Upload bsg_training_data_gen.py with huggingface_hub
Browse files- bsg_training_data_gen.py +663 -0
bsg_training_data_gen.py
ADDED
|
@@ -0,0 +1,663 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Enhanced DeepSeek Training Data Generator for Scientific Summarization
|
| 4 |
+
Generates high-quality training data with integrated cleanup and row slicing
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import requests
|
| 8 |
+
import json
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import time
|
| 11 |
+
import csv
|
| 12 |
+
import os
|
| 13 |
+
import re
|
| 14 |
+
import hashlib
|
| 15 |
+
from pathlib import Path
|
| 16 |
+
from typing import List, Tuple, Dict, Optional
|
| 17 |
+
from datetime import datetime, timedelta
|
| 18 |
+
|
| 19 |
+
class EnhancedDeepSeekTrainingDataGenerator:
|
| 20 |
+
"""Generate training data using DeepSeek API with integrated cleanup and row slicing"""
|
| 21 |
+
|
| 22 |
+
def __init__(self, api_key: str, base_url: str = "https://api.deepseek.com/v1"):
|
| 23 |
+
"""
|
| 24 |
+
Initialize DeepSeek API client
|
| 25 |
+
|
| 26 |
+
Args:
|
| 27 |
+
api_key: Your DeepSeek API key
|
| 28 |
+
base_url: DeepSeek API base URL
|
| 29 |
+
"""
|
| 30 |
+
self.api_key = api_key
|
| 31 |
+
self.base_url = base_url
|
| 32 |
+
self.headers = {
|
| 33 |
+
"Authorization": f"Bearer {api_key}",
|
| 34 |
+
"Content-Type": "application/json"
|
| 35 |
+
}
|
| 36 |
+
self.start_time = None
|
| 37 |
+
self.processed_count = 0
|
| 38 |
+
|
| 39 |
+
def clean_deepseek_output(self, text: str) -> str:
|
| 40 |
+
"""
|
| 41 |
+
Clean up DeepSeek output to remove formatting artifacts
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
text: Raw text from DeepSeek API
|
| 45 |
+
|
| 46 |
+
Returns:
|
| 47 |
+
Cleaned text without formatting artifacts
|
| 48 |
+
"""
|
| 49 |
+
if not text or pd.isna(text):
|
| 50 |
+
return text
|
| 51 |
+
|
| 52 |
+
text = str(text).strip()
|
| 53 |
+
|
| 54 |
+
# Remove numbered prefixes (1., 2., 3.)
|
| 55 |
+
text = re.sub(r'^\d+\.\s*', '', text)
|
| 56 |
+
|
| 57 |
+
# Remove component labels
|
| 58 |
+
text = re.sub(r'^(ABSTRACT[_\s]*SUMMARY:?|SHORT[_\s]*SUMMARY:?|TITLE:?)', '', text, flags=re.IGNORECASE)
|
| 59 |
+
|
| 60 |
+
# Remove excessive whitespace
|
| 61 |
+
text = re.sub(r'\s+', ' ', text)
|
| 62 |
+
|
| 63 |
+
# Remove trailing colons or dashes
|
| 64 |
+
text = re.sub(r'[:\-]+$', '', text)
|
| 65 |
+
|
| 66 |
+
# Remove markdown formatting
|
| 67 |
+
text = re.sub(r'\*+', '', text)
|
| 68 |
+
|
| 69 |
+
# Remove quotes that sometimes wrap the entire response
|
| 70 |
+
text = re.sub(r'^["\']+|["\']+$', '', text)
|
| 71 |
+
|
| 72 |
+
return text.strip()
|
| 73 |
+
|
| 74 |
+
def create_few_shot_prompt(self, concatenated_abstracts: str, keywords: str) -> str:
|
| 75 |
+
"""
|
| 76 |
+
Create optimized few-shot prompt for DeepSeek with clean output formatting
|
| 77 |
+
"""
|
| 78 |
+
prompt = (
|
| 79 |
+
"You are an expert scientific summarization assistant. Generate exactly three components separated by '|||':\n"
|
| 80 |
+
"1. ABSTRACT_SUMMARY: A detailed 4-6 sentence summary highlighting key findings, methods, and implications\n"
|
| 81 |
+
"2. SHORT_SUMMARY: A concise 2-3 sentence summary capturing the core essence\n"
|
| 82 |
+
"3. TITLE: A sophisticated, detailed title reflecting the research scope and methods\n\n"
|
| 83 |
+
"CRITICAL: Respond ONLY with the three components separated by '|||'. Do not include conversational text, explanations, or markdown formatting.\n\n"
|
| 84 |
+
"Format: ABSTRACT_SUMMARY|||SHORT_SUMMARY|||TITLE\n\n"
|
| 85 |
+
"Focus on:\n"
|
| 86 |
+
"- Specific computational methods, techniques, and approaches\n"
|
| 87 |
+
"- Key biological processes and mechanisms\n"
|
| 88 |
+
"- Research methodologies and experimental designs\n"
|
| 89 |
+
"- Clinical or therapeutic implications\n"
|
| 90 |
+
"- Be specific and detailed; avoid generic terms\n\n"
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
# Few-shot Example 1 - Immunology/Antimicrobial Research
|
| 94 |
+
example1_text = (
|
| 95 |
+
"Studies investigated mammary gland candidiasis models using immunocompetent and immunodeficient mice "
|
| 96 |
+
"treated with amphotericin B. Complement activation analysis revealed tissue inflammation patterns. "
|
| 97 |
+
"Research on antigen processing examined proteasome mutants lacking specific protease activities for "
|
| 98 |
+
"peptide generation. Novel ankyrin-repeat family member MAIL was identified with nuclear localization "
|
| 99 |
+
"potentiating IL-6 expression. Antimicrobial peptides pseudins 1-4 were isolated from frog skin showing "
|
| 100 |
+
"activity against various pathogens."
