ppo-LunarLander-v2 / config.json
jlzhou's picture
Upload PPO LunarLander-v2 trained agent
82c0266 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7808011bbb00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7808011bbba0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7808011bbc40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7808011bbce0>", "_build": "<function ActorCriticPolicy._build at 0x7808011bbd80>", "forward": "<function ActorCriticPolicy.forward at 0x7808011bbe20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7808011bbec0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7808011bbf60>", "_predict": "<function ActorCriticPolicy._predict at 0x7808011c0040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7808011c00e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7808011c0180>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7808011c0220>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7808015a0a40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1738744692773689007, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIC6yr2u+YC6fjKWPEvvgjzsr/k7jQZjvQAAgD8AAAAAI3Z2vsWs6T6SRgg+s8XuvpZOR754sm0+AAAAAAAAAADDc3W+b811P1UN2b4lURC/ju7mvgKbPb4AAAAAAAAAAGYEzDxI74u6ZH9DuhQV8rjcHCq6kE9wOQAAgD8AAIA/WsQVPmhNlz+CrqA+5YsRv8U7JD52NEo+AAAAAAAAAABGWzM+YReHvJ0ANjviHZ25N4LnvdvwhboAAIA/AACAPxoCEj7Z/Tk+qJ2lvqYecb6yekW9ZN6RPAAAAAAAAAAAgO5NPVLT9LsutNE8toWYvKGjQb2ujIG9AACAPwAAgD+9joU+/FLHPtaNur1sera+lNXyPYqIpL0AAAAAAAAAALOmZb4gAaI/6sHZvjs1DL+JSp++qbCSvQAAAAAAAAAApiVtPiM0az8lJ+c++hoHvzMjnT7O8n4+AAAAAAAAAAAzDqc939OoP1LkAD8JHuu+JChLPQo8Wz4AAAAAAAAAAPNf6T32MmA/Y+cyPpm+Fr/+fAI+yoXQPQAAAAAAAAAAGu3vPa7zqroCXE0zQTXrsOWwJLve9MuzAACAPwAAgD86Fks+AaTCPvUImL5jE5G+nauKvA9Anr0AAAAAAAAAAAD9GL2PchU5pkbGOAmMUbMQAiG8fpTwtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/IB3Roh6mMAWyUS8eMAXSUR0CYXKxDLKV6dX2UKGgGR0BwyA3DNyHVaAdL8mgIR0CYXUD7ZWaMdX2UKGgGR0Bwed95Qgs9aAdL4mgIR0CYXWwn6VMVdX2UKGgGR0Bw17eqJdjYaAdL1WgIR0CYXaWdVea