
df = lambda x1, y1, x2, y2: abs(x1 - x2) + abs(y1 - y2)
|
331 |
+
elif distance == "euclidean":
|
332 |
+
df = lambda x1, y1, x2, y2: math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
|
333 |
+
|
334 |
+
n = math.sqrt(max_positions)
|
335 |
+
assert n.is_integer(), n
|
336 |
+
n = int(n)
|
337 |
+
|
338 |
+
pos_bias = torch.zeros((max_positions, max_positions))
|
339 |
+
|
340 |
+
for i in range(n):
|
341 |
+
for j in range(n):
|
342 |
+
for k in range(n):
|
343 |
+
for l in range(n):
|
344 |
+
new_x = i * n + j
|
345 |
+
new_y = k * n + l
|
346 |
+
pos_bias[new_x, new_y] = -df(i, j, k, l)
|
347 |
+
|
348 |
+
else:
|
349 |
+
raise Exception(f"unsupported number of alibi dims: {dims}")
|
350 |
+
|
351 |
+
alibi_bias = slopes.unsqueeze(1).unsqueeze(1) * pos_bias.unsqueeze(0).expand(
|
352 |
+
attn_heads, -1, -1
|
353 |
+
)
|
354 |
+
|
355 |
+
return alibi_bias
|
356 |
+
|
357 |
+
|
358 |
+
def get_alibi_bias(
|
359 |
+
alibi_biases,
|
360 |
+
batch_size,
|
361 |
+
time_steps,
|
362 |
+
heads,
|
363 |
+
dtype,
|
364 |
+
device,
|
365 |
+
dims=1,
|
366 |
+
distance="manhattan",
|
367 |
+
):
|
368 |
+
cache_key = f"{dims}_{heads}_{distance}"
|
369 |
+
|
370 |
+
buffered = alibi_biases.get(cache_key, None)
|
371 |
+
|
372 |
+
target_size = heads * batch_size
|
373 |
+
if (
|
374 |
+
buffered is None
|
375 |
+
or buffered.size(0) < target_size
|
376 |
+
or buffered.size(1) < time_steps
|
377 |
+
or buffered.dtype != dtype
|
378 |
+
or buffered.device != device
|
379 |
+
):
|
380 |
+
bt = max(time_steps, buffered.size(1) if buffered is not None else 0)
|
381 |
+
bn = max(target_size, buffered.size(0) if buffered is not None else 0) // heads
|
382 |
+
|
383 |
+
buffered = (
|
384 |
+
get_alibi(bt, heads, dims=dims, distance=distance)
|
385 |
+
.to(dtype=dtype, device=device)
|
386 |
+
.repeat(bn, 1, 1)
|
387 |
+
)
|
388 |
+
|
389 |
+
alibi_biases[cache_key] = buffered
|
390 |
+
|
391 |
+
b = buffered[:target_size, :time_steps, :time_steps]
|
392 |
+
b = b.view(batch_size, heads, time_steps, time_steps)
|
393 |
+
return b
|
394 |
+
|
395 |
+
|
396 |
+
def _learned_alibi_bias(
|
397 |
+
alibi_bias,
|
398 |
+
batch_size,
|
399 |
+
time_steps,
|
400 |
+
heads,
|
401 |
+
scale,
|
402 |
+
dtype,
|
403 |
+
device,
|
404 |
+
):
|
405 |
+
assert alibi_bias.size(1) == heads, alibi_bias.shape
|
406 |
+
assert alibi_bias.dtype == dtype, alibi_bias.dtype
|
407 |
+
assert alibi_bias.device == device, alibi_bias.device
|
408 |
+
|
409 |
+
if alibi_bias.size(-1) < time_steps:
|
410 |
+
psz = math.ceil((time_steps - alibi_bias.size(-1)) / 2)
|
411 |
+
alibi_bias = F.pad(alibi_bias, (psz, psz, psz, psz), mode="replicate")
|
412 |
+
|
413 |
+
alibi_bias = alibi_bias.expand(batch_size, -1, -1, -1) * scale
|
414 |
+
return alibi_bias[..., :time_steps, :time_steps]
|
415 |
+
|
416 |
+
|
417 |
+
def masked_alibi(alibi_bias, mask_info):
|
418 |
+
H = alibi_bias.size(1)
|
419 |
+
|
420 |
+
orig_bias = alibi_bias
|
421 |
+
|
422 |
+
index = mask_info.ids_keep.unsqueeze(1)[..., 0].unsqueeze(-1)
|
423 |
+
alibi_bias = torch.gather(
|
424 |
+
orig_bias,
|
425 |
+
dim=-2,
|
426 |
+
index=index.expand(-1, H, -1, mask_info.ids_restore.size(1)),
|
427 |
+
)
|
428 |
+
alibi_bias = torch.gather(
|
429 |
+
alibi_bias,
|
430 |
+
dim=-1,
|
431 |
+
index=index.transpose(-1, -2).expand(-1, H, alibi_bias.size(-2), -1),
|
432 |
+
)
|
433 |
+
|
434 |
+
return alibi_bias
|
config.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"FISHERModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_fisher.FISHERConfig",
|
7 |
+
"AutoModel": "modeling_fisher.FISHERModel"
|
8 |
+
},
|
9 |
+
"band_width": 100,
|
10 |
+
"depth": 12,
|
11 |
+
"embed_dim": 256,
|
12 |
+
