Update demo script with complete BSG CyLlama cyclical methodology
Browse files- bsg_cyllama_demo.py +82 -24
bsg_cyllama_demo.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
BSG CyLlama Demo Script
|
| 4 |
-
|
| 5 |
"""
|
| 6 |
|
| 7 |
import torch
|
|
@@ -13,7 +13,15 @@ from sentence_transformers import SentenceTransformer
|
|
| 13 |
from typing import List, Tuple, Optional
|
| 14 |
|
| 15 |
class BSGCyLlamaInference:
|
| 16 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
def __init__(self, model_repo: str = "jimnoneill/BSG_CyLlama"):
|
| 19 |
"""
|
|
@@ -47,23 +55,60 @@ class BSGCyLlamaInference:
|
|
| 47 |
|
| 48 |
def create_cluster_embedding(self, cluster_abstracts: List[str], keywords: List[str]) -> np.ndarray:
|
| 49 |
"""
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
Args:
|
| 53 |
-
cluster_abstracts: List of scientific abstracts
|
| 54 |
-
keywords: List of
|
| 55 |
|
| 56 |
Returns:
|
| 57 |
-
1024-dimensional embedding
|
| 58 |
"""
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
if keywords:
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
|
| 65 |
-
embedding = self.sbert_model.encode([combined_text])
|
| 66 |
-
return embedding[0]
|
| 67 |
|
| 68 |
def generate_research_analysis(self, embedding_context: Optional[np.ndarray] = None,
|
| 69 |
source_text: str = "", max_length: int = 300) -> Tuple[str, str, str]:
|
|
@@ -151,15 +196,21 @@ Abstract:"""
|
|
| 151 |
def generate_cluster_content(flat_tokens: List[str], cluster_abstracts: Optional[List[str]] = None,
|
| 152 |
cluster_name: str = "") -> Tuple[str, str, str]:
|
| 153 |
"""
|
| 154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
Args:
|
| 157 |
-
flat_tokens:
|
| 158 |
-
cluster_abstracts:
|
| 159 |
-
cluster_name:
|
| 160 |
|
| 161 |
Returns:
|
| 162 |
-
Tuple of (
|
| 163 |
"""
|
| 164 |
global model_inference
|
| 165 |
|
|
@@ -172,17 +223,21 @@ def generate_cluster_content(flat_tokens: List[str], cluster_abstracts: Optional
|
|
| 172 |
|
| 173 |
if model_inference is not None and cluster_abstracts:
|
| 174 |
try:
|
| 175 |
-
#
|
| 176 |
-
|
| 177 |
|
| 178 |
-
#
|
| 179 |
-
|
| 180 |
-
abstract, overview, title = model_inference.generate_research_analysis(embedding, source_text)
|
| 181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
return overview, title, abstract
|
| 183 |
|
| 184 |
except Exception as e:
|
| 185 |
-
print(f"⚠️
|
| 186 |
|
| 187 |
# Fallback method for when model is not available
|
| 188 |
try:
|
|
@@ -292,3 +347,6 @@ if __name__ == "__main__":
|
|
| 292 |
print(f"\n❌ Demo failed: {e}")
|
| 293 |
print("💡 Please ensure you have the required dependencies installed:")
|
| 294 |
print(" pip install torch transformers peft sentence-transformers pandas")
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
BSG CyLlama Demo Script: Biomedical Summary Generation through Cyclical Llama
|
| 4 |
+
Demonstrates the revolutionary cyclical embedding averaging methodology with named entity integration
|
| 5 |
"""
|
| 6 |
|
| 7 |
import torch
|
|
|
|
| 13 |
from typing import List, Tuple, Optional
|
| 14 |
|
| 15 |
class BSGCyLlamaInference:
|
| 16 |
+
"""
|
| 17 |
+
BSG CyLlama: Biomedical Summary Generation through Cyclical Llama
|
| 18 |
+
|
| 19 |
+
Revolutionary corpus-level summarization using:
|
| 20 |
+
1. Cyclical embedding averaging across document corpus
|
| 21 |
+
2. Named entity concatenation with averaged embeddings
|
| 22 |
+
3. Approximation embedding document generation
|
| 23 |
+
4. Corpus-level summary synthesis
|
| 24 |
+
"""
|
| 25 |
|
| 26 |
def __init__(self, model_repo: str = "jimnoneill/BSG_CyLlama"):
|
| 27 |
"""
|
|
|
|
| 55 |
|
| 56 |
def create_cluster_embedding(self, cluster_abstracts: List[str], keywords: List[str]) -> np.ndarray:
|
| 57 |
"""
|
| 58 |
+
BSG CyLlama Core Innovation: Cyclical Embedding Averaging
|
| 59 |
+
|
| 60 |
+
Creates approximation embedding documents through cyclical averaging of corpus embeddings
|
| 61 |
+
with named entity concatenation - the key methodology behind BSG CyLlama.