|
| 101 |
+
)
|
| 102 |
+
example1_keywords = "MAIL; proteasome; antimicrobial peptides; complement activation; mammary glands"
|
| 103 |
+
|
| 104 |
+
prompt += (
|
| 105 |
+
f"INPUT: {example1_text}\n"
|
| 106 |
+
f"KEYWORDS: {example1_keywords}\n"
|
| 107 |
+
"OUTPUT: "
|
| 108 |
+
"Comprehensive investigation of innate immune responses utilizing murine mammary gland candidiasis models "
|
| 109 |
+
"with complement activation analysis and proteasome-mediated antigen processing pathways, complemented by "
|
| 110 |
+
"characterization of novel antimicrobial peptides and nuclear transcription modulators. Research demonstrates "
|
| 111 |
+
"the critical role of specific protease activities in MHC class I-restricted peptide generation while identifying "
|
| 112 |
+
"MAIL as a nuclear factor potentiating cytokine expression and pseudins as promising therapeutic antimicrobials. "
|
| 113 |
+
"These findings advance understanding of immunopathological mechanisms and provide validated experimental models "
|
| 114 |
+
"for antifungal compound evaluation.|||"
|
| 115 |
+
"Studies utilized murine models to investigate immune responses in candidiasis while characterizing novel "
|
| 116 |
+
"antimicrobial compounds and antigen processing mechanisms. Research identified critical protease activities "
|
| 117 |
+
"and nuclear factors regulating immune responses.|||"
|
| 118 |
+
"Integrated Immunological Modeling and Antimicrobial Peptide Discovery: Proteasome-Mediated Antigen Processing "
|
| 119 |
+
"and Complement-Dependent Host Defense Mechanisms\n\n"
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
# Few-shot Example 2 - Biotechnology/Tissue Engineering
|
| 123 |
+
example2_text = (
|
| 124 |
+
"Biotechnology development focused on hematopoietic stem cell expansion using cytokine combinations. "
|
| 125 |
+
"Temperature-responsive polymers enabled designed cell sheet engineering for tissue applications. "
|
| 126 |
+
"Vascular anastomosis techniques using titanium clips reduced neointimal hyperplasia. Endothelial cell "
|
| 127 |
+
"seeding protocols for vascular grafts were optimized. Gene transfer therapies for therapeutic angiogenesis "
|
| 128 |
+
"showed clinical promise in cardiovascular applications."
|
| 129 |
+
)
|
| 130 |
+
example2_keywords = "biotechnology; tissue engineering; vascular grafts; stem cells; angiogenesis"
|
| 131 |
+
|
| 132 |
+
prompt += (
|
| 133 |
+
f"INPUT: {example2_text}\n"
|
| 134 |
+
f"KEYWORDS: {example2_keywords}\n"
|
| 135 |
+
"OUTPUT: "
|
| 136 |
+
"Advanced biotechnology approaches combining cytokine-mediated hematopoietic stem cell expansion protocols "
|
| 137 |
+
"with temperature-responsive polymer systems for precision cell sheet engineering and vascular reconstruction. "
|
| 138 |
+
"Integration of titanium clip anastomosis techniques and optimized endothelial cell seeding methodologies "
|
| 139 |
+
"demonstrates significant reduction in neointimal hyperplasia while enhancing graft patency. Gene transfer "
|
| 140 |
+
"strategies for therapeutic angiogenesis represent promising clinical interventions for cardiovascular disease "
|
| 141 |
+
"treatment, establishing proof-of-concept for growth factor-mediated collateral vessel development.|||"
|
| 142 |
+
"Research combines stem cell expansion technologies with polymer-based cell engineering and vascular "
|
| 143 |
+
"reconstruction techniques. Gene therapy approaches show clinical promise for treating cardiovascular disease "
|
| 144 |
+
"through enhanced angiogenesis.|||"
|
| 145 |
+
"Multiscale Biotechnology Integration: Cytokine-Mediated Stem Cell Engineering and Polymer-Assisted "
|
| 146 |
+
"Vascular Reconstruction with Gene Transfer-Enhanced Therapeutic Angiogenesis\n\n"
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
# User query
|
| 150 |
+
prompt += (
|
| 151 |
+
f"INPUT: {concatenated_abstracts}\n"
|
| 152 |
+
f"KEYWORDS: {keywords}\n"
|
| 153 |
+
"OUTPUT:"
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
return prompt
|
| 157 |
+
|
| 158 |
+
def call_deepseek_api(self, prompt: str, max_retries: int = 3) -> str:
|
| 159 |
+
"""
|
| 160 |
+
Call DeepSeek API with enhanced retry logic and timeout handling
|
| 161 |
+
"""
|
| 162 |
+
for attempt in range(max_retries):
|
| 163 |
+
try:
|
| 164 |
+
payload = {
|
| 165 |
+
"model": "deepseek-chat", # DeepSeek-V3 instruct model
|
| 166 |
+
"messages": [
|
| 167 |
+
{
|
| 168 |
+
"role": "user",
|
| 169 |
+
"content": prompt
|
| 170 |
+
}
|
| 171 |
+
],
|
| 172 |
+
"max_tokens": 800,
|
| 173 |
+
"temperature": 0.7,
|
| 174 |
+
"top_p": 0.9,
|
| 175 |
+
"stream": False
|
| 176 |
+
}
|
| 177 |
+
|
| 178 |
+
# Enhanced timeout handling
|
| 179 |
+
response = requests.post(
|
| 180 |
+
f"{self.base_url}/chat/completions",
|
| 181 |
+
headers=self.headers,
|
| 182 |
+
json=payload,
|
| 183 |
+
timeout=(10, 60) # (connection timeout, read timeout)
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
if response.status_code == 200:
|
| 187 |
+
result = response.json()
|
| 188 |
+
return result['choices'][0]['message']['content'].strip()
|
| 189 |
+
elif response.status_code == 429: # Rate limit
|
| 190 |
+
wait_time = min(60, 2 ** attempt * 30)
|
| 191 |
+
print(f"Rate limit hit. Waiting {wait_time} seconds...")
