Upload transformer.py
Browse files- transformer/transformer.py +757 -0
transformer/transformer.py
ADDED
|
@@ -0,0 +1,757 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 Stability AI, The HuggingFace Team, The InstantX Team, and Terminus Research Group. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Originally licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# Updated to "Affero GENERAL PUBLIC LICENSE Version 3, 19 November 2007" via extensive updates to attn_mask usage.
|
| 5 |
+
|
| 6 |
+
from typing import Any, Dict, List, Optional, Union
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
|
| 12 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 13 |
+
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
| 14 |
+
from diffusers.models.attention import FeedForward
|
| 15 |
+
from diffusers.models.attention_processor import (
|
| 16 |
+
Attention,
|
| 17 |
+
apply_rope,
|
| 18 |
+
)
|
| 19 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 20 |
+
from diffusers.models.normalization import (
|
| 21 |
+
AdaLayerNormContinuous,
|
| 22 |
+
AdaLayerNormZero,
|
| 23 |
+
AdaLayerNormZeroSingle,
|
| 24 |
+
)
|
| 25 |
+
from diffusers.utils import (
|
| 26 |
+
USE_PEFT_BACKEND,
|
| 27 |
+
is_torch_version,
|
| 28 |
+
logging,
|
| 29 |
+
scale_lora_layers,
|
| 30 |
+
unscale_lora_layers,
|
| 31 |
+
)
|
| 32 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
| 33 |
+
from diffusers.models.embeddings import (
|
| 34 |
+
CombinedTimestepGuidanceTextProjEmbeddings,
|
| 35 |
+
CombinedTimestepTextProjEmbeddings,
|
| 36 |
+
)
|
| 37 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class FluxSingleAttnProcessor2_0:
|
| 44 |
+
r"""
|
| 45 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
| 46 |
+
"""
|
| 47 |
+
|
| 48 |
+
def __init__(self):
|
| 49 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 50 |
+
raise ImportError(
|
| 51 |
+
"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
def __call__(
|
| 55 |
+
self,
|
| 56 |
+
attn: Attention,
|
| 57 |
+
hidden_states: torch.Tensor,
|
| 58 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 59 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 60 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
| 61 |
+
) -> torch.Tensor:
|
| 62 |
+
input_ndim = hidden_states.ndim
|
| 63 |
+
|
| 64 |
+
if input_ndim == 4:
|
| 65 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 66 |
+
hidden_states = hidden_states.view(
|
| 67 |
+
batch_size, channel, height * width
|
| 68 |
+
).transpose(1, 2)
|
| 69 |
+
|
| 70 |
+
batch_size, _, _ = hidden_states.shape
|
| 71 |
+
query = attn.to_q(hidden_states)
|
| 72 |
+
key = attn.to_k(hidden_states)
|
| 73 |
+
value = attn.to_v(hidden_states)
|
| 74 |
+
|
| 75 |
+
inner_dim = key.shape[-1]
|
| 76 |
+
head_dim = inner_dim // attn.heads
|
| 77 |
+
|
| 78 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 79 |
+
|
| 80 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 81 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 82 |
+
|
| 83 |
+
if attn.norm_q is not None:
|
| 84 |
+
query = attn.norm_q(query)
|
| 85 |
+
if attn.norm_k is not None:
|
| 86 |
+
key = attn.norm_k(key)
|
| 87 |
+
|
| 88 |
+
# Apply RoPE if needed
|
| 89 |
+
if image_rotary_emb is not None:
|
