|
import torch |
|
|
|
def generate(model, input_ids, generation_config, left_padding=None, **kwargs): |
|
generation_config = generation_config or model.generation_config |
|
cur_length = input_ids.shape[1] |
|
max_length = generation_config.max_length or cur_length + generation_config.max_new_tokens |
|
|
|
|
|
if left_padding is not None: |
|
if not isinstance(left_padding, int) or left_padding < 0: |
|
raise ValueError(f"left_padding must be an integer larger than 0, but is {left_padding}") |
|
|
|
pad_token = kwargs.pop("pad_token", None) or generation_config.pad_token_id or model.config.pad_token_id |
|
if pad_token is None: |
|
raise ValueError("pad_token is not defined") |
|
batch_size = input_ids.shape[0] |
|
pad_tensor = torch.full(size=(batch_size, left_padding), fill_value=pad_token).to(input_ids.device) |
|
input_ids = torch.cat((pad_tensor, input_ids), dim=1) |
|
cur_length = input_ids.shape[1] |
|
|
|
|
|
while cur_length < max_length: |
|
logits = model(input_ids).logits |
|
next_token_logits = logits[:, -1, :] |
|
next_tokens = torch.argmax(next_token_logits, dim=-1) |
|
input_ids = torch.cat((input_ids, next_tokens[:, None]), dim=-1) |
|
cur_length += 1 |
|
|
|
return input_ids |