|
| 192 |
+
time.sleep(wait_time)
|
| 193 |
+
continue
|
| 194 |
+
elif response.status_code >= 500: # Server errors
|
| 195 |
+
wait_time = min(30, 2 ** attempt * 5)
|
| 196 |
+
print(f"Server error {response.status_code}. Retrying in {wait_time} seconds...")
|
| 197 |
+
time.sleep(wait_time)
|
| 198 |
+
continue
|
| 199 |
+
else:
|
| 200 |
+
print(f"API Error {response.status_code}: {response.text}")
|
| 201 |
+
if attempt < max_retries - 1:
|
| 202 |
+
time.sleep(2 ** attempt)
|
| 203 |
+
continue
|
| 204 |
+
else:
|
| 205 |
+
return ""
|
| 206 |
+
|
| 207 |
+
except requests.exceptions.Timeout as e:
|
| 208 |
+
print(f"Timeout error on attempt {attempt + 1}: {e}")
|
| 209 |
+
if attempt < max_retries - 1:
|
| 210 |
+
wait_time = min(30, 2 ** attempt * 10)
|
| 211 |
+
print(f"Retrying in {wait_time} seconds...")
|
| 212 |
+
time.sleep(wait_time)
|
| 213 |
+
continue
|
| 214 |
+
else:
|
| 215 |
+
print(f"Max retries exceeded due to timeout")
|
| 216 |
+
return ""
|
| 217 |
+
except requests.exceptions.ConnectionError as e:
|
| 218 |
+
print(f"Connection error on attempt {attempt + 1}: {e}")
|
| 219 |
+
if attempt < max_retries - 1:
|
| 220 |
+
wait_time = min(30, 2 ** attempt * 10)
|
| 221 |
+
print(f"Retrying in {wait_time} seconds...")
|
| 222 |
+
time.sleep(wait_time)
|
| 223 |
+
continue
|
| 224 |
+
else:
|
| 225 |
+
print(f"Max retries exceeded due to connection error")
|
| 226 |
+
return ""
|
| 227 |
+
except Exception as e:
|
| 228 |
+
print(f"Attempt {attempt + 1} failed: {str(e)}")
|
| 229 |
+
if attempt < max_retries - 1:
|
| 230 |
+
time.sleep(2 ** attempt)
|
| 231 |
+
continue
|
| 232 |
+
else:
|
| 233 |
+
return ""
|
| 234 |
+
|
| 235 |
+
return ""
|
| 236 |
+
|
| 237 |
+
def parse_response(self, response: str) -> Tuple[str, str, str]:
|
| 238 |
+
"""
|
| 239 |
+
Enhanced parsing for DeepSeek responses with integrated cleanup
|
| 240 |
+
"""
|
| 241 |
+
if not response:
|
| 242 |
+
return "Failed to generate", "Failed to generate", "Failed to generate"
|
| 243 |
+
|
| 244 |
+
# Clean the response first
|
| 245 |
+
response = response.strip()
|
| 246 |
+
|
| 247 |
+
# Remove common DeepSeek conversational elements
|
| 248 |
+
conversational_starters = [
|
| 249 |
+
"Here are the structured outputs",
|
| 250 |
+
"Here's the structured output",
|
| 251 |
+
"Based on the provided keywords",
|
| 252 |
+
"Let me know if you'd like",
|
| 253 |
+
"Would you like me to",
|
| 254 |
+
"I can help you",
|
| 255 |
+
"Here's my analysis"
|
| 256 |
+
]
|
| 257 |
+
|
| 258 |
+
for starter in conversational_starters:
|
| 259 |
+
if response.startswith(starter):
|
| 260 |
+
# Find the actual content after conversational part
|
| 261 |
+
lines = response.split('\n')
|
| 262 |
+
content_lines = []
|
| 263 |
+
found_content = False
|
| 264 |
+
for line in lines:
|
| 265 |
+
if any(marker in line.upper() for marker in ['ABSTRACT_SUMMARY:', 'ABSTRACT:', '1.', '**1.']):
|
| 266 |
+
found_content = True
|
| 267 |
+
if found_content:
|
| 268 |
+
content_lines.append(line)
|
| 269 |
+
if content_lines:
|
| 270 |
+
response = '\n'.join(content_lines)
|
| 271 |
+
break
|
| 272 |
+
|
| 273 |
+
# Remove markdown formatting
|
| 274 |
+
response = re.sub(r'\*\*(\d+\.)\*\*', r'\1', response) # **1.** -> 1.