| 90 |
+
# YiYi to-do: update uising apply_rotary_emb
|
| 91 |
+
# from ..embeddings import apply_rotary_emb
|
| 92 |
+
# query = apply_rotary_emb(query, image_rotary_emb)
|
| 93 |
+
# key = apply_rotary_emb(key, image_rotary_emb)
|
| 94 |
+
query, key = apply_rope(query, key, image_rotary_emb)
|
| 95 |
+
|
| 96 |
+
if attention_mask is not None:
|
| 97 |
+
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
| 98 |
+
attention_mask = (attention_mask > 0).bool()
|
| 99 |
+
attention_mask = attention_mask.to(
|
| 100 |
+
device=hidden_states.device, dtype=hidden_states.dtype
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 104 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 105 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 106 |
+
query,
|
| 107 |
+
key,
|
| 108 |
+
value,
|
| 109 |
+
dropout_p=0.0,
|
| 110 |
+
is_causal=False,
|
| 111 |
+
attn_mask=attention_mask,
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
| 115 |
+
batch_size, -1, attn.heads * head_dim
|
| 116 |
+
)
|
| 117 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 118 |
+
|
| 119 |
+
if input_ndim == 4:
|
| 120 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
| 121 |
+
batch_size, channel, height, width
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
return hidden_states
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
class FluxAttnProcessor2_0:
|
| 128 |
+
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
| 129 |
+
|
| 130 |
+
def __init__(self):
|
| 131 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 132 |
+
raise ImportError(
|
| 133 |
+
"FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
def __call__(
|
| 137 |
+
self,
|
| 138 |
+
attn: Attention,
|
| 139 |
+
hidden_states: torch.FloatTensor,
|
| 140 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
| 141 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 142 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
| 143 |
+
) -> torch.FloatTensor:
|
| 144 |
+
input_ndim = hidden_states.ndim
|
| 145 |
+
if input_ndim == 4:
|
| 146 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 147 |
+
hidden_states = hidden_states.view(
|
| 148 |
+
batch_size, channel, height * width
|
| 149 |
+
).transpose(1, 2)
|
| 150 |
+
context_input_ndim = encoder_hidden_states.ndim
|
| 151 |
+
if context_input_ndim == 4:
|
| 152 |
+
batch_size, channel, height, width = encoder_hidden_states.shape
|
| 153 |
+
encoder_hidden_states = encoder_hidden_states.view(
|
| 154 |
+
batch_size, channel, height * width
|
| 155 |
+
).transpose(1, 2)
|
| 156 |
+
|
| 157 |
+
batch_size = encoder_hidden_states.shape[0]
|
| 158 |
+
|
| 159 |
+
# `sample` projections.
|
| 160 |
+
query = attn.to_q(hidden_states)
|
| 161 |
+
key = attn.to_k(hidden_states)
|
| 162 |
+
value = attn.to_v(hidden_states)
|
| 163 |
+
|
| 164 |
+
inner_dim = key.shape[-1]
|
| 165 |
+
head_dim = inner_dim // attn.heads
|
| 166 |
+
|
| 167 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 168 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 169 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 170 |
+
|
| 171 |
+
if attn.norm_q is not None:
|
| 172 |
+
query = attn.norm_q(query)
|
| 173 |
+
if attn.norm_k is not None:
|
| 174 |
+
key = attn.norm_k(key)
