--- base_model: stabilityai/stable-diffusion-3.5-medium library_name: peft --- # Model Card for Model ID **[Update]** We release a new **GenEval model** that maintains image quality close to the **base model**, while still achieving the original **GenEval score of 95**. _Feel free to give it a try! This model is trained using Flow-GRPO with LoRA. We provide only the LoRA weights here, so you will need to download the SD 3.5 Medium base model first. ## Model Details ### Model Sources - **Repository:** https://github.com/yifan123/flow_grpo - **Paper:** https://www.arxiv.org/pdf/2505.05470 ## Uses ```python import torch from diffusers import StableDiffusion3Pipeline from diffusers.schedulers import FlowMatchEulerDiscreteScheduler from peft import PeftModel model_id = "stabilityai/stable-diffusion-3.5-medium" lora_ckpt_path = "jieliu/SD3.5M-FlowGRPO-GenEval" device = "cuda" pipe = StableDiffusion3Pipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe.transformer = PeftModel.from_pretrained(pipe.transformer, lora_ckpt_path) pipe.transformer = pipe.transformer.merge_and_unload() pipe = pipe.to(device) prompt = 'a photo of a black kite and a green bear' image = pipe(prompt, height=512, width=512, num_inference_steps=40,guidance_scale=4.5,negative_prompt="").images[0] image.save(f"flow_grpo.png") ```