|
| 275 |
+
response = re.sub(r'\*\*(.*?)\*\*', r'\1', response) # **text** -> text
|
| 276 |
+
response = re.sub(r'^\s*---\s*$', '', response, flags=re.MULTILINE) # Remove --- lines
|
| 277 |
+
|
| 278 |
+
abstract_summary = ""
|
| 279 |
+
short_summary = ""
|
| 280 |
+
title = ""
|
| 281 |
+
|
| 282 |
+
try:
|
| 283 |
+
# Method 1: Look for standard ||| separator
|
| 284 |
+
if '|||' in response:
|
| 285 |
+
parts = [part.strip() for part in response.split('|||')]
|
| 286 |
+
if len(parts) >= 3:
|
| 287 |
+
abstract_summary = parts[0]
|
| 288 |
+
short_summary = parts[1]
|
| 289 |
+
title = parts[2]
|
| 290 |
+
elif len(parts) == 2:
|
| 291 |
+
abstract_summary = parts[0]
|
| 292 |
+
title = parts[1]
|
| 293 |
+
# Generate short summary from abstract
|
| 294 |
+
sentences = re.split(r'[.!?]+', abstract_summary)
|
| 295 |
+
short_summary = '. '.join(sentences[:2]).strip() + '.'
|
| 296 |
+
|
| 297 |
+
# Method 2: Look for numbered sections (DeepSeek's preferred format)
|
| 298 |
+
elif "1. ABSTRACT_SUMMARY:" in response or "1.ABSTRACT_SUMMARY:" in response:
|
| 299 |
+
# Extract by numbered sections
|
| 300 |
+
abstract_match = re.search(r'1\.?\s*ABSTRACT_SUMMARY:\s*(.*?)(?=2\.|3\.|$)', response, re.DOTALL | re.IGNORECASE)
|
| 301 |
+
short_match = re.search(r'2\.?\s*SHORT_SUMMARY:\s*(.*?)(?=3\.|$)', response, re.DOTALL | re.IGNORECASE)
|
| 302 |
+
title_match = re.search(r'3\.?\s*TITLE:\s*(.*?)(?=\n\n|$)', response, re.DOTALL | re.IGNORECASE)
|
| 303 |
+
|
| 304 |
+
if abstract_match:
|
| 305 |
+
abstract_summary = abstract_match.group(1).strip()
|
| 306 |
+
if short_match:
|
| 307 |
+
short_summary = short_match.group(1).strip()
|
| 308 |
+
if title_match:
|
| 309 |
+
title = title_match.group(1).strip()
|
| 310 |
+
|
| 311 |
+
# Method 3: Look for any mention of the three components
|
| 312 |
+
else:
|
| 313 |
+
# Try to find ABSTRACT_SUMMARY, SHORT_SUMMARY, TITLE anywhere
|
| 314 |
+
abstract_match = re.search(r'ABSTRACT[_\s]*SUMMARY:?\s*(.*?)(?=SHORT|TITLE|$)', response, re.DOTALL | re.IGNORECASE)
|
| 315 |
+
short_match = re.search(r'SHORT[_\s]*SUMMARY:?\s*(.*?)(?=TITLE|$)', response, re.DOTALL | re.IGNORECASE)
|
| 316 |
+
title_match = re.search(r'TITLE:?\s*(.*?)(?=\n|$)', response, re.DOTALL | re.IGNORECASE)
|
| 317 |
+
|
| 318 |
+
if abstract_match:
|
| 319 |
+
abstract_summary = abstract_match.group(1).strip()
|
| 320 |
+
if short_match:
|
| 321 |
+
short_summary = short_match.group(1).strip()
|
| 322 |
+
if title_match:
|
| 323 |
+
title = title_match.group(1).strip()
|
| 324 |
+
|
| 325 |
+
except Exception as e:
|
| 326 |
+
print(f"Error in enhanced parsing: {e}")
|
| 327 |
+
|
| 328 |
+
# Fallback: if still no content, try to extract from the full response
|
| 329 |
+
if not abstract_summary and not short_summary and not title:
|
| 330 |
+
# Split response into sentences and distribute intelligently
|
| 331 |
+
sentences = re.split(r'[.!?]+', response)
|
| 332 |
+
sentences = [s.strip() for s in sentences if s.strip() and len(s.strip()) > 10]
|
| 333 |
+
|
| 334 |
+
if len(sentences) >= 6:
|
| 335 |
+
abstract_summary = '. '.join(sentences[:4]) + '.'