"max_band_per_sample": 64,
|
13 |
+
"model_type": "fisher",
|
14 |
+
"num_heads": 4,
|
15 |
+
"torch_dtype": "float32",
|
16 |
+
"transformers_version": "4.53.3"
|
17 |
+
}
|
configuration_fisher.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class FISHERConfig(PretrainedConfig):
|
5 |
+
model_type = "fisher"
|
6 |
+
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
band_width=100,
|
10 |
+
embed_dim=192,
|
11 |
+
num_heads=3,
|
12 |
+
max_band_per_sample=64,
|
13 |
+
depth=12,
|
14 |
+
**kwargs,
|
15 |
+
):
|
16 |
+
super().__init__(**kwargs)
|
17 |
+
|
18 |
+
self.band_width = band_width
|
19 |
+
self.embed_dim = embed_dim
|
20 |
+
self.depth = depth
|
21 |
+
self.num_heads = num_heads
|
22 |
+
self.max_band_per_sample = max_band_per_sample
|
images.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from functools import partial
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from typing import Callable, Dict, Optional
|
8 |
+
from enum import Enum, auto
|
9 |
+
from einops import rearrange
|
10 |
+
from omegaconf import II
|
11 |
+
|
12 |
+
from .modules import get_2d_sincos_pos_embed_flexible, PatchEmbed_new
|
13 |
+
|
14 |
+
|
15 |
+
from .base import (
|
16 |
+
D2vModalityConfig,
|
17 |
+
ModalitySpecificEncoder,
|
18 |
+
get_alibi_bias,
|
19 |
+
)
|
20 |
+
from .modules import (
|
21 |
+
BlockEncoder,
|
22 |
+
FixedPositionalEncoder,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
class Modality(Enum):
|
27 |
+
AUDIO = auto()
|
28 |
+
IMAGE = auto()
|
29 |
+
TEXT = auto()
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class D2vImageConfig(D2vModalityConfig):
|
34 |
+
type: Modality = Modality.IMAGE
|
35 |
+
|
36 |
+
in_chans: int = 1
|
37 |
+
patch_size: int = 16
|
38 |
+
embed_dim: int = II('model.embed_dim')
|
39 |
+
|
40 |
+
alibi_dims: int = 2
|
41 |
+
alibi_distance: str = "manhattan"
|
42 |
+
|
43 |
+
fixed_positions: bool = True
|
44 |
+
|
45 |
+
transformer_decoder: bool = False
|
46 |
+
enc_dec_transformer: bool = False
|
47 |
+
target_length: int = 1024
|
48 |
+
max_length: int = 128
|
49 |
+
max_freq: int = 50
|
50 |
+
|
51 |
+
flatten: str = 'freq' # 'time', 'freq'
|
52 |
+
|
53 |
+
|
54 |
+
class ImageEncoder(ModalitySpecificEncoder):
|
55 |
+
# forward() implemented in models.base.ModalitySpecificEncoder
|
56 |
+
|
57 |
+
modality_cfg: D2vImageConfig
|
58 |
+
|
59 |
+
def __init__(
|
60 |
+
self,
|
61 |
+
modality_cfg: D2vImageConfig,
|
62 |
+
embed_dim: int,
|
63 |
+
make_block: Callable[[float, Optional[int], Optional[int]], nn.ModuleList],
|
64 |
+
norm_layer: Callable[[int], nn.LayerNorm],
|
65 |
+
layer_norm_first: bool,
|
66 |
+
alibi_biases: Dict,
|
67 |
+
task=None,
|
68 |
+
):
|
69 |
+
self.patch_size = modality_cfg.patch_size
|
70 |
+
self.H = modality_cfg.target_length // self.patch_size # 64
|
71 |
+
|
72 |
+
# convert spec to patch embed, using conv1d
|
73 |
+
local_encoder = PatchEmbed_new(
|
74 |
+
patch_size=modality_cfg.patch_size, # 16
|
75 |
+
in_chans=modality_cfg.in_chans, # 1
|
76 |
+
embed_dim=modality_cfg.embed_dim, # 768
|
77 |
+
stride=modality_cfg.patch_size, # 16
|
78 |
+
flatten=modality_cfg.flatten
|
79 |
+
)
|
80 |
+
|
81 |
+
# CNN initialize
|
82 |
+
w = local_encoder.proj.weight.data
|
83 |
+
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
|
84 |
+
|
85 |
+
if modality_cfg.embed_dim != embed_dim:
|
86 |
+
local_encoder = nn.Sequential(
|
87 |
+
local_encoder,
|
88 |
+
nn.Linear(modality_cfg.embed_dim, embed_dim),
|
89 |
+
)
|
90 |
+
|
91 |
+
project_features = nn.Identity()
|
92 |
+
|
93 |
+
# note: max_length control the maximum time length of audio -> "64" for 10s, here we define it as 2min, you can change it yourself
|
94 |
+