8dX2UKGgGR0BwRe2rn1WbaAdL3GgIR0CYXfkX1rZbdX2UKGgGR0BwlmvMbFS9aAdL+GgIR0CYXow7kn1GdX2UKGgGR0Bt92HLzPKMaAdL3GgIR0CYX2TpgTh6dX2UKGgGR0Bx8sWM0gr6aAdL92gIR0CYX7a7EpAldX2UKGgGR0Bx4UgDA8B/aAdL9WgIR0CYYCbOeJ53dX2UKGgGR0ByvI9zOopAaAdL2GgIR0CYYDsSkCV9dX2UKGgGR0Bxv81k1/DtaAdL4WgIR0CYYOt/4IrwdX2UKGgGR0ByQjRZ2ZAqaAdN7wJoCEdAmGHFfzBhyHV9lChoBkdAcUS3solUqGgHS99oCEdAmGIG/WUbDXV9lChoBkdAcdtEvCdjG2gHS8ZoCEdAmGNEL6UJOXV9lChoBkdAct0yT6i0wGgHS9toCEdAmGOAMUh3aHV9lChoBkdAcHpoWpIczmgHS/BoCEdAmGOI8U21lXV9lChoBkdAcNFfGMn7YWgHS9toCEdAmGOolyBClnV9lChoBkdAcYG42S+xnmgHTTQBaAhHQJhkCcy31Bd1fZQoaAZHQHG9E3n6l+FoB0vTaAhHQJhkbojfNzN1fZQoaAZHQHJ2yidrftRoB0v+aAhHQJhlB5hScb11fZQoaAZHQG9Kqc3EQ5FoB0vbaAhHQJhlX7XQMQV1fZQoaAZHQHIh6OcUdrBoB0vhaAhHQJhnHx8UmD11fZQoaAZHQHDS/CuU2UBoB00DAWgIR0CYZ0I6Kcd6dX2UKGgGR0BxUtfTkQwsaAdNEwFoCEdAmGfNv0h/zHV9lChoBkdAcCTuMMqjJ2gHS9FoCEdAmGfTOHFglXV9lChoBkdAcC29alk6LmgHS+FoCEdAmGgDo6jnFHV9lChoBkdAcPbIikfs/2gHS9doCEdAmGk6AWi1zHV9lChoBkdAbxCydnTRY2gHS9JoCEdAmGlP/zasZHV9lChoBkdAYvBKLbYbsGgHTegDaAhHQJhpoxagVXV1fZQoaAZHQG0u6Mzdk8RoB0vnaAhHQJhp6iKziS91fZQoaAZHQHKZ91dPci5oB0vPaAhHQJhqJl18stl1fZQoaAZHQHG3altTDO1oB0v4aAhHQJhqeJ9Aood1fZQoaAZHQHF1I/Vy3kRoB0vzaAhHQJhqrwazeGh1fZQoaAZHQHDlpIg/1QJoB0vfaAhHQJhre1qnFYN1fZQoaAZHQHI3Yb0e2eBoB00FAWgIR0CYbBb1h9b5dX2UKGgGR0Bx0i0w8GLUaAdL0WgIR0CYbLjASFoMdX2UKGgGR0BvSZzNliBoaAdL1mgIR0CYbPlC1JDmdX2UKGgGR0Bk23HvMKTjaAdN6ANoCEdAmG0SvC/Gl3V9lChoBkdAcOrUFB6a9mgHS9VoCEdAmG1qmKqGUXV9lChoBkdAcB2VawD/2mgHS9toCEdAmG29n003wXV9lChoBkdAcgk3Roh6jWgHS/poCEdAmG5ePmxMWXV9lChoBkdAcI0JKJ2t+2gHS+FoCEdAmG8YS13MZHV9lChoBkdAcT1GmDUVjGgHS+1oCEdAmG9YXTEzf3V9lChoBkdAcTAv2GqPwWgHS+RoCEdAmG93vlU6xXV9lChoBkdAbcl0eU6gd2gHS9doCEdAmHAzABT4tnV9lChoBkdAcdWuYhMaj2gHS/doCEdAmHB9pyp71XV9lChoBkdAcU3I8yN4q2gHS/FoCEdAmHCkO7QLNXV9lChoBkdAbVrQKrq+rWgHS9doCEdAmHEMNhE0BXV9lChoBkdActuh37k4m2gHS91oCEdAmHKTq8lHBnV9lChoBkdAb8wKjSG8EmgHS8hoCEdAmHLIEbHZK3V9lChoBkdAcA8Q66reZWgHS9loCEdAmHLd8Aq/d3V9lChoBkdAcLLsN2C/XWgHS8poCEdAmHPu3DvVmXV9lChoBkdAcHWhH9WIXWgHS/hoCEdAmHSbLQokRnV9lChoBkdAcdk/Yao/A2gHTRkBaAhHQJh0qMtK7I11fZQoaAZHQHC/AdjoZAJoB0vZaAhHQJh1l5hScb11fZQoaAZHQHG0hO58Sf1oB01kAWgIR0CYdeWqLjxTdX2UKGgGR0BxxF7AtWdVaAdNEgFoCEdAmHb0Od5IH3V9lChoBkdAcCmDtw71ZmgHS99oCEdAmHcLCiyprHV9lChoBkdAcJ93NLUTc2gHS/FoCEdAmHdEal1r7HV9lChoBkdAcMbBVMmF8GgHS+toCEdAmHeZAMUh3nV9lChoBkdAb95+Q2dd3WgHS/VoCEdAmHhcANoak3V9lChoBkdAcaP8g6ltTGgHS9NoCEdAmHkhNyo4uXV9lChoBkdAb7p93r2QGWgHS9loCEdAmHrsGs3hoHV9lChoBkdAUu7StvGZNWgHS8ZoCEdAmHse2VmjCnV9lChoBkdAcgMVJcxCY2gHTQ8BaAhHQJh7sjKPn0V1fZQoaAZHQHLSRqGlANZoB0vnaAhHQJh8fNyHVPN1fZQoaAZHQGMaHW8RL9NoB03oA2gIR0CYfIgSOBDpdX2UKGgGR0BCOGqo60Y1aAdLymgIR0CYfQjebd8BdX2UKGgGR0BwQvWI42jxaAdL6GgIR0CYfdIkqto0dX2UKGgGR0BxzIrvsqrjaAdL22gIR0CYfwIfKZDzdX2UKGgGR0BuWmRkmQbNaAdL42gIR0CYf3C8vmHQdX2UKGgGR0Bw54F4cFQmaAdL5GgIR0CYgEIjGDL9dX2UKGgGR0ByLtg7YChfaAdNjAFoCEdAmIBngHeJpHV9lChoBkdAciim0mdAgWgHS/RoCEdAmIB4FA3T/nV9lChoBkdAcN6Y1He7+WgHS9RoCEdAmICkDZDiO3V9lChoBkdAcmkGy5Zr6GgHS9RoCEdAmIHFpoK2KHV9lChoBkdAcu0rCWNWEWgHS81oCEdAmIN/3nIQv3V9lChoBkdAcvkh73PAwmgHS9toCEdAmIRaJ/G2kXV9lChoBkdAcTCUG3WnTGgHS8ZoCEdAmITb6P8ye3V9lChoBkdAbbeQwsXizmgHS+JoCEdAmIYDK5kK/nV9lChoBkdAcRApw0fozWgHTQEBaAhHQJiGrV2A5Jd1fZQoaAZHQHFuYQBgeBBoB0vvaAhHQJiHaVAzHjp1fZQoaAZHQHEsoVZcLShoB0vJaAhHQJiIBn13+uN1fZQoaAZHQHEoyOzY289oB0vyaAhHQJiIh+RYA811fZQoaAZHQHHg0Cq6vq1oB0vUaAhHQJiJDkRzzVd1fZQoaAZHQG3L+AuqWC5oB0vRaAhHQJiKQxqO9391fZQoaAZHQHDAKrR0EHNoB0vWaAhHQJiKRD+irT91fZQoaAZHQHKyOtnwob5oB0vmaAhHQJiLNOvdM0x1fZQoaAZHQG3rAbQ1JlJoB0vWaAhHQJiLpL39JjF1fZQoaAZHQGBD/hddE9doB03oA2gIR0CYjJzGgi/xdX2UKGgGR0BwtATEit7saAdL2mgIR0CYjUdLg4wRdX2UKGgGR0ByTO8lHBk7aAdLz2gIR0CYjfn0kGA1dX2UKGgGR0ByvrKxLTQWaAdLwWgIR0CYj2r9ETg3dX2UKGgGR0BxfcaZQYUGaAdNEAFoCEdAmI/px//ecnV9lChoBkdAccVlcQiA2GgHS/ZoCEdAmJB2thd+onV9lChoBkdAcvYQ2/BWP2gHTYkBaAhHQJiRG9FnZkF1fZQoaAZHQHLSVTFVDKJoB0vRaAhHQJiRTOVxCIF1fZQoaAZHQHCv3h0hePdoB00FAWgIR0CYkXB/I8yOdX2UKGgGR0Bvc4a72+PBaAdL4mgIR0CYkYdC3PRidX2UKGgGR0ByJ1xXGOuJaAdNAQFoCEdAmJItTgl4T3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}