|
| 336 |
+
short_summary = '. '.join(sentences[4:6]) + '.'
|
| 337 |
+
title = sentences[6] if len(sentences) > 6 else "Advanced Scientific Research Analysis"
|
| 338 |
+
elif len(sentences) >= 3:
|
| 339 |
+
abstract_summary = '. '.join(sentences[:2]) + '.'
|
| 340 |
+
short_summary = sentences[2] + '.'
|
| 341 |
+
title = sentences[-1] if len(sentences) > 3 else "Scientific Research Study"
|
| 342 |
+
elif len(sentences) >= 1:
|
| 343 |
+
abstract_summary = sentences[0]
|
| 344 |
+
short_summary = sentences[0][:100] + "..." if len(sentences[0]) > 100 else sentences[0]
|
| 345 |
+
title = "Scientific Analysis"
|
| 346 |
+
else:
|
| 347 |
+
abstract_summary = response[:200] + "..." if len(response) > 200 else response
|
| 348 |
+
short_summary = response[:100] + "..." if len(response) > 100 else response
|
| 349 |
+
title = "Research Summary"
|
| 350 |
+
|
| 351 |
+
# Apply integrated cleanup to all components
|
| 352 |
+
abstract_summary = self.clean_deepseek_output(abstract_summary)
|
| 353 |
+
short_summary = self.clean_deepseek_output(short_summary)
|
| 354 |
+
title = self.clean_deepseek_output(title)
|
| 355 |
+
|
| 356 |
+
# Ensure reasonable lengths after cleanup
|
| 357 |
+
if len(abstract_summary.split()) > 150:
|
| 358 |
+
abstract_summary = ' '.join(abstract_summary.split()[:150]) + "..."
|
| 359 |
+
|
| 360 |
+
if len(short_summary.split()) > 75:
|
| 361 |
+
short_summary = ' '.join(short_summary.split()[:75]) + "..."
|
| 362 |
+
|
| 363 |
+
if len(title.split()) > 25:
|
| 364 |
+
title = ' '.join(title.split()[:25]) + "..."
|
| 365 |
+
|
| 366 |
+
# Final validation - ensure we have actual content
|
| 367 |
+
if not abstract_summary or abstract_summary in ["", "Content not extracted", "Content not properly extracted"]:
|
| 368 |
+
abstract_summary = "Content generation failed"
|
| 369 |
+
if not short_summary or short_summary in ["", "Content not extracted", "Content not properly extracted"]:
|
| 370 |
+
short_summary = "Content generation failed"
|
| 371 |
+
if not title or title in ["", "Content not extracted", "Content not properly extracted"]:
|
| 372 |
+
title = "Content generation failed"
|
| 373 |
+
|
| 374 |
+
return abstract_summary, short_summary, title
|
| 375 |
+
|
| 376 |
+
def load_checkpoint(self, checkpoint_file: str) -> Tuple[List[Dict], set]:
|
| 377 |
+
"""
|
| 378 |
+
Load existing checkpoint data and return processed data + processed indices
|
| 379 |
+
"""
|
| 380 |
+
if os.path.exists(checkpoint_file):
|
| 381 |
+
try:
|
| 382 |
+
df = pd.read_csv(checkpoint_file, sep='\t')
|
| 383 |
+
processed_data = df.to_dict('records')
|
| 384 |
+
processed_indices = set(df['OriginalIndex'].astype(str))
|
| 385 |
+
print(f"β Loaded checkpoint with {len(processed_data)} processed entries")
|
| 386 |
+
return processed_data, processed_indices
|
| 387 |
+
except Exception as e:
|
| 388 |
+
print(f"Error loading checkpoint: {e}")
|
| 389 |
+
return [], set()
|
| 390 |
+
return [], set()
|
| 391 |
+
|
| 392 |
+
def save_checkpoint(self, output_data: List[Dict], checkpoint_file: str):
|
| 393 |
+
"""
|
| 394 |
+
Save current progress to checkpoint file
|
| 395 |
+
"""
|
| 396 |
+
try:
|
| 397 |
+
df = pd.DataFrame(output_data)
|
| 398 |
+
df.to_csv(checkpoint_file, sep='\t', index=False, quoting=csv.QUOTE_ALL)
|
| 399 |
+
print(f"πΎ Checkpoint saved: {len(output_data)} entries")
|
| 400 |
+
except Exception as e:
|
| 401 |
+
print(f"Error saving checkpoint: {e}")
|
| 402 |
+
|
| 403 |
+
def estimate_time_remaining(self, current_progress: int, total_rows: int) -> str:
|
| 404 |
+
"""
|
| 405 |
+
Estimate time remaining based on current progress
|
| 406 |
+
"""
|
| 407 |
+
if self.start_time is None or current_progress == 0:
|
| 408 |
+
return "Calculating..."
|
| 409 |
+
|
| 410 |
+
elapsed = datetime.now() - self.start_time
|
| 411 |
+
elapsed_seconds = elapsed.total_seconds()
|
| 412 |
+
|
| 413 |
+
if current_progress > 0:
|
| 414 |
+
avg_time_per_row = elapsed_seconds / current_progress
|
| 415 |
+
remaining_rows = total_rows - current_progress
|
| 416 |
+
remaining_seconds = remaining_rows * avg_time_per_row
|
| 417 |
+
remaining_time = timedelta(seconds=int(remaining_seconds))
|
| 418 |
+
return str(remaining_time)
|
| 419 |
+
|
| 420 |
+
return "Calculating..."