max_length = modality_cfg.max_length
|
95 |
+
max_freq = modality_cfg.max_freq
|
96 |
+
|
97 |
+
# side_n = int(num_patches ** 0.5)
|
98 |
+
# note: we fix the variable length sequence problem here -> support up to 2min audio
|
99 |
+
emb = get_2d_sincos_pos_embed_flexible(
|
100 |
+
embed_dim,
|
101 |
+
(max_length, max_freq),
|
102 |
+
cls_token=False,
|
103 |
+
)
|
104 |
+
pos_embed = torch.from_numpy(emb[:max_length * max_freq, :]).float().unsqueeze(0)
|
105 |
+
|
106 |
+
fixed_positional_encoder = (
|
107 |
+
FixedPositionalEncoder(pos_embed) if modality_cfg.fixed_positions else None # True
|
108 |
+
)
|
109 |
+
|
110 |
+
dpr = np.linspace( # drop_path_rate
|
111 |
+
modality_cfg.start_drop_path_rate,
|
112 |
+
modality_cfg.end_drop_path_rate,
|
113 |
+
modality_cfg.prenet_depth, # actual: 0
|
114 |
+
)
|
115 |
+
|
116 |
+
# actual: only layer norm
|
117 |
+
context_encoder = BlockEncoder(
|
118 |
+
nn.ModuleList(make_block(dpr[i]) for i in range(modality_cfg.prenet_depth)),
|
119 |
+
norm_layer(embed_dim) if not layer_norm_first else None,
|
120 |
+
layer_norm_first,
|
121 |
+
modality_cfg.prenet_layerdrop,
|
122 |
+
modality_cfg.prenet_dropout,
|
123 |
+
)
|
124 |
+
|
125 |
+
alibi_bias_fn = partial(
|
126 |
+
get_alibi_bias,
|
127 |
+
alibi_biases=alibi_biases,
|
128 |
+
heads=modality_cfg.num_alibi_heads,
|
129 |
+
dims=modality_cfg.alibi_dims,
|
130 |
+
distance=modality_cfg.alibi_distance,
|
131 |
+
)
|
132 |
+
|
133 |
+
super().__init__(
|
134 |
+
modality_cfg=modality_cfg,
|
135 |
+
embed_dim=embed_dim,
|
136 |
+
local_encoder=local_encoder, # patch embed
|
137 |
+
project_features=project_features, # nn.Identity()
|
138 |
+
fixed_positional_encoder=fixed_positional_encoder,
|
139 |
+
relative_positional_encoder=None,
|
140 |
+
context_encoder=context_encoder, # apply mask
|
141 |
+
decoder=None,
|
142 |
+
get_alibi_bias=alibi_bias_fn,
|
143 |
+
)
|
144 |
+
|
145 |
+
def reset_parameters(self):
|
146 |
+
super().reset_parameters()
|
147 |
+
|
148 |
+
@torch.no_grad()
|
149 |
+
def patchify(self, imgs):
|
150 |
+
"""
|
151 |
+
imgs: (N, 3, H, W) audio: (N,1,H,W) 1024/16 = 64 128/16 = 8
|
152 |
+
x: (N, L, patch_size**2 *3)
|
153 |
+
"""
|
154 |
+
if self.modality_cfg.in_chans == 1: # actual: this one
|
155 |
+
p = self.modality_cfg.patch_size
|
156 |
+
h = imgs.shape[2] // p
|
157 |
+
w = imgs.shape[3] // p
|
158 |
+
# h,w = self.patch_embed.patch_hw
|
159 |
+
x = imgs.reshape(shape=(imgs.shape[0], 1, h, p, w, p))
|
160 |
+
x = torch.einsum('nchpwq->nhwpqc', x)
|
161 |
+
x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 1))
|
162 |
+
|
163 |
+
else:
|
164 |
+
p = self.modality_cfg.patch_size
|
165 |
+
h = w = imgs.shape[2] // p
|
166 |
+
x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p))
|
167 |
+
x = torch.einsum("nchpwq->nhwpqc", x)
|
168 |
+
x = x.reshape(shape=(imgs.shape[0], h * w, p ** 2 * 3))
|
169 |
+
|
170 |
+
return x
|
171 |
+
|
172 |
+
@torch.no_grad()
|
173 |
+
def unpatchify(self, x):
|
174 |
+
"""
|
175 |
+
x: (N, L, patch_size**2 *C)
|
176 |
+
imgs: (N, C, H, W)
|
177 |
+
"""
|
178 |
+
p = self.modality_cfg.patch_size
|
179 |
+
h = w = int(x.shape[1] ** 0.5) # num patch along two axis
|
180 |
+
assert h * w == x.shape[1]
|
181 |
+
|
182 |
+
x = x.reshape(shape=(x.shape[0], h, w, p, p, -1))
|
183 |
+
x = torch.einsum("nhwpqc->nchpwq", x)
|
184 |
+
imgs = x.reshape(shape=(x.shape[0], -1, h * p, h * p))
|
185 |
+
return imgs
|
186 |
+
|
187 |
+
def convert_padding_mask(
|
188 |
+
self,
|
189 |
+
x: torch.Tensor,
|
190 |
+
padding_mask: torch.Tensor
|
191 |
+
) -> torch.Tensor:
|
192 |
+
'''patchify and serialize padding_mask: [b,t,f] => [b,t_patch,f_patch] => [b,patch_seq]
|
193 |
+