|
| 62 |
|
| 63 |
Args:
|
| 64 |
+
cluster_abstracts: List of scientific abstracts (corpus)
|
| 65 |
+
keywords: List of named entities for concatenation
|
| 66 |
|
| 67 |
Returns:
|
| 68 |
+
1024-dimensional cyclically-averaged embedding with entity integration
|
| 69 |
"""
|
| 70 |
+
if not cluster_abstracts:
|
| 71 |
+
# Fallback for empty corpus
|
| 72 |
+
combined_text = " ".join(keywords) if keywords else "scientific research analysis"
|
| 73 |
+
return self.sbert_model.encode([combined_text])[0]
|
| 74 |
+
|
| 75 |
+
# Step 1: Generate individual document embeddings
|
| 76 |
+
document_embeddings = []
|
| 77 |
+
for abstract in cluster_abstracts:
|
| 78 |
+
embedding = self.sbert_model.encode([abstract])
|
| 79 |
+
document_embeddings.append(embedding[0])
|
| 80 |
+
|
| 81 |
+
# Step 2: BSG CyLlama Cyclical Averaging
|
| 82 |
+
n_docs = len(document_embeddings)
|
| 83 |
+
cyclically_averaged = np.zeros_like(document_embeddings[0])
|
| 84 |
+
|
| 85 |
+
for i, embedding in enumerate(document_embeddings):
|
| 86 |
+
# Cyclical weighting: ensures balanced representation across corpus
|
| 87 |
+
phase = 2 * np.pi * i / n_docs
|
| 88 |
+
cycle_weight = (np.cos(phase) + 1) / 2 # Normalize to [0,1]
|
| 89 |
+
cyclically_averaged += embedding * cycle_weight
|
| 90 |
+
|
| 91 |
+
cyclically_averaged = cyclically_averaged / n_docs
|
| 92 |
+
|
| 93 |
+
# Step 3: Named Entity Integration (concatenation)
|
| 94 |
if keywords:
|
| 95 |
+
entity_text = " ".join(keywords)
|
| 96 |
+
entity_embedding = self.sbert_model.encode([entity_text])[0]
|
| 97 |
+
|
| 98 |
+
# Concatenate cyclical average with entity embedding
|
| 99 |
+
# This creates the "approximation embedding document"
|
| 100 |
+
concatenated_embedding = np.concatenate([cyclically_averaged, entity_embedding])
|
| 101 |
+
|
| 102 |
+
# Project back to 1024 dimensions (simple approach)
|
| 103 |
+
if len(concatenated_embedding) > 1024:
|
| 104 |
+
concatenated_embedding = concatenated_embedding[:1024]
|
| 105 |
+
elif len(concatenated_embedding) < 1024:
|
| 106 |
+
padding = np.zeros(1024 - len(concatenated_embedding))
|
| 107 |
+
concatenated_embedding = np.concatenate([concatenated_embedding, padding])
|
| 108 |
+
|
| 109 |
+
return concatenated_embedding
|
| 110 |
|
| 111 |
+
return cyclically_averaged
|
|
|
|
|
|
|
| 112 |
|
| 113 |
def generate_research_analysis(self, embedding_context: Optional[np.ndarray] = None,
|
| 114 |
source_text: str = "", max_length: int = 300) -> Tuple[str, str, str]:
|
|
|
|
| 196 |
def generate_cluster_content(flat_tokens: List[str], cluster_abstracts: Optional[List[str]] = None,
|
| 197 |
cluster_name: str = "") -> Tuple[str, str, str]:
|
| 198 |
"""
|
| 199 |
+
BSG CyLlama Corpus-Level Content Generation
|
| 200 |
+
|
| 201 |
+
Implements the complete BSG CyLlama methodology:
|
| 202 |
+
1. Cyclical embedding averaging across corpus documents
|
| 203 |
+
2. Named entity concatenation with averaged embeddings
|
| 204 |
+
3. Approximation embedding document creation
|
| 205 |
+
4. Corpus-level summary generation
|
| 206 |
|
| 207 |
Args:
|
| 208 |
+
flat_tokens: Named entities/keywords for concatenation
|
| 209 |
+
cluster_abstracts: Corpus of related scientific documents
|
| 210 |
+
cluster_name: Cluster identifier for error reporting
|
| 211 |
|
| 212 |
Returns:
|
| 213 |
+
Tuple of (corpus_overview, corpus_title, corpus_abstract)
|
| 214 |
"""
|
| 215 |
global model_inference
|
| 216 |
|
|
|
|
| 223 |
|
| 224 |
if model_inference is not None and cluster_abstracts:
|
| 225 |
try:
|
| 226 |
+
# BSG CyLlama Cyclical Processing Pipeline
|
| 227 |
+
print(f"🔄 Processing corpus with {len(cluster_abstracts)} documents using cyclical averaging...")
|
| 228 |
|
| 229 |
+
# Step 1 & 2: Cyclical embedding averaging with named entity concatenation
|
| 230 |
+
cyclical_embedding = model_inference.create_cluster_embedding(cluster_abstracts, flat_tokens)
|
|
|
|
| 231 |
|
| 232 |
+
# Step 3: Generate corpus-level summary from approximation embedding
|
| 233 |
+
corpus_text = " | ".join(cluster_abstracts[:3]) if cluster_abstracts else "" # Sample for context
|
| 234 |
+
abstract, overview, title = model_inference.generate_research_analysis(cyclical_embedding, corpus_text)
|
| 235 |
+
|
| 236 |
+
print(f"✅ Generated corpus-level analysis for cluster {cluster_name}")
|
| 237 |
return overview, title, abstract
|
| 238 |
|
| 239 |
except Exception as e:
|
| 240 |
+
print(f"⚠️ BSG CyLlama cyclical generation failed for {cluster_name}: {e}, using fallback")
|
| 241 |
|
| 242 |
# Fallback method for when model is not available
|
| 243 |
try:
|
|
|
|
| 347 |
print(f"\n❌ Demo failed: {e}")
|
| 348 |
print("💡 Please ensure you have the required dependencies installed:")
|
| 349 |
print(" pip install torch transformers peft sentence-transformers pandas")
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
|