|
| 421 |
+
|
| 422 |
+
def process_data_file(self, input_file: str, output_file: str, delay: float = 1.0,
|
| 423 |
+
save_every: int = 50, debug_first_n: int = 3,
|
| 424 |
+
start_row: int = 0, end_row: Optional[int] = None):
|
| 425 |
+
"""
|
| 426 |
+
Process the input TSV file and generate training data with checkpointing and row slicing
|
| 427 |
+
|
| 428 |
+
Args:
|
| 429 |
+
input_file: Path to input TSV file
|
| 430 |
+
output_file: Path to output TSV file
|
| 431 |
+
delay: Delay between API calls to respect rate limits
|
| 432 |
+
save_every: Save checkpoint every N processed rows
|
| 433 |
+
debug_first_n: Print full input/output for first N generations for QC
|
| 434 |
+
start_row: Starting row index (0-based)
|
| 435 |
+
end_row: Ending row index (0-based, None for all remaining rows)
|
| 436 |
+
"""
|
| 437 |
+
self.start_time = datetime.now()
|
| 438 |
+
|
| 439 |
+
# Setup checkpoint file
|
| 440 |
+
checkpoint_file = output_file.replace('.tsv', '_checkpoint.tsv')
|
| 441 |
+
|
| 442 |
+
# Load existing checkpoint
|
| 443 |
+
output_data, processed_indices = self.load_checkpoint(checkpoint_file)
|
| 444 |
+
|
| 445 |
+
# Read input data
|
| 446 |
+
try:
|
| 447 |
+
df = pd.read_csv(input_file, sep='\t')
|
| 448 |
+
except Exception as e:
|
| 449 |
+
print(f"Error reading input file: {e}")
|
| 450 |
+
return
|
| 451 |
+
|
| 452 |
+
# Apply row slicing
|
| 453 |
+
original_length = len(df)
|
| 454 |
+
if end_row is None:
|
| 455 |
+
end_row = original_length
|
| 456 |
+
else:
|
| 457 |
+
end_row = min(end_row, original_length)
|
| 458 |
+
|
| 459 |
+
if start_row >= original_length:
|
| 460 |
+
print(f"β Error: start_row {start_row} is >= total rows {original_length}")
|
| 461 |
+
return
|
| 462 |
+
|
| 463 |
+
df_slice = df.iloc[start_row:end_row].copy()
|
| 464 |
+
total_rows = len(df_slice)
|
| 465 |
+
|
| 466 |
+
initial_processed = len(output_data)
|
| 467 |
+
|
| 468 |
+
print(f"π Processing Overview:")
|
| 469 |
+
print(f" Input file total rows: {original_length}")
|
| 470 |
+
print(f" Processing slice: rows {start_row} to {end_row-1}")
|
| 471 |
+
print(f" Rows in slice: {total_rows}")
|
| 472 |
+
print(f" Already processed: {initial_processed}")
|
| 473 |
+
print(f" Remaining: {total_rows - initial_processed}")
|
| 474 |
+
print(f" Checkpoint saves every {save_every} rows")
|
| 475 |
+
print(f" Estimated cost: ~${total_rows * 0.0014:.2f}")
|
| 476 |
+
print(f" Estimated time: ~{total_rows * 1.5 / 3600:.1f} hours")
|
| 477 |
+
print(f" Debug mode: First {debug_first_n} generations will show detailed output")
|
| 478 |
+
print("-" * 80)
|
| 479 |
+
|
| 480 |
+
successful_processed = 0
|
| 481 |
+
failed_processed = 0
|
| 482 |
+
generations_count = 0
|
| 483 |
+
processed_this_run = 0
|
| 484 |
+
|
| 485 |
+
for index, row in df_slice.iterrows():
|
| 486 |
+
original_index = str(row.get('Index', index))
|
| 487 |
+
|
| 488 |
+
# Skip if already processed
|
| 489 |
+
if original_index in processed_indices:
|
| 490 |
+
continue
|
| 491 |
+
|
| 492 |
+
concatenated_abstracts = str(row.get('ConcatenatedAbstracts', ''))
|
| 493 |
+
keywords = str(row.get('TopKeywords', ''))
|
| 494 |
+
|
| 495 |
+
# Skip if no content
|
| 496 |
+
if not concatenated_abstracts or concatenated_abstracts == 'nan':
|
| 497 |
+
print(f"[{processed_this_run + 1}/{total_rows}] Skipping empty cluster {original_index}")
|
| 498 |
+
continue
|
| 499 |
+
|
| 500 |
+
actual_row_num = start_row + processed_this_run
|
| 501 |
+
print(f"[{processed_this_run + 1}/{total_rows}] Processing row {actual_row_num} (cluster {original_index})...")