|
194 |
+
Args:
|
195 |
+
x (torch.Tensor): input_features
|
196 |
+
padding_mask (torch.Tensor): [b,t_patch,f_patch], 1 for padded patch
|
197 |
+
|
198 |
+
Returns:
|
199 |
+
torch.Tensor: serialized padding mask. [b,patch_seq]
|
200 |
+
'''
|
201 |
+
B, T, F = x.shape
|
202 |
+
t_extra, f_extra = T % self.patch_size, F % self.patch_size
|
203 |
+
padding_mask = padding_mask[:, :-t_extra, :-f_extra]
|
204 |
+
padding_mask = rearrange(
|
205 |
+
padding_mask,
|
206 |
+
'b (tp p) (fp q) -> b tp fp (p q)',
|
207 |
+
p=self.patch_size, q=self.patch_size
|
208 |
+
)
|
209 |
+
padding_mask = padding_mask.all(-1)
|
210 |
+
|
211 |
+
if self.modality_cfg.flatten == 'time':
|
212 |
+
padding_mask = padding_mask.transpose(-2, -1).flatten(1)
|
213 |
+
else:
|
214 |
+
padding_mask = padding_mask.flatten(1)
|
215 |
+
return padding_mask
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8a96eda2821e72e1bf4e06d9171f7623b2d9e772de6596e6129a43955158cc5
|
3 |
+
size 38189336
|
modeling_fisher.py
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
from functools import partial
|
6 |
+
from einops import rearrange
|
7 |
+
from typing import Callable, Optional
|
8 |
+
from dataclasses import dataclass, field, is_dataclass
|
9 |
+
from transformers import PreTrainedModel
|
10 |
+
|
11 |
+
from .configuration_fisher import FISHERConfig
|
12 |
+
from .base import (
|
13 |
+
D2vModalityConfig,
|
14 |
+
ModalitySpecificEncoder,
|
15 |
+
)
|
16 |
+
from .modules import AltBlock
|
17 |
+
from .images import (
|
18 |
+
D2vImageConfig,
|
19 |
+
ImageEncoder,
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
@dataclass
|
24 |
+
class D2vModalitiesConfig:
|
25 |
+
image: D2vImageConfig = field(default_factory=lambda *args: D2vImageConfig())
|
26 |
+
|
27 |
+
|
28 |
+
@dataclass
|
29 |
+
class Data2VecMultiConfig:
|
30 |
+
depth: int = 12
|
31 |
+
|
32 |
+
# band split
|
33 |
+
band_width: int = 100
|
34 |
+
|
35 |
+
# standard vision Transformer
|
36 |
+
start_drop_path_rate: float = 0.0
|
37 |
+
end_drop_path_rate: float = 0.0
|
38 |
+
num_heads: int = 12
|
39 |
+
norm_eps: float = 1e-6
|
40 |
+
norm_affine: bool = True
|
41 |
+
encoder_dropout: float = 0.0
|
42 |
+
post_mlp_drop: float = 0.0
|
43 |
+
attention_dropout: float = 0.0
|
44 |
+
activation_dropout: float = 0.0
|
45 |
+
dropout_input: float = 0.0
|
46 |
+
layerdrop: float = 0.0
|
47 |
+
embed_dim: int = 768
|
48 |
+
mlp_ratio: float = 4.0
|
49 |
+
layer_norm_first: bool = False
|
50 |
+
|
51 |
+
end_of_block_targets: bool = False
|
52 |
+
|
53 |
+
# clone batch for multi-mask strategy
|
54 |
+
max_band_per_sample: int = 64
|
55 |
+
|
56 |
+
# normalization for teacher Transformer layer output
|
57 |
+
layer_norm_target_layer: bool = False
|
58 |
+
batch_norm_target_layer: bool = False
|
59 |
+
instance_norm_target_layer: bool = True
|
60 |
+
instance_norm_targets: bool = False
|
61 |
+
layer_norm_targets: bool = True
|
62 |
+
|
63 |
+
modalities: D2vModalitiesConfig = field(default_factory=lambda *args: D2vModalitiesConfig())
|
64 |
+
|
65 |
+
|
66 |
+
def update_dataclass(instance, data_dict):
|
67 |
+
if not data_dict:
|
68 |
+
return instance
|
69 |
+
|
70 |
+
for field_name, field_value in data_dict.items():
|
71 |
+
if hasattr(instance, field_name):
|
72 |
+
current_value = getattr(instance, field_name)
|
73 |
+
if is_dataclass(current_value) and isinstance(field_value, dict):
|
74 |
+
update_dataclass(current_value, field_value)
|
75 |
+
else:
|
76 |
+
setattr(instance, field_name, field_value)
|
77 |
+
return instance
|
78 |
+
|
79 |
+
|
80 |
+
class FISHER(nn.Module):
|
81 |
+
def __init__(self, config: FISHERConfig):
|
82 |
+
super().__init__()
|
83 |
+
