Merge branch 'main' into pr/21
Browse files- modeling_jina_embeddings_v4.py +21 -13
modeling_jina_embeddings_v4.py
CHANGED
@@ -416,9 +416,9 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
416 |
)
|
417 |
return task
|
418 |
|
419 |
-
def
|
420 |
self,
|
421 |
-
texts: List[str],
|
422 |
task: Optional[str] = None,
|
423 |
max_length: int = 8192,
|
424 |
batch_size: int = 8,
|
@@ -426,12 +426,12 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
426 |
return_numpy: bool = False,
|
427 |
truncate_dim: Optional[int] = None,
|
428 |
prompt_name: Optional[str] = None,
|
429 |
-
) -> List[torch.Tensor]:
|
430 |
"""
|
431 |
Encodes a list of texts into embeddings.
|
432 |
|
433 |
Args:
|
434 |
-
texts:
|
435 |
max_length: Maximum token length for text processing
|
436 |
batch_size: Number of texts to process at once
|
437 |
vector_type: Type of embedding vector to generate (VectorType.single or VectorType.multi)
|
@@ -440,7 +440,7 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
440 |
prompt_name: Type of text being encoded ('query' or 'passage')
|
441 |
|
442 |
Returns:
|
443 |
-
List of text embeddings as tensors or numpy arrays
|
444 |
"""
|
445 |
prompt_name = prompt_name or "query"
|
446 |
encode_kwargs = self._validate_encoding_params(
|
@@ -455,6 +455,9 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
455 |
prefix=encode_kwargs.pop("prefix"),
|
456 |
)
|
457 |
|
|
|
|
|
|
|
458 |
embeddings = self._process_batches(
|
459 |
data=texts,
|
460 |
processor_fn=processor_fn,
|
@@ -465,7 +468,7 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
465 |
**encode_kwargs,
|
466 |
)
|
467 |
|
468 |
-
return embeddings
|
469 |
|
470 |
def _load_images_if_needed(
|
471 |
self, images: List[Union[str, Image.Image]]
|
@@ -481,21 +484,21 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
481 |
loaded_images.append(image)
|
482 |
return loaded_images
|
483 |
|
484 |
-
def
|
485 |
self,
|
486 |
-
images: List[Union[str, Image.Image]],
|
487 |
task: Optional[str] = None,
|
488 |
batch_size: int = 8,
|
489 |
vector_type: Optional[Union[str, VectorType]] = None,
|
490 |
return_numpy: bool = False,
|
491 |
truncate_dim: Optional[int] = None,
|
492 |
max_pixels: Optional[int] = None,
|
493 |
-
) -> List[torch.Tensor]:
|
494 |
"""
|
495 |
-
Encodes a list of images into
|
496 |
|
497 |
Args:
|
498 |
-
images:
|
499 |
batch_size: Number of images to process at once
|
500 |
vector_type: Type of embedding vector to generate (VectorType.single or VectorType.multi)
|
501 |
return_numpy: Whether to return numpy arrays instead of torch tensors
|
@@ -503,7 +506,7 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
503 |
max_pixels: Maximum number of pixels to process per image
|
504 |
|
505 |
Returns:
|
506 |
-
List of image embeddings as tensors or numpy arrays
|
507 |
"""
|
508 |
if max_pixels:
|
509 |
default_max_pixels = self.processor.image_processor.max_pixels
|
@@ -512,6 +515,11 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
512 |
)
|
513 |
encode_kwargs = self._validate_encoding_params(vector_type, truncate_dim)
|
514 |
task = self._validate_task(task)
|
|
|
|
|
|
|
|
|
|
|
515 |
images = self._load_images_if_needed(images)
|
516 |
embeddings = self._process_batches(
|
517 |
data=images,
|
@@ -526,7 +534,7 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
526 |
if max_pixels:
|
527 |
self.processor.image_processor.max_pixels = default_max_pixels
|
528 |
|
529 |
-
return embeddings
|
530 |
|
531 |
@classmethod
|
532 |
def from_pretrained(
|
|
|
416 |
)
|
417 |
return task
|
418 |
|
419 |
+
def encode_text(
|
420 |
self,
|
421 |
+
texts: Union[str, List[str]],
|
422 |
task: Optional[str] = None,
|
423 |
max_length: int = 8192,
|
424 |
batch_size: int = 8,
|
|
|
426 |
return_numpy: bool = False,
|
427 |
truncate_dim: Optional[int] = None,
|
428 |
prompt_name: Optional[str] = None,
|
429 |
+
) -> Union[List[torch.Tensor], torch.Tensor]:
|
430 |
"""
|
431 |
Encodes a list of texts into embeddings.