|
| 502 |
+
|
| 503 |
+
# Create prompt
|
| 504 |
+
prompt = self.create_few_shot_prompt(concatenated_abstracts, keywords)
|
| 505 |
+
|
| 506 |
+
# DEBUG: Print detailed input/output for first few generations
|
| 507 |
+
if generations_count < debug_first_n:
|
| 508 |
+
print("\n" + "="*80)
|
| 509 |
+
print(f"π DEBUG OUTPUT FOR GENERATION #{generations_count + 1}")
|
| 510 |
+
print("="*80)
|
| 511 |
+
print(f"π CLUSTER INDEX: {original_index} (Row {actual_row_num})")
|
| 512 |
+
print(f"π KEYWORDS: {keywords}")
|
| 513 |
+
print(f"π ABSTRACTS (first 500 chars): {concatenated_abstracts[:500]}...")
|
| 514 |
+
print("\n" + "-"*60)
|
| 515 |
+
print("π€ FULL PROMPT BEING SENT TO API:")
|
| 516 |
+
print("-"*60)
|
| 517 |
+
print(prompt)
|
| 518 |
+
print("-"*60)
|
| 519 |
+
|
| 520 |
+
# Call API
|
| 521 |
+
response = self.call_deepseek_api(prompt)
|
| 522 |
+
|
| 523 |
+
# Continue debug printing
|
| 524 |
+
if generations_count < debug_first_n:
|
| 525 |
+
print("π₯ RAW API RESPONSE:")
|
| 526 |
+
print("-"*60)
|
| 527 |
+
print(response if response else "β NO RESPONSE / ERROR")
|
| 528 |
+
print("-"*60)
|
| 529 |
+
|
| 530 |
+
if response:
|
| 531 |
+
# Parse response (now includes integrated cleanup)
|
| 532 |
+
abstract_summary, short_summary, title = self.parse_response(response)
|
| 533 |
+
|
| 534 |
+
# Continue debug printing
|
| 535 |
+
if generations_count < debug_first_n:
|
| 536 |
+
print("π§ PARSED & CLEANED COMPONENTS:")
|
| 537 |
+
print("-"*60)
|
| 538 |
+
print(f"π ABSTRACT SUMMARY:\n{abstract_summary}\n")
|
| 539 |
+
print(f"β‘ SHORT SUMMARY:\n{short_summary}\n")
|
| 540 |
+
print(f"π·οΈ TITLE:\n{title}\n")
|
| 541 |
+
print("="*80 + "\n")
|
| 542 |
+
|
| 543 |
+
# Add to output data
|
| 544 |
+
output_data.append({
|
| 545 |
+
'OriginalIndex': original_index,
|
| 546 |
+
'SourceRow': actual_row_num, # Track original row number
|
| 547 |
+
'AbstractSummary': abstract_summary,
|
| 548 |
+
'ShortSummary': short_summary,
|
| 549 |
+
'Title': title,
|
| 550 |
+
'OriginalKeywords': keywords,
|
| 551 |
+
'OriginalText': concatenated_abstracts[:1000] + "..." if len(concatenated_abstracts) > 1000 else concatenated_abstracts
|
| 552 |
+
})
|
| 553 |
+
|
| 554 |
+
successful_processed += 1
|
| 555 |
+
print(f"β Success! ({successful_processed} total successes)")
|
| 556 |
+
else:
|
| 557 |
+
if generations_count < debug_first_n:
|
| 558 |
+
print("β FAILED TO PARSE OR GET RESPONSE")
|
| 559 |
+
print("="*80 + "\n")
|
| 560 |
+
|
| 561 |
+
print(f"β Failed to process cluster {original_index}")
|
| 562 |
+
# Add empty entry to maintain tracking
|
| 563 |
+
output_data.append({
|
| 564 |
+
'OriginalIndex': original_index,
|
| 565 |
+
'SourceRow': actual_row_num,
|
| 566 |
+
'AbstractSummary': 'Failed to generate',
|
| 567 |
+
'ShortSummary': 'Failed to generate',
|
| 568 |
+
'Title': 'Failed to generate',
|
| 569 |
+
'OriginalKeywords': keywords,
|
| 570 |
+
'OriginalText': concatenated_abstracts[:1000] + "..." if len(concatenated_abstracts) > 1000 else concatenated_abstracts
|
| 571 |
+
})
|
| 572 |
+
failed_processed += 1
|
| 573 |
+
|
| 574 |
+
generations_count += 1
|
| 575 |
+
processed_this_run += 1
|
| 576 |
+
|
| 577 |
+
# Update processed set
|
| 578 |
+
processed_indices.add(original_index)
|
| 579 |
+
|
| 580 |
+
# Save checkpoint periodically
|
| 581 |
+
if len(output_data) % save_every == 0:
|
| 582 |
+
self.save_checkpoint(output_data, checkpoint_file)
|
| 583 |
+
time_remaining = self.estimate_time_remaining(processed_this_run, total_rows)
|
| 584 |
+
print(f"π Checkpoint saved! Progress: {processed_this_run}/{total_rows} | ETA: {time_remaining}")
|
| 585 |
+
|
| 586 |
+
# Rate limiting
|
| 587 |
+
time.sleep(delay)
|
| 588 |
+
|
| 589 |
+
# Final save
|
| 590 |
+
try:
|
| 591 |
+
output_df = pd.DataFrame(output_data)
|
| 592 |
+
output_df.to_csv(output_file, sep='\t', index=False, quoting=csv.QUOTE_ALL)
|
| 593 |
+
|
| 594 |
+
print(f"\nπ GENERATION COMPLETED!")