cfg = Data2VecMultiConfig()
|
84 |
+
update_dataclass(cfg, config.to_dict())
|
85 |
+
cfg.modalities.image.embed_dim = cfg.embed_dim
|
86 |
+
cfg.modalities.image.embed_dim = cfg.embed_dim
|
87 |
+
self.cfg = cfg
|
88 |
+
|
89 |
+
make_layer_norm = partial(
|
90 |
+
nn.LayerNorm, eps=cfg.norm_eps, elementwise_affine=cfg.norm_affine
|
91 |
+
)
|
92 |
+
|
93 |
+
def make_block(drop_path, dim=None, heads=None):
|
94 |
+
return AltBlock(
|
95 |
+
cfg.embed_dim if dim is None else dim,
|
96 |
+
cfg.num_heads if heads is None else heads,
|
97 |
+
cfg.mlp_ratio,
|
98 |
+
qkv_bias=True,
|
99 |
+
drop=0.0,
|
100 |
+
attn_drop=cfg.attention_dropout,
|
101 |
+
mlp_drop=cfg.activation_dropout,
|
102 |
+
post_mlp_drop=cfg.post_mlp_drop,
|
103 |
+
drop_path=drop_path,
|
104 |
+
norm_layer=make_layer_norm,
|
105 |
+
layer_norm_first=cfg.layer_norm_first,
|
106 |
+
ffn_targets=not cfg.end_of_block_targets,
|
107 |
+
)
|
108 |
+
|
109 |
+
self.alibi_biases = {}
|
110 |
+
self.modality_encoders = nn.ModuleDict()
|
111 |
+
|
112 |
+
mod_cfg = getattr(cfg.modalities, 'image')
|
113 |
+
enc = self.make_modality_encoder(
|
114 |
+
mod_cfg,
|
115 |
+
cfg.embed_dim,
|
116 |
+
make_block,
|
117 |
+
make_layer_norm,
|
118 |
+
cfg.layer_norm_first,
|
119 |
+
self.alibi_biases,
|
120 |
+
)
|
121 |
+
self.modality_encoders['IMAGE'] = enc
|
122 |
+
|
123 |
+
dpr = np.linspace(cfg.start_drop_path_rate, cfg.end_drop_path_rate, cfg.depth)
|
124 |
+
|
125 |
+
self.blocks = nn.ModuleList([make_block(dpr[i]) for i in range(cfg.depth)])
|
126 |
+
|
127 |
+
self.norm = None
|
128 |
+
if cfg.layer_norm_first:
|
129 |
+
self.norm = make_layer_norm(cfg.embed_dim)
|
130 |
+
|
131 |
+
# band split
|
132 |
+
self.band_width = cfg.band_width
|
133 |
+
self.patch_size = cfg.modalities.image.patch_size
|
134 |
+
|
135 |
+
def make_modality_encoder(
|
136 |
+
self,
|
137 |
+
cfg: D2vModalityConfig,
|
138 |
+
embed_dim: int,
|
139 |
+
make_block: Callable[[float], nn.ModuleList],
|
140 |
+
norm_layer: Callable[[int], nn.LayerNorm],
|
141 |
+
layer_norm_first: bool,
|
142 |
+
alibi_biases,
|
143 |
+
task=None,
|
144 |
+
) -> ModalitySpecificEncoder:
|
145 |
+
return ImageEncoder(
|
146 |
+
cfg,
|
147 |
+
embed_dim,
|
148 |
+
make_block,
|
149 |
+
norm_layer,
|
150 |
+
layer_norm_first,
|
151 |
+
alibi_biases,
|
152 |
+
task,
|
153 |
+
)
|
154 |
+
|
155 |
+
def forward(
|
156 |
+
self,
|
157 |
+
source: torch.Tensor,
|
158 |
+
target=None,
|
159 |
+
id=None,
|
160 |
+
mode='IMAGE',
|
161 |
+
padding_mask: Optional[torch.Tensor] = None,
|
162 |
+
mask: bool = True,
|
163 |
+
features_only: bool = False,
|
164 |
+
force_remove_masked=False,
|
165 |
+
precomputed_mask: Optional[torch.Tensor] = None,
|
166 |
+
):
|
167 |
+
# band split
|
168 |
+
num_band = source.shape[-1] // self.band_width
|
169 |
+
source = torch.stack(source.split(self.band_width, dim=-1)[:num_band]) # drop residual
|
170 |
+
source = rearrange(source, 'nb B c t f -> (B nb) c t f')
|
171 |
+
clone_batch = self.cfg.max_band_per_sample // num_band
|
172 |
+
|
173 |
+
feature_extractor = self.modality_encoders[mode] # models.images.ImageEncoder
|
174 |
+
|
175 |
+
# extract (unmasked) features using CNN encoder
|
176 |
+
extractor_out = feature_extractor(
|
177 |
+
source,
|
178 |
+
padding_mask,
|
179 |
+
mask,
|
180 |
+
remove_masked=not features_only or force_remove_masked, # train: True; infer: False
|
181 |
+
clone_batch=clone_batch if not features_only else 1,
|
182 |
+
mask_seeds=None,
|
183 |
+
precomputed_mask=precomputed_mask,
|
184 |
+
)
|
185 |
+
|
186 |
+
# x in shape (batch_size * clone batch, patch_frame(64) * patch_freqency(8) * unmask_ratio(0.2) + 1(cls_token), 768(feature dimension))
|
187 |
+