|
| 175 |
+
|
| 176 |
+
# `context` projections.
|
| 177 |
+
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
| 178 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
| 179 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
| 180 |
+
|
| 181 |
+
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
| 182 |
+
batch_size, -1, attn.heads, head_dim
|
| 183 |
+
).transpose(1, 2)
|
| 184 |
+
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
| 185 |
+
batch_size, -1, attn.heads, head_dim
|
| 186 |
+
).transpose(1, 2)
|
| 187 |
+
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
| 188 |
+
batch_size, -1, attn.heads, head_dim
|
| 189 |
+
).transpose(1, 2)
|
| 190 |
+
|
| 191 |
+
if attn.norm_added_q is not None:
|
| 192 |
+
encoder_hidden_states_query_proj = attn.norm_added_q(
|
| 193 |
+
encoder_hidden_states_query_proj
|
| 194 |
+
)
|
| 195 |
+
if attn.norm_added_k is not None:
|
| 196 |
+
encoder_hidden_states_key_proj = attn.norm_added_k(
|
| 197 |
+
encoder_hidden_states_key_proj
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
# attention
|
| 201 |
+
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
| 202 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
| 203 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
| 204 |
+
|
| 205 |
+
if image_rotary_emb is not None:
|
| 206 |
+
# YiYi to-do: update uising apply_rotary_emb
|
| 207 |
+
# from ..embeddings import apply_rotary_emb
|
| 208 |
+
# query = apply_rotary_emb(query, image_rotary_emb)
|
| 209 |
+
# key = apply_rotary_emb(key, image_rotary_emb)
|
| 210 |
+
query, key = apply_rope(query, key, image_rotary_emb)
|
| 211 |
+
|
| 212 |
+
if attention_mask is not None:
|
| 213 |
+
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
| 214 |
+
attention_mask = (attention_mask > 0).bool()
|
| 215 |
+
attention_mask = attention_mask.to(
|
| 216 |
+
device=hidden_states.device, dtype=hidden_states.dtype
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 220 |
+
query,
|
| 221 |
+
key,
|
| 222 |
+
value,
|
| 223 |
+
dropout_p=0.0,
|
| 224 |
+
is_causal=False,
|
| 225 |
+
attn_mask=attention_mask,
|
| 226 |
+
)
|
| 227 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
| 228 |
+
batch_size, -1, attn.heads * head_dim
|
| 229 |
+
)
|
| 230 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 231 |
+
|
| 232 |
+
encoder_hidden_states, hidden_states = (
|
| 233 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
| 234 |
+
hidden_states[:, encoder_hidden_states.shape[1] :],
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
# linear proj
|
| 238 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 239 |
+
# dropout
|
| 240 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 241 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
| 242 |
+
|
| 243 |
+
if input_ndim == 4:
|
| 244 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
| 245 |
+
batch_size, channel, height, width
|
| 246 |
+
)
|
| 247 |
+
if context_input_ndim == 4:
|
| 248 |
+
encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(
|
| 249 |
+
batch_size, channel, height, width
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
return hidden_states, encoder_hidden_states
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
# YiYi to-do: refactor rope related functions/classes
|
| 256 |
+
def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor:
|
| 257 |
+
assert dim % 2 == 0, "The dimension must be even."
|
| 258 |
+
|
| 259 |
+
scale = (
|
| 260 |
+
torch.arange(
|
| 261 |
+
0,
|
| 262 |
+
dim,
|
| 263 |
+
2,
|
| 264 |
+
dtype=torch.float64, # torch.float32 if torch.backends.mps.is_available() else
|
| 265 |
+
device=pos.device,
|
| 266 |
+
)
|
| 267 |
+
/ dim
|
| 268 |
+
)
|
| 269 |
+
omega = 1.0 / (theta**scale)
|
| 270 |
+
|
| 271 |
+
batch_size, seq_length = pos.shape
|
| 272 |
+
out = torch.einsum("...n,d->...nd", pos, omega)
|
| 273 |
+
cos_out = torch.cos(out)
|
| 274 |
+
sin_out = torch.sin(out)
|
| 275 |
+
|
| 276 |
+
stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
|
| 277 |
+
out = stacked_out.view(batch_size, -1, dim // 2, 2, 2)
|
| 278 |
+
return out.float()
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
# YiYi to-do: refactor rope related functions/classes
|
| 282 |
+
class EmbedND(nn.Module):
|
| 283 |
+
def __init__(self, dim: int, theta: int, axes_dim: List[int]):
|
| 284 |
+
super().__init__()
|
| 285 |
+
self.dim = dim
|
| 286 |
+
self.theta = theta
|
| 287 |
+
self.axes_dim = axes_dim
|
| 288 |
+
|
| 289 |
+
def forward(self, ids: torch.Tensor) -> torch.Tensor:
|
| 290 |
+
n_axes = ids.shape[-1]
|
| 291 |
+
emb = torch.cat(
|
| 292 |
+
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
| 293 |
+
dim=-3,
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
return emb.unsqueeze(1)
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
def expand_flux_attention_mask(
|
| 300 |
+
hidden_states: torch.Tensor,
|
| 301 |
+
attn_mask: torch.Tensor,
|
| 302 |
+
) -> torch.Tensor:
|
| 303 |
+
"""
|
| 304 |
+
Expand a mask so that the image is included.