|
432 |
|
433 |
Args:
|
434 |
+
texts: text or list of text strings to encode
|
435 |
max_length: Maximum token length for text processing
|
436 |
batch_size: Number of texts to process at once
|
437 |
vector_type: Type of embedding vector to generate (VectorType.single or VectorType.multi)
|
|
|
440 |
prompt_name: Type of text being encoded ('query' or 'passage')
|
441 |
|
442 |
Returns:
|
443 |
+
List of text embeddings as tensors or numpy arrays when encoding multiple texts, or single text embedding as tensor when encoding a single text
|
444 |
"""
|
445 |
prompt_name = prompt_name or "query"
|
446 |
encode_kwargs = self._validate_encoding_params(
|
|
|
455 |
prefix=encode_kwargs.pop("prefix"),
|
456 |
)
|
457 |
|
458 |
+
if isinstance(texts, str):
|
459 |
+
texts = [texts]
|
460 |
+
|
461 |
embeddings = self._process_batches(
|
462 |
data=texts,
|
463 |
processor_fn=processor_fn,
|
|
|
468 |
**encode_kwargs,
|
469 |
)
|
470 |
|
471 |
+
return embeddings if len(texts) > 1 else embeddings[0]
|
472 |
|
473 |
def _load_images_if_needed(
|
474 |
self, images: List[Union[str, Image.Image]]
|
|
|
484 |
loaded_images.append(image)
|
485 |
return loaded_images
|
486 |
|
487 |
+
def encode_image(
|
488 |
self,
|
489 |
+
images: Union[str, Image.Image, List[Union[str, Image.Image]]],
|
490 |
task: Optional[str] = None,
|
491 |
batch_size: int = 8,
|
492 |
vector_type: Optional[Union[str, VectorType]] = None,
|
493 |
return_numpy: bool = False,
|
494 |
truncate_dim: Optional[int] = None,
|
495 |
max_pixels: Optional[int] = None,
|
496 |
+
) -> Union[List[torch.Tensor], torch.Tensor]:
|
497 |
"""
|
498 |
+
Encodes a list of images or a single image into embedding(s).
|
499 |
|
500 |
Args:
|
501 |
+
images: image(s) to encode, can be PIL Image(s), URL(s), or local file path(s)
|
502 |
batch_size: Number of images to process at once
|
503 |
vector_type: Type of embedding vector to generate (VectorType.single or VectorType.multi)
|
504 |
return_numpy: Whether to return numpy arrays instead of torch tensors
|
|
|
506 |
max_pixels: Maximum number of pixels to process per image
|
507 |
|
508 |
Returns:
|
509 |
+
List of image embeddings as tensors or numpy arrays when encoding multiple images, or single image embedding as tensor when encoding a single image
|
510 |
"""
|
511 |
if max_pixels:
|
512 |
default_max_pixels = self.processor.image_processor.max_pixels
|
|
|
515 |
)
|
516 |
encode_kwargs = self._validate_encoding_params(vector_type, truncate_dim)
|
517 |
task = self._validate_task(task)
|
518 |
+
|
519 |
+
# Convert single image to list
|
520 |
+
if isinstance(images, (str, Image.Image)):
|
521 |
+
images = [images]
|
522 |
+
|
523 |
images = self._load_images_if_needed(images)
|
524 |
embeddings = self._process_batches(
|
525 |
data=images,
|
|
|
534 |
if max_pixels:
|
535 |
self.processor.image_processor.max_pixels = default_max_pixels
|
536 |
|
537 |
+
return embeddings if len(images) > 1 else embeddings[0]
|
538 |
|
539 |
@classmethod
|
540 |
def from_pretrained(
|