x = extractor_out["x"]
|
188 |
+
# encoder_mask is applied on sub-band level
|
189 |
+
encoder_mask = extractor_out["encoder_mask"] # models.base.MaskInfo, ["x_unmasked", "mask", "ids_restore", "ids_keep"]
|
190 |
+
masked_padding_mask = extractor_out["padding_mask"]
|
191 |
+
masked_alibi_bias = extractor_out.get("alibi_bias", None)
|
192 |
+
alibi_scale = extractor_out.get("alibi_scale", None)
|
193 |
+
|
194 |
+
# standard Transformer (for student encoder)
|
195 |
+
layer_results = []
|
196 |
+
for i, blk in enumerate(self.blocks):
|
197 |
+
ab = masked_alibi_bias
|
198 |
+
if ab is not None and alibi_scale is not None:
|
199 |
+
scale = (
|
200 |
+
alibi_scale[i]
|
201 |
+
if alibi_scale.size(0) > 1
|
202 |
+
else alibi_scale.squeeze(0)
|
203 |
+
)
|
204 |
+
ab = ab * scale.type_as(ab)
|
205 |
+
|
206 |
+
x, lr = blk(
|
207 |
+
x,
|
208 |
+
padding_mask=masked_padding_mask,
|
209 |
+
alibi_bias=ab,
|
210 |
+
)
|
211 |
+
if features_only:
|
212 |
+
layer_results.append(lr)
|
213 |
+
|
214 |
+
if self.norm is not None:
|
215 |
+
x = self.norm(x)
|
216 |
+
|
217 |
+
# extract features for fine-tuning
|
218 |
+
if features_only:
|
219 |
+
return {
|
220 |
+
"x": x,
|
221 |
+
"padding_mask": masked_padding_mask,
|
222 |
+
"layer_results": layer_results,
|
223 |
+
"mask": encoder_mask,
|
224 |
+
}
|
225 |
+
|
226 |
+
def extract_features(
|
227 |
+
self, source, mode='IMAGE', padding_mask=None, mask=False
|
228 |
+
):
|
229 |
+
num_band = source.shape[-1] // self.band_width
|
230 |
+
res = self.forward(
|
231 |
+
source,
|
232 |
+
mode=mode,
|
233 |
+
padding_mask=padding_mask,
|
234 |
+
mask=mask,
|
235 |
+
features_only=True,
|
236 |
+
)
|
237 |
+
x = res['x'][:, 0]
|
238 |
+
x = rearrange(x, '(B nb) D -> B (nb D)', nb=num_band)
|
239 |
+
return x
|
240 |
+
|
241 |
+
|
242 |
+
class FISHERModel(PreTrainedModel):
|
243 |
+
config_class = FISHERConfig
|
244 |
+
|
245 |
+
def __init__(self, cfg: FISHERConfig):
|
246 |
+
super().__init__(cfg)
|
247 |
+
self.cfg = cfg
|
248 |
+
self.model = FISHER(cfg)
|
249 |
+
|
250 |
+
def forward(self, *args, **kwargs):
|
251 |
+
return self.model(*args, **kwargs)
|
252 |
+
|
253 |
+
def extract_features(self, x):
|
254 |
+
return self.model.extract_features(x)
|
modules.py
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import numpy as np
|
5 |
+
from timm.models.layers import to_2tuple
|
6 |
+
|
7 |
+
|
8 |
+
class PatchEmbed_new(nn.Module):
|
9 |
+
""" Flexible Image to Patch Embedding
|
10 |
+
"""
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
patch_size=16,
|
14 |
+
in_chans=3,
|
15 |
+
embed_dim=768,
|
16 |
+
stride=16,
|
17 |
+
flatten='freq'
|
18 |
+
):
|
19 |
+
super().__init__()
|
20 |
+
self.flatten = flatten
|
21 |
+
patch_size = to_2tuple(patch_size)
|
22 |
+
stride = to_2tuple(stride)
|
23 |
+
assert flatten in ['time', 'freq']
|
24 |
+
|
25 |
+
self.patch_size = patch_size
|
26 |
+
|
27 |
+
# no padding for conv
|
28 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride) # with overlapped patches
|
29 |
+
|
30 |
+
def forward(self, x):
|
31 |
+
x = self.proj(x) # (B,768,64,8)
|
32 |
+
if self.flatten == 'freq':
|
33 |
+
x = x.flatten(2).transpose(1, 2) # flatten from dim
|
34 |
+
else:
|
35 |
+
x = x.transpose(-2, -1).flatten(2).transpose(1, 2)
|
36 |
+
return x
|
37 |
+
|
38 |
+
|
39 |
+
def get_2d_sincos_pos_embed_flexible(embed_dim, grid_size, cls_token=False):
|
40 |
+
"""
|
41 |
+
grid_size: int of the grid height and width
|
42 |
+
return:
|
43 |
+
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
44 |
+
"""
|
45 |
+
grid_h = np.arange(grid_size[0], dtype=np.float32)
|
46 |
+
grid_w = np.arange(grid_size[1], dtype=np.float32)
|