|
| 305 |
+
"""
|
| 306 |
+
bsz = attn_mask.shape[0]
|
| 307 |
+
assert bsz == hidden_states.shape[0]
|
| 308 |
+
residual_seq_len = hidden_states.shape[1]
|
| 309 |
+
mask_seq_len = attn_mask.shape[1]
|
| 310 |
+
|
| 311 |
+
expanded_mask = torch.ones(bsz, residual_seq_len)
|
| 312 |
+
expanded_mask[:, :mask_seq_len] = attn_mask
|
| 313 |
+
|
| 314 |
+
return expanded_mask
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
@maybe_allow_in_graph
|
| 318 |
+
class FluxSingleTransformerBlock(nn.Module):
|
| 319 |
+
r"""
|
| 320 |
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
| 321 |
+
|
| 322 |
+
Reference: https://arxiv.org/abs/2403.03206
|
| 323 |
+
|
| 324 |
+
Parameters:
|
| 325 |
+
dim (`int`): The number of channels in the input and output.
|
| 326 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
| 327 |
+
attention_head_dim (`int`): The number of channels in each head.
|
| 328 |
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
| 329 |
+
processing of `context` conditions.
|
| 330 |
+
"""
|
| 331 |
+
|
| 332 |
+
def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
|
| 333 |
+
super().__init__()
|
| 334 |
+
self.mlp_hidden_dim = int(dim * mlp_ratio)
|
| 335 |
+
|
| 336 |
+
self.norm = AdaLayerNormZeroSingle(dim)
|
| 337 |
+
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
|
| 338 |
+
self.act_mlp = nn.GELU(approximate="tanh")
|
| 339 |
+
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
|
| 340 |
+
|
| 341 |
+
processor = FluxSingleAttnProcessor2_0()
|
| 342 |
+
self.attn = Attention(
|
| 343 |
+
query_dim=dim,
|
| 344 |
+
cross_attention_dim=None,
|
| 345 |
+
dim_head=attention_head_dim,
|
| 346 |
+
heads=num_attention_heads,
|
| 347 |
+
out_dim=dim,
|
| 348 |
+
bias=True,
|
| 349 |
+
processor=processor,
|
| 350 |
+
qk_norm="rms_norm",
|
| 351 |
+
eps=1e-6,
|
| 352 |
+
pre_only=True,
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
def forward(
|
| 356 |
+
self,
|
| 357 |
+
hidden_states: torch.FloatTensor,
|
| 358 |
+
temb: torch.FloatTensor,
|
| 359 |
+
image_rotary_emb=None,
|
| 360 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 361 |
+
):
|
| 362 |
+
residual = hidden_states
|
| 363 |
+
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
| 364 |
+
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
| 365 |
+
|
| 366 |
+
if attention_mask is not None:
|
| 367 |
+
attention_mask = expand_flux_attention_mask(
|
| 368 |
+
hidden_states,
|
| 369 |
+
attention_mask,
|
| 370 |
+
)
|
| 371 |
+
|
| 372 |
+
attn_output = self.attn(
|
| 373 |
+
hidden_states=norm_hidden_states,
|
| 374 |
+
image_rotary_emb=image_rotary_emb,
|
| 375 |
+
attention_mask=attention_mask,
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
| 379 |
+
gate = gate.unsqueeze(1)
|
| 380 |
+
hidden_states = gate * self.proj_out(hidden_states)
|
| 381 |
+
hidden_states = residual + hidden_states
|
| 382 |
+
|
| 383 |
+
return hidden_states
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
@maybe_allow_in_graph
|
| 387 |
+
class FluxTransformerBlock(nn.Module):
|
| 388 |
+
r"""
|
| 389 |
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
| 390 |
+
|
| 391 |
+
Reference: https://arxiv.org/abs/2403.03206
|
| 392 |
+
|
| 393 |
+
Parameters:
|
| 394 |
+
dim (`int`): The number of channels in the input and output.