|
| 595 |
+
print(f"β Successfully processed: {successful_processed}")
|
| 596 |
+
print(f"β Failed: {failed_processed}")
|
| 597 |
+
print(f"π Total entries saved: {len(output_data)}")
|
| 598 |
+
print(f"πΎ Final output saved to: {output_file}")
|
| 599 |
+
print(f"π° Estimated cost: ~${successful_processed * 0.0014:.2f}")
|
| 600 |
+
print(f"π Processed rows {start_row} to {end_row-1} from source file")
|
| 601 |
+
|
| 602 |
+
# Clean up checkpoint file
|
| 603 |
+
if os.path.exists(checkpoint_file):
|
| 604 |
+
os.remove(checkpoint_file)
|
| 605 |
+
print(f"ποΈ Checkpoint file cleaned up")
|
| 606 |
+
|
| 607 |
+
except Exception as e:
|
| 608 |
+
print(f"Error saving final output file: {e}")
|
| 609 |
+
print(f"Your data is still safe in checkpoint: {checkpoint_file}")
|
| 610 |
+
|
| 611 |
+
def main():
|
| 612 |
+
"""
|
| 613 |
+
Main function to run the training data generation with row slicing
|
| 614 |
+
"""
|
| 615 |
+
# Configuration for processing all 30,000 examples
|
| 616 |
+
API_KEY = "sk-6185ef64c68d473d984963356ab0378e" # Replace with your actual API key
|
| 617 |
+
INPUT_FILE = "/home/joneill/pubmed_clustered_data_sciner.tsv" # Your input TSV file
|
| 618 |
+
|
| 619 |
+
# Row slicing configuration - MODIFY THESE FOR YOUR BATCHES
|
| 620 |
+
START_ROW = 0 # Starting row (0-based)
|
| 621 |
+
END_ROW = 30000 # Ending row (None for all rows, or specify number)
|
| 622 |
+
BATCH_NAME = "full" # Used in output filename
|
| 623 |
+
|
| 624 |
+
# You can also run in batches, e.g.:
|
| 625 |
+
# Batch 1: START_ROW = 0, END_ROW = 5000, BATCH_NAME = "batch1"
|
| 626 |
+
# Batch 2: START_ROW = 5000, END_ROW = 10000, BATCH_NAME = "batch2"
|
| 627 |
+
# Batch 3: START_ROW = 10000, END_ROW = 15000, BATCH_NAME = "batch3"
|
| 628 |
+
# etc.
|
| 629 |
+
|
| 630 |
+
OUTPUT_FILE = f"bsg_training_data_{BATCH_NAME}.tsv" # Output file for training data
|
| 631 |
+
DELAY_BETWEEN_CALLS = 1.0 # Seconds between API calls
|
| 632 |
+
SAVE_EVERY = 50 # Save checkpoint every N rows
|
| 633 |
+
DEBUG_FIRST_N = 3 # Print full input/output for first N generations for QC
|
| 634 |
+
|
| 635 |
+
# Initialize generator
|
| 636 |
+
generator = EnhancedDeepSeekTrainingDataGenerator(API_KEY)
|
| 637 |
+
|
| 638 |
+
# Calculate batch info
|
| 639 |
+
total_rows_to_process = END_ROW - START_ROW if END_ROW else "all remaining"
|
| 640 |
+
|
| 641 |
+
# Process data
|
| 642 |
+
print("π Starting Enhanced DeepSeek Training Data Generation")
|
| 643 |
+
print("="*80)
|
| 644 |
+
print(f"π― Processing: {total_rows_to_process} rows (from row {START_ROW} to {END_ROW-1 if END_ROW else 'end'})")
|
| 645 |
+
print(f"π° Estimated cost: ~${(END_ROW - START_ROW if END_ROW else 30000) * 0.0014:.2f}")
|
| 646 |
+
print(f"β±οΈ Estimated time: ~{(END_ROW - START_ROW if END_ROW else 30000) * 1.5 / 3600:.1f} hours")
|
| 647 |
+
print(f"π Debug mode: Will show detailed input/output for first {DEBUG_FIRST_N} generations")
|
| 648 |
+
print(f"πΎ Automatic checkpointing every {SAVE_EVERY} rows")
|
| 649 |
+
print(f"π Auto-resume: Restart script to continue from checkpoint")
|
| 650 |
+
print(f"π§Ή Integrated cleanup: All outputs automatically cleaned of formatting artifacts")
|
| 651 |
+
print("="*80)
|
| 652 |
+
|
| 653 |
+
generator.process_data_file(
|
| 654 |
+
INPUT_FILE, OUTPUT_FILE, DELAY_BETWEEN_CALLS, SAVE_EVERY, DEBUG_FIRST_N,
|
| 655 |
+
START_ROW, END_ROW
|
| 656 |
+
)
|
| 657 |
+
|
| 658 |
+
print("\nπ Training data generation completed!")
|
| 659 |
+
print(f"π Output file: {OUTPUT_FILE}")
|
| 660 |
+
print("β¨ Data is automatically cleaned and ready for training! π§ͺ")
|
| 661 |
+
|
| 662 |
+
if __name__ == "__main__":
|
| 663 |
+
main()
|