47 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
48 |
+
grid = np.stack(grid, axis=0)
|
49 |
+
|
50 |
+
grid = grid.reshape([2, 1, grid_size[0], grid_size[1]])
|
51 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
52 |
+
if cls_token:
|
53 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
54 |
+
return pos_embed
|
55 |
+
|
56 |
+
|
57 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
58 |
+
assert embed_dim % 2 == 0
|
59 |
+
|
60 |
+
# use half of dimensions to encode grid_h
|
61 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
62 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
63 |
+
|
64 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
65 |
+
return emb
|
66 |
+
|
67 |
+
|
68 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
69 |
+
"""
|
70 |
+
embed_dim: output dimension for each position
|
71 |
+
pos: a list of positions to be encoded: size (M,)
|
72 |
+
out: (M, D)
|
73 |
+
"""
|
74 |
+
assert embed_dim % 2 == 0
|
75 |
+
omega = np.arange(embed_dim // 2, dtype=np.float32)
|
76 |
+
omega /= embed_dim / 2.0
|
77 |
+
omega = 1.0 / 10000 ** omega # (D/2,)
|
78 |
+
|
79 |
+
pos = pos.reshape(-1) # (M,)
|
80 |
+
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
81 |
+
|
82 |
+
emb_sin = np.sin(out) # (M, D/2)
|
83 |
+
emb_cos = np.cos(out) # (M, D/2)
|
84 |
+
|
85 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
86 |
+
return emb
|
87 |
+
|
88 |
+
|
89 |
+
class FixedPositionalEncoder(nn.Module):
|
90 |
+
def __init__(self, pos_embed: torch.Tensor):
|
91 |
+
super().__init__()
|
92 |
+
self.positions = pos_embed
|
93 |
+
|
94 |
+
def forward(self, x: torch.Tensor, padding_mask):
|
95 |
+
return self.positions.to(x.device)
|
96 |
+
|
97 |
+
|
98 |
+
class BlockEncoder(nn.Module):
|
99 |
+
def __init__(self, blocks, norm_layer, layer_norm_first, layerdrop, dropout):
|
100 |
+
super().__init__()
|
101 |
+
self.blocks = blocks
|
102 |
+
self.norm = norm_layer
|
103 |
+
self.layer_norm_first = layer_norm_first
|
104 |
+
self.layerdrop = layerdrop
|
105 |
+
self.dropout = nn.Dropout(dropout, inplace=True)
|
106 |
+
|
107 |
+
def forward(self, x, padding_mask, alibi_bias, alibi_scale):
|
108 |
+
if self.norm is not None and not self.layer_norm_first:
|
109 |
+
x = self.norm(x)
|
110 |
+
|
111 |
+
x = self.dropout(x)
|
112 |
+
|
113 |
+
for i, blk in enumerate(self.blocks):
|
114 |
+
if (
|
115 |
+
not self.training
|
116 |
+
or self.layerdrop == 0
|
117 |
+
or (np.random.random() > self.layerdrop)
|
118 |
+
):
|
119 |
+
ab = alibi_bias
|
120 |
+
if ab is not None and alibi_scale is not None:
|
121 |
+
scale = (
|
122 |
+
alibi_scale[i]
|
123 |
+
if alibi_scale.size(0) > 1
|
124 |
+
else alibi_scale.squeeze(0)
|
125 |
+
)
|
126 |
+
ab = ab * scale.type_as(ab)
|
127 |
+
x, _ = blk(x, padding_mask, ab)
|
128 |
+
|
129 |
+
if self.norm is not None and self.layer_norm_first:
|
130 |
+
x = self.norm(x)
|
131 |
+
|
132 |
+
return x
|
133 |
+
|
134 |
+
|
135 |
+
class AltBlock(nn.Module):
|
136 |
+
def __init__(
|
137 |
+
self,
|
138 |
+
dim,
|
139 |
+
num_heads,
|
140 |
+
mlp_ratio=4.0,
|
141 |
+
qkv_bias=False,
|
142 |
+
qk_scale=None,
|
143 |
+
drop=0.0,
|
144 |
+
attn_drop=0.0,
|
145 |
+
mlp_drop=0.0,
|
146 |
+
post_mlp_drop=0.0,
|
147 |
+
drop_path=0.0,
|
148 |
+
act_layer=nn.GELU,
|
149 |
+
norm_layer=nn.LayerNorm,
|
150 |
+
layer_norm_first=True,
|
151 |
+
ffn_targets=False,
|
152 |
+
cosine_attention=False,
|
153 |
+
):
|
154 |
+
super().__init__()
|
155 |
+
|
156 |
+
self.layer_norm_first = layer_norm_first
|
157 |
+
self.ffn_targets = ffn_targets
|
158 |
+
|
159 |
+
from timm.models.vision_transformer import DropPath, Mlp
|
160 |
+
|
161 |
+
self.norm1 = norm_layer(dim)
|
162 |
+
self.attn = AltAttention(