|
| 395 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
| 396 |
+
attention_head_dim (`int`): The number of channels in each head.
|
| 397 |
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
| 398 |
+
processing of `context` conditions.
|
| 399 |
+
"""
|
| 400 |
+
|
| 401 |
+
def __init__(
|
| 402 |
+
self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6
|
| 403 |
+
):
|
| 404 |
+
super().__init__()
|
| 405 |
+
|
| 406 |
+
self.norm1 = AdaLayerNormZero(dim)
|
| 407 |
+
|
| 408 |
+
self.norm1_context = AdaLayerNormZero(dim)
|
| 409 |
+
|
| 410 |
+
if hasattr(F, "scaled_dot_product_attention"):
|
| 411 |
+
processor = FluxAttnProcessor2_0()
|
| 412 |
+
else:
|
| 413 |
+
raise ValueError(
|
| 414 |
+
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
|
| 415 |
+
)
|
| 416 |
+
self.attn = Attention(
|
| 417 |
+
query_dim=dim,
|
| 418 |
+
cross_attention_dim=None,
|
| 419 |
+
added_kv_proj_dim=dim,
|
| 420 |
+
dim_head=attention_head_dim,
|
| 421 |
+
heads=num_attention_heads,
|
| 422 |
+
out_dim=dim,
|
| 423 |
+
context_pre_only=False,
|
| 424 |
+
bias=True,
|
| 425 |
+
processor=processor,
|
| 426 |
+
qk_norm=qk_norm,
|
| 427 |
+
eps=eps,
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
| 431 |
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
| 432 |
+
|
| 433 |
+
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
| 434 |
+
self.ff_context = FeedForward(
|
| 435 |
+
dim=dim, dim_out=dim, activation_fn="gelu-approximate"
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
# let chunk size default to None
|
| 439 |
+
self._chunk_size = None
|
| 440 |
+
self._chunk_dim = 0
|
| 441 |
+
|
| 442 |
+
def forward(
|
| 443 |
+
self,
|
| 444 |
+
hidden_states: torch.FloatTensor,
|
| 445 |
+
encoder_hidden_states: torch.FloatTensor,
|
| 446 |
+
temb: torch.FloatTensor,
|
| 447 |
+
image_rotary_emb=None,
|
| 448 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 449 |
+
):
|
| 450 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
| 451 |
+
hidden_states, emb=temb
|
| 452 |
+
)
|
| 453 |
+
|
| 454 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = (
|
| 455 |
+
self.norm1_context(encoder_hidden_states, emb=temb)
|
| 456 |
+
)
|
| 457 |
+
|
| 458 |
+
if attention_mask is not None:
|
| 459 |
+
attention_mask = expand_flux_attention_mask(
|
| 460 |
+
torch.cat([encoder_hidden_states, hidden_states], dim=1),
|
| 461 |
+
attention_mask,
|
| 462 |
+
)
|
| 463 |
+
|
| 464 |
+
# Attention.
|
| 465 |
+
attn_output, context_attn_output = self.attn(
|
| 466 |
+
hidden_states=norm_hidden_states,
|
| 467 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
| 468 |
+
image_rotary_emb=image_rotary_emb,
|
| 469 |
+
attention_mask=attention_mask,
|
| 470 |
+
)
|
| 471 |
+
|
| 472 |
+
# Process attention outputs for the `hidden_states`.
|
| 473 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
| 474 |
+
hidden_states = hidden_states + attn_output
|
| 475 |
+
|
| 476 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 477 |
+
norm_hidden_states = (
|
| 478 |
+
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
| 479 |
+
)
|
| 480 |
+
|
| 481 |
+
ff_output = self.ff(norm_hidden_states)
