support-sentence-transformers (#12)
Browse files- feat: sentencetransformer wrapper (13dd61de9e40f2dbdf9a4be82afc311d7e4042eb)
- README.md +12 -0
- config_sentence_transformers.json +13 -0
- custom_st.py +134 -0
- modules.json +9 -0
README.md
CHANGED
@@ -78,3 +78,15 @@ with torch.no_grad():
|
|
78 |
```
|
79 |
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
```
|
79 |
|
80 |
|
81 |
+
Inference via the `SentenceTransformer` library:
|
82 |
+
|
83 |
+
```python
|
84 |
+
from sentence_transformers import SentenceTransformer
|
85 |
+
|
86 |
+
model = SentenceTransformer(
|
87 |
+
'jinaai/jina-embeddings-v4', trust_remote_code=True
|
88 |
+
)
|
89 |
+
|
90 |
+
emb = model.encode(['Khinkali is the best'], task='retrieval', prompt_name='query')
|
91 |
+
|
92 |
+
```
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "4.1.0",
|
4 |
+
"transformers": "4.50.0",
|
5 |
+
"pytorch": "2.6.0"
|
6 |
+
},
|
7 |
+
"prompts":{
|
8 |
+
"query":"Query: ",
|
9 |
+
"passage":"Passage: "
|
10 |
+
},
|
11 |
+
"default_prompt_name": null,
|
12 |
+
"similarity_fn_name": "cosine"
|
13 |
+
}
|
custom_st.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List, Literal, Optional, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from torch import nn
|
6 |
+
from transformers import AutoConfig, AutoProcessor, AutoModel
|
7 |
+
|
8 |
+
|
9 |
+
class Transformer(nn.Module):
|
10 |
+
|
11 |
+
save_in_root: bool = True
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
model_name_or_path: str = 'jinaai/jina-embeddings-v4',
|
16 |
+
max_seq_length: Optional[int] = None,
|
17 |
+
config_args: Optional[Dict[str, Any]] = None,
|
18 |
+
model_args: Optional[Dict[str, Any]] = None,
|
19 |
+
tokenizer_args: Optional[Dict[str, Any]] = None,
|
20 |
+
cache_dir: Optional[str] = None,
|
21 |
+
backend: Literal['torch', 'onnx', 'openvino'] = 'torch',
|
22 |
+
**kwargs,
|
23 |
+
) -> None:
|
24 |
+
super(Transformer, self).__init__()
|
25 |
+
if backend != 'torch':
|
26 |
+
raise ValueError(
|
27 |
+
f'Backend \'{backend}\' is not supported, please use \'torch\' instead'
|
28 |
+
)
|
29 |
+
|
30 |
+
config_kwargs = config_args or {}
|
31 |
+
model_kwargs = model_args or {}
|
32 |
+
tokenizer_kwargs = tokenizer_args or {}
|
33 |
+
|
34 |
+
self.config = AutoConfig.from_pretrained(
|
35 |
+
model_name_or_path, cache_dir=cache_dir, **config_kwargs
|
36 |
+
)
|
37 |
+
self.default_task = model_args.pop('default_task', None)
|
38 |
+
if self.default_task and self.default_task not in self.config.task_names:
|
39 |
+
raise ValueError(f"Invalid task: {self.default_task}. Must be one of {self.config.task_names}.")