|
163 |
+
dim,
|
164 |
+
num_heads=num_heads,
|
165 |
+
qkv_bias=qkv_bias,
|
166 |
+
qk_scale=qk_scale,
|
167 |
+
attn_drop=attn_drop,
|
168 |
+
proj_drop=drop,
|
169 |
+
cosine_attention=cosine_attention,
|
170 |
+
)
|
171 |
+
|
172 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
173 |
+
self.norm2 = norm_layer(dim)
|
174 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
175 |
+
self.mlp = Mlp(
|
176 |
+
in_features=dim,
|
177 |
+
hidden_features=mlp_hidden_dim,
|
178 |
+
act_layer=act_layer,
|
179 |
+
drop=mlp_drop,
|
180 |
+
)
|
181 |
+
self.post_mlp_dropout = nn.Dropout(post_mlp_drop, inplace=False)
|
182 |
+
|
183 |
+
def forward(self, x, padding_mask=None, alibi_bias=None):
|
184 |
+
if self.layer_norm_first:
|
185 |
+
x = x + self.drop_path(self.attn(self.norm1(x), padding_mask, alibi_bias))
|
186 |
+
r = x = self.mlp(self.norm2(x))
|
187 |
+
t = x
|
188 |
+
x = r + self.drop_path(self.post_mlp_dropout(x))
|
189 |
+
if not self.ffn_targets:
|
190 |
+
t = x
|
191 |
+
else:
|
192 |
+
x = x + self.drop_path(self.attn(x, padding_mask, alibi_bias))
|
193 |
+
r = x = self.norm1(x)
|
194 |
+
x = self.mlp(x)
|
195 |
+
t = x
|
196 |
+
x = self.norm2(r + self.drop_path(self.post_mlp_dropout(x)))
|
197 |
+
if not self.ffn_targets:
|
198 |
+
t = x
|
199 |
+
|
200 |
+
return x, t
|
201 |
+
|
202 |
+
|
203 |
+
class AltAttention(nn.Module):
|
204 |
+
def __init__(
|
205 |
+
self,
|
206 |
+
dim,
|
207 |
+
num_heads=8,
|
208 |
+
qkv_bias=False,
|
209 |
+
qk_scale=None,
|
210 |
+
attn_drop=0.0,
|
211 |
+
proj_drop=0.0,
|
212 |
+
cosine_attention=False,
|
213 |
+
):
|
214 |
+
super().__init__()
|
215 |
+
self.num_heads = num_heads
|
216 |
+
head_dim = dim // num_heads
|
217 |
+
self.scale = qk_scale or head_dim ** -0.5
|
218 |
+
|
219 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
220 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
221 |
+
self.proj = nn.Linear(dim, dim)
|
222 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
223 |
+
|
224 |
+
self.cosine_attention = cosine_attention
|
225 |
+
|
226 |
+
if cosine_attention:
|
227 |
+
self.logit_scale = nn.Parameter(
|
228 |
+
torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True
|
229 |
+
)
|
230 |
+
|
231 |
+
def forward(self, x, padding_mask=None, alibi_bias=None):
|
232 |
+
B, N, C = x.shape
|
233 |
+
qkv = (
|
234 |
+
self.qkv(x)
|
235 |
+
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
236 |
+
.permute(2, 0, 3, 1, 4) # qkv x B x H x L x D
|
237 |
+
)
|
238 |
+
q, k, v = (
|
239 |
+
qkv[0],
|
240 |
+
qkv[1],
|
241 |
+
qkv[2],
|
242 |
+
) # make torchscript happy (cannot use tensor as tuple)
|
243 |
+
|
244 |
+
dtype = q.dtype
|
245 |
+
|
246 |
+
if self.cosine_attention:
|
247 |
+
# cosine attention
|
248 |
+
attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)
|
249 |
+
logit_scale = torch.clamp(
|
250 |
+
self.logit_scale, max=torch.log(torch.tensor(1.0 / 0.01))
|
251 |
+
).exp()
|
252 |
+
attn = attn * logit_scale
|
253 |
+
else:
|
254 |
+
q = q * self.scale
|
255 |
+
attn = q @ k.transpose(-2, -1)
|
256 |
+
|
257 |
+
if alibi_bias is not None:
|
258 |
+
attn = attn.type_as(alibi_bias)
|
259 |
+
attn[:, : alibi_bias.size(1)] += alibi_bias
|
260 |
+
|
261 |
+
if padding_mask is not None and padding_mask.any():
|
262 |
+
attn = attn.masked_fill(
|
263 |
+
padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
|
264 |
+
float("-inf"),
|
265 |
+
)
|
266 |
+
|
267 |
+
attn = attn.softmax(dim=-1, dtype=torch.float32).to(dtype=dtype)
|
268 |
+
attn = self.attn_drop(attn)
|
269 |
+
x = (attn @ v).transpose(1, 2) #
|
270 |
+
x = x.reshape(B, N, C)
|
271 |
+
x = self.proj(x)
|
272 |
+
x = self.proj_drop(x)
|
273 |
+
return x
|