|
| 482 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
| 483 |
+
|
| 484 |
+
hidden_states = hidden_states + ff_output
|
| 485 |
+
|
| 486 |
+
# Process attention outputs for the `encoder_hidden_states`.
|
| 487 |
+
|
| 488 |
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
| 489 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
| 490 |
+
|
| 491 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
| 492 |
+
norm_encoder_hidden_states = (
|
| 493 |
+
norm_encoder_hidden_states * (1 + c_scale_mlp[:, None])
|
| 494 |
+
+ c_shift_mlp[:, None]
|
| 495 |
+
)
|
| 496 |
+
|
| 497 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
| 498 |
+
encoder_hidden_states = (
|
| 499 |
+
encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
return encoder_hidden_states, hidden_states
|
| 503 |
+
|
| 504 |
+
|
| 505 |
+
class FluxTransformer2DModelWithMasking(
|
| 506 |
+
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin
|
| 507 |
+
):
|
| 508 |
+
"""
|
| 509 |
+
The Transformer model introduced in Flux.
|
| 510 |
+
|
| 511 |
+
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
| 512 |
+
|
| 513 |
+
Parameters:
|
| 514 |
+
patch_size (`int`): Patch size to turn the input data into small patches.
|
| 515 |
+
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
|
| 516 |
+
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
|
| 517 |
+
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
|
| 518 |
+
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
| 519 |
+
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
|
| 520 |
+
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
| 521 |
+
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
|
| 522 |
+
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
|
| 523 |
+
"""
|
| 524 |
+
|
| 525 |
+
_supports_gradient_checkpointing = True
|
| 526 |
+
|
| 527 |
+
@register_to_config
|
| 528 |
+
def __init__(
|
| 529 |
+
self,
|
| 530 |
+
patch_size: int = 1,
|
| 531 |
+
in_channels: int = 64,
|
| 532 |
+
num_layers: int = 19,
|
| 533 |
+
num_single_layers: int = 38,
|
| 534 |
+
attention_head_dim: int = 128,
|
| 535 |
+
num_attention_heads: int = 24,
|
| 536 |
+
joint_attention_dim: int = 4096,
|
| 537 |
+
pooled_projection_dim: int = 768,
|
| 538 |
+
guidance_embeds: bool = False,
|
| 539 |
+
axes_dims_rope: List[int] = [16, 56, 56],
|
| 540 |
+
):
|
| 541 |
+
super().__init__()
|
| 542 |
+
self.out_channels = in_channels
|
| 543 |
+
self.inner_dim = (
|
| 544 |
+
self.config.num_attention_heads * self.config.attention_head_dim
|
| 545 |
+
)
|
| 546 |
+
|
| 547 |
+
self.pos_embed = EmbedND(
|
| 548 |
+
dim=self.inner_dim, theta=10000, axes_dim=axes_dims_rope
|
| 549 |
+
)
|
| 550 |
+
text_time_guidance_cls = (
|
| 551 |
+
CombinedTimestepGuidanceTextProjEmbeddings
|
| 552 |
+
if guidance_embeds
|
| 553 |
+
else CombinedTimestepTextProjEmbeddings
|
| 554 |
+
)
|
| 555 |
+
self.time_text_embed = text_time_guidance_cls(
|
| 556 |
+
embedding_dim=self.inner_dim,
|
| 557 |
+
pooled_projection_dim=self.config.pooled_projection_dim,
|
| 558 |
+
)
|
| 559 |
+
|
| 560 |
+
self.context_embedder = nn.Linear(
|
| 561 |
+
self.config.joint_attention_dim, self.inner_dim
|
| 562 |
+
)
|
| 563 |
+
self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)
|
| 564 |
+
|
| 565 |
+
self.transformer_blocks = nn.ModuleList(
|
| 566 |
+
[
|
| 567 |
+
FluxTransformerBlock(
|
| 568 |
+
dim=self.inner_dim,
|
| 569 |
+
num_attention_heads=self.config.num_attention_heads,
|
| 570 |
+
attention_head_dim=self.config.attention_head_dim,