|
40 |
+
|
41 |
+
self.model = AutoModel.from_pretrained(
|
42 |
+
model_name_or_path, config=self.config, cache_dir=cache_dir, **model_kwargs
|
43 |
+
)
|
44 |
+
|
45 |
+
self.processor = AutoProcessor.from_pretrained(
|
46 |
+
model_name_or_path,
|
47 |
+
cache_dir=cache_dir,
|
48 |
+
**tokenizer_kwargs,
|
49 |
+
)
|
50 |
+
self.max_seq_length = max_seq_length or 8192
|
51 |
+
|
52 |
+
def tokenize(
|
53 |
+
self, texts: List[Union[str, Image.Image]], padding: Union[str, bool] = True
|
54 |
+
) -> Dict[str, torch.Tensor]:
|
55 |
+
encoding = {}
|
56 |
+
text_indices = []
|
57 |
+
image_indices = []
|
58 |
+
|
59 |
+
for i, text in enumerate(texts):
|
60 |
+
if isinstance(text, str):
|
61 |
+
text_indices.append(i)
|
62 |
+
elif isinstance(text, Image.Image):
|
63 |
+
image_indices.append(i)
|
64 |
+
else:
|
65 |
+
raise ValueError(f'Invalid input type: {type(text)}')
|
66 |
+
|
67 |
+
if text_indices:
|
68 |
+
_texts = [texts[i] for i in text_indices]
|
69 |
+
text_features = self.processor.process_texts(_texts, max_length=self.max_seq_length)
|
70 |
+
for key, value in text_features.items():
|
71 |
+
encoding[f'text_{key}'] = value
|
72 |
+
encoding['text_indices'] = text_indices
|
73 |
+
|
74 |
+
if image_indices:
|
75 |
+
_images = [texts[i] for i in image_indices]
|
76 |
+
img_features = self.processor.process_images(_images)
|
77 |
+
for key, value in img_features.items():
|
78 |
+
encoding[f'image_{key}'] = value
|
79 |
+
encoding['image_indices'] = image_indices
|
80 |
+
|
81 |
+
return encoding
|
82 |
+
|
83 |
+
|
84 |
+
def forward(self, features: Dict[str, torch.Tensor], task: Optional[str] = None) -> Dict[str, torch.Tensor]:
|
85 |
+
self.model.eval()
|
86 |
+
|
87 |
+
if task is None:
|
88 |
+
if self.default_task is None:
|
89 |
+
raise ValueError(
|
90 |
+
"Task must be specified before encoding data. You can set it either during "
|
91 |
+
"loading the model (e.g., model_kwargs={'default_task': 'retrieval'}) or "
|
92 |
+
"pass it as an argument to the encode method (e.g., model.encode(texts, task='retrieval'))."
|
93 |
+
)
|
94 |
+
task = self.default_task
|
95 |
+
else:
|
96 |
+
if task not in self.config.task_names:
|
97 |
+
raise ValueError(f"Invalid task: {task}. Must be one of {self.config.task_names}.")
|
98 |
+
|
99 |
+
device = self.model.device.type
|
100 |
+
all_embeddings = []
|
101 |
+
|
102 |
+
with torch.no_grad():
|
103 |
+
if any(k.startswith('text_') for k in features.keys()):
|
104 |
+
text_batch = {k[len('text_'):]: v.to(device) for k, v in features.items() if k.startswith('text_') and k != 'text_indices'}
|
105 |
+
text_indices = features.get('text_indices', [])
|
106 |
+
|
107 |
+
with torch.autocast(device_type=device):
|
108 |
+
text_embeddings = self.model(**text_batch, task_label=task).single_vec_emb
|
109 |
+
if self.config.truncate_dim:
|
110 |
+
text_embeddings = text_embeddings[:, :self.config.truncate_dim]
|
111 |
+
|
112 |
+
for i, embedding in enumerate(text_embeddings):
|
113 |
+
all_embeddings.append((text_indices[i], embedding))
|
114 |
+
|
115 |
+
if any(k.startswith('image_') for k in features.keys()):
|
116 |
+
image_batch = {k[len('image_'):]: v.to(device) for k, v in features.items() if k.startswith('image_') and k != 'image_indices'}
|
117 |
+
image_indices = features.get('image_indices', [])
|
118 |
+
|
119 |
+
with torch.autocast(device_type=device):
|
120 |
+
img_embeddings = self.model(**image_batch, task_label=task).single_vec_emb
|
121 |
+
if self.config.truncate_dim:
|
122 |
+
img_embeddings = img_embeddings[:, :self.config.truncate_dim]
|
123 |
+
|
124 |
+
for i, embedding in enumerate(img_embeddings):
|
125 |
+
all_embeddings.append((image_indices[i], embedding))
|
126 |
+
|
127 |
+
if not all_embeddings:
|
128 |
+
raise RuntimeError('No embeddings were generated')
|
129 |
+
|
130 |
+
all_embeddings.sort(key=lambda x: x[0]) # sort by original index
|
131 |
+
combined_embeddings = torch.stack([emb for _, emb in all_embeddings])
|
132 |
+
features['sentence_embedding'] = combined_embeddings
|
133 |
+
|
134 |
+
return features
|
modules.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "transformer",
|
5 |
+
"path": "",
|
6 |
+
"type": "custom_st.Transformer",
|
7 |
+
"kwargs": ["task"]
|
8 |
+
}
|
9 |
+
]
|