|
| 571 |
+
)
|
| 572 |
+
for i in range(self.config.num_layers)
|
| 573 |
+
]
|
| 574 |
+
)
|
| 575 |
+
|
| 576 |
+
self.single_transformer_blocks = nn.ModuleList(
|
| 577 |
+
[
|
| 578 |
+
FluxSingleTransformerBlock(
|
| 579 |
+
dim=self.inner_dim,
|
| 580 |
+
num_attention_heads=self.config.num_attention_heads,
|
| 581 |
+
attention_head_dim=self.config.attention_head_dim,
|
| 582 |
+
)
|
| 583 |
+
for i in range(self.config.num_single_layers)
|
| 584 |
+
]
|
| 585 |
+
)
|
| 586 |
+
|
| 587 |
+
self.norm_out = AdaLayerNormContinuous(
|
| 588 |
+
self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6
|
| 589 |
+
)
|
| 590 |
+
self.proj_out = nn.Linear(
|
| 591 |
+
self.inner_dim, patch_size * patch_size * self.out_channels, bias=True
|
| 592 |
+
)
|
| 593 |
+
|
| 594 |
+
self.gradient_checkpointing = False
|
| 595 |
+
|
| 596 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 597 |
+
if hasattr(module, "gradient_checkpointing"):
|
| 598 |
+
module.gradient_checkpointing = value
|
| 599 |
+
|
| 600 |
+
def forward(
|
| 601 |
+
self,
|
| 602 |
+
hidden_states: torch.Tensor,
|
| 603 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 604 |
+
pooled_projections: torch.Tensor = None,
|
| 605 |
+
timestep: torch.LongTensor = None,
|
| 606 |
+
img_ids: torch.Tensor = None,
|
| 607 |
+
txt_ids: torch.Tensor = None,
|
| 608 |
+
guidance: torch.Tensor = None,
|
| 609 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 610 |
+
return_dict: bool = True,
|
| 611 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 612 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
| 613 |
+
"""
|
| 614 |
+
The [`FluxTransformer2DModelWithMasking`] forward method.
|
| 615 |
+
|
| 616 |
+
Args:
|
| 617 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
| 618 |
+
Input `hidden_states`.
|
| 619 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
| 620 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
| 621 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
| 622 |
+
from the embeddings of input conditions.
|
| 623 |
+
timestep ( `torch.LongTensor`):
|
| 624 |
+
Used to indicate denoising step.
|
| 625 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
| 626 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
| 627 |
+
joint_attention_kwargs (`dict`, *optional*):
|
| 628 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 629 |
+
`self.processor` in
|
| 630 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 631 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 632 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
| 633 |
+
tuple.
|
| 634 |
+
|
| 635 |
+
Returns:
|
| 636 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 637 |
+
`tuple` where the first element is the sample tensor.
|
| 638 |
+
"""
|
| 639 |
+
if joint_attention_kwargs is not None:
|
| 640 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
| 641 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
| 642 |
+
else:
|
| 643 |
+
lora_scale = 1.0
|
| 644 |
+
|
| 645 |
+
if USE_PEFT_BACKEND:
|
| 646 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 647 |
+
scale_lora_layers(self, lora_scale)
|
| 648 |
+
else:
|
| 649 |
+
if (
|
| 650 |
+
joint_attention_kwargs is not None
|
| 651 |
+
and joint_attention_kwargs.get("scale", None) is not None
|
| 652 |
+
):
|
| 653 |
+
logger.warning(
|
| 654 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
| 655 |
+
)
|
| 656 |
+
hidden_states = self.x_embedder(hidden_states)
|
| 657 |
+
|
| 658 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
| 659 |
+
if guidance is not None:
|
| 660 |
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
| 661 |
+
else:
|
| 662 |
+
guidance = None
|
| 663 |
+
temb = (
|
| 664 |
+
self.time_text_embed(timestep, pooled_projections)
|
| 665 |
+
if guidance is None
|
| 666 |
+
else self.time_text_embed(timestep, guidance, pooled_projections)
|
| 667 |
+
)
|
| 668 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
| 669 |
+
|
| 670 |
+
ids = torch.cat((txt_ids, img_ids), dim=1)
|
| 671 |
+
image_rotary_emb = self.pos_embed(ids)
|
| 672 |
+
|
| 673 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
| 674 |
+
if self.training and self.gradient_checkpointing:
|
| 675 |
+
|
| 676 |
+
def create_custom_forward(module, return_dict=None):
|
| 677 |
+
def custom_forward(*inputs):
|
| 678 |
+
if return_dict is not None:
|
| 679 |
+
return module(*inputs, return_dict=return_dict)
|
| 680 |
+
else:
|
| 681 |
+
return module(*inputs)
|
| 682 |
+
|
| 683 |
+
return custom_forward
|
| 684 |
+
|
| 685 |
+
ckpt_kwargs: Dict[str, Any] = (
|
| 686 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 687 |
+
)
|
| 688 |
+
encoder_hidden_states, hidden_states = (
|
| 689 |
+
torch.utils.checkpoint.checkpoint(
|
| 690 |
+
create_custom_forward(block),
|
| 691 |
+
hidden_states,
|
| 692 |
+
encoder_hidden_states,
|
| 693 |
+
temb,
|
| 694 |
+
image_rotary_emb,
|
| 695 |
+
attention_mask,
|
| 696 |
+
**ckpt_kwargs,
|
| 697 |
+
)
|
| 698 |
+
)
|
| 699 |
+
|
| 700 |
+
else:
|
| 701 |
+
encoder_hidden_states, hidden_states = block(
|
| 702 |
+
hidden_states=hidden_states,
|
| 703 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 704 |
+
temb=temb,
|
| 705 |
+
image_rotary_emb=image_rotary_emb,
|
| 706 |
+
attention_mask=attention_mask,
|
| 707 |
+
)
|
| 708 |
+
|
| 709 |
+
# Flux places the text tokens in front of the image tokens in the
|
| 710 |
+
# sequence.
|
| 711 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
| 712 |
+
|
| 713 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
| 714 |
+
if self.training and self.gradient_checkpointing:
|
| 715 |
+
|
| 716 |
+
def create_custom_forward(module, return_dict=None):
|
| 717 |
+
def custom_forward(*inputs):
|
| 718 |
+
if return_dict is not None:
|
| 719 |
+
return module(*inputs, return_dict=return_dict)
|
| 720 |
+
else:
|
| 721 |
+
return module(*inputs)
|
| 722 |
+
|
| 723 |
+
return custom_forward
|
| 724 |
+
|
| 725 |
+
ckpt_kwargs: Dict[str, Any] = (
|
| 726 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 727 |
+
)
|
| 728 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 729 |
+
create_custom_forward(block),
|
| 730 |
+
hidden_states,
|
| 731 |
+
temb,
|
| 732 |
+
image_rotary_emb,
|
| 733 |
+
attention_mask,
|
| 734 |
+
**ckpt_kwargs,
|
| 735 |
+
)
|
| 736 |
+
|
| 737 |
+
else:
|
| 738 |
+
hidden_states = block(
|
| 739 |
+
hidden_states=hidden_states,
|
| 740 |
+
temb=temb,
|
| 741 |
+
image_rotary_emb=image_rotary_emb,
|
| 742 |
+
attention_mask=attention_mask,
|
| 743 |
+
)
|
| 744 |
+
|
| 745 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
| 746 |
+
|
| 747 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
| 748 |
+
output = self.proj_out(hidden_states)
|
| 749 |
+
|
| 750 |
+
if USE_PEFT_BACKEND:
|
| 751 |
+
# remove `lora_scale` from each PEFT layer
|
| 752 |
+
unscale_lora_layers(self, lora_scale)
|
| 753 |
+
|
| 754 |
+
if not return_dict:
|
| 755 |
+
return (output,)
|
| 756 |
+
|
| 757 |
+
return Transformer2DModelOutput(sample=output)
|