add AIBOM
Browse filesDear joeddav,
We are a group of researchers investigating the usefulness of sharing AIBOMs (Artificial Intelligence Bill of Materials) to document AI models and to improve transparency in AI model supply chains. AIBOMs are machine-readable, structured inventories of components—such as datasets and models—used in the development of AI-powered systems.
We would like to emphasize that we have no financial or competing interests related to AIBOMs. Our sole interest is to advance the collective understanding of AIBOMs within both academia and industry. As part of this effort, we are contributing to randomly selected open and popular models on Hugging Face (like yours) and are happy to offer support to you and the maintainers of your model if needed.
Based on your model card (and some configuration information available in Hugging Face), we generated the AIBOM according to the CyclonDX (v1.6) standard (see https://cyclonedx.org/docs/1.6/json/). This AIBOM is generated as a JSON file by using the following open-source supporting tool: https://github.com/MSR4SBOM/ALOHA (technical details are available in the research paper: https://github.com/MSR4SBOM/ALOHA/blob/main/ALOHA.pdf). This tool is freely available online and can be downloaded and used at your own convenience. We are also happy to assist you directly if you need help generating or reviewing an AIBOM for your model.
The JSON file in this pull request is your AIBOM (see https://github.com/MSR4SBOM/ALOHA/blob/main/documentation.json for details on its structure). Clearly, the submitted AIBOM matches the current model information, yet it can be easily regenerated when the model evolves, using the aforementioned AIBOM generation tool.
We understand that initiatives like ours may raise questions, especially in open communities like Hugging Face. Therefore, we would like to further remark that our interest in AIBOMs is only to enhance the body of knowledge on AIBOMs and to make this easy and low-friction for maintainers of AI models and developers of AI-powered systems.
We open this pull request containing an AIBOM of your AI model, and hope it will be considered. We would also like to hear your opinion on the usefulness (or not) of AIBOM by answering a 3-minute anonymous survey: https://forms.gle/WGffSQD5dLoWttEe7.
Thanks in advance, and regards,
Riccardo D’Avino, Fatima Ahmed, Sabato Nocera, Simone Romano, Giuseppe Scanniello (University of Salerno, Italy),
Massimiliano Di Penta (University of Sannio, Italy),
The MSR4SBOM team
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bomFormat": "CycloneDX",
|
3 |
+
"specVersion": "1.6",
|
4 |
+
"serialNumber": "urn:uuid:3883f7d9-193c-4dad-b9e2-3b060c4f6e7b",
|
5 |
+
"version": 1,
|
6 |
+
"metadata": {
|
7 |
+
"timestamp": "2025-07-14T14:14:15.909931+00:00",
|
8 |
+
"component": {
|
9 |
+
"type": "machine-learning-model",
|
10 |
+
"bom-ref": "joeddav/xlm-roberta-large-xnli-f3d267dc-431a-5f8e-8f3e-669dfa0a0cf9",
|
11 |
+
"name": "joeddav/xlm-roberta-large-xnli",
|
12 |
+
"externalReferences": [
|
13 |
+
{
|
14 |
+
"url": "https://huggingface.co/joeddav/xlm-roberta-large-xnli",
|
15 |
+
"type": "documentation"
|
16 |
+
}
|
17 |
+
],
|
18 |
+
"modelCard": {
|
19 |
+
"modelParameters": {
|
20 |
+
"task": "zero-shot-classification",
|
21 |
+
"architectureFamily": "xlm-roberta",
|
22 |
+
"modelArchitecture": "XLMRobertaForSequenceClassification",
|
23 |
+
"datasets": [
|
24 |
+
{
|
25 |
+
"ref": "multi_nli-3f66ff16-a557-5dab-8458-0d3efcbec3da"
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"ref": "xnli-cc3d339b-005b-5c6e-ab37-dd833b7d1341"
|
29 |
+
}
|
30 |
+
]
|
31 |
+
},
|
32 |
+
"properties": [
|
33 |
+
{
|
34 |
+
"name": "library_name",
|
35 |
+
"value": "transformers"
|
36 |
+
}
|
37 |
+
]
|
38 |
+
},
|
39 |
+
"authors": [
|
40 |
+
{
|
41 |
+
"name": "joeddav"
|
42 |
+
}
|
43 |
+
],
|
44 |
+
"licenses": [
|
45 |
+
{
|
46 |
+
"license": {
|
47 |
+
"id": "MIT",
|
48 |
+
"url": "https://spdx.org/licenses/MIT.html"
|
49 |
+
}
|
50 |
+
}
|
51 |
+
],
|
52 |
+
"description": "This model takes [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) and fine-tunes it on a combination of NLI data in 15 languages. It is intended to be used for zero-shot text classification, such as with the Hugging Face [ZeroShotClassificationPipeline](https://huggingface.co/transformers/master/main_classes/pipelines.html#transformers.ZeroShotClassificationPipeline).",
|
53 |
+
"tags": [
|
54 |
+
"transformers",
|
55 |
+
"pytorch",
|
56 |
+
"tf",
|
57 |
+
"safetensors",
|
58 |
+
"xlm-roberta",
|
59 |
+
"text-classification",
|
60 |
+
"tensorflow",
|
61 |
+
"zero-shot-classification",
|
62 |
+
"multilingual",
|
63 |
+
"en",
|
64 |
+
"fr",
|
65 |
+
"es",
|
66 |
+
"de",
|
67 |
+
"el",
|
68 |
+
"bg",
|
69 |
+
"ru",
|
70 |
+
"tr",
|
71 |
+
"ar",
|
72 |
+
"vi",
|
73 |
+
"th",
|
74 |
+
"zh",
|
75 |
+
"hi",
|
76 |
+
"sw",
|
77 |
+
"ur",
|
78 |
+
"dataset:multi_nli",
|
79 |
+
"dataset:xnli",
|
80 |
+
"arxiv:1911.02116",
|
81 |
+
"license:mit",
|
82 |
+
"autotrain_compatible",
|
83 |
+
"endpoints_compatible",
|
84 |
+
"region:us"
|
85 |
+
]
|
86 |
+
}
|
87 |
+
},
|
88 |
+
"components": [
|
89 |
+
{
|
90 |
+
"type": "data",
|
91 |
+
"bom-ref": "multi_nli-3f66ff16-a557-5dab-8458-0d3efcbec3da",
|
92 |
+
"name": "multi_nli",
|
93 |
+
"data": [
|
94 |
+
{
|
95 |
+
"type": "dataset",
|
96 |
+
"bom-ref": "multi_nli-3f66ff16-a557-5dab-8458-0d3efcbec3da",
|
97 |
+
"name": "multi_nli",
|
98 |
+
"contents": {
|
99 |
+
"url": "https://huggingface.co/datasets/multi_nli",
|
100 |
+
"properties": [
|
101 |
+
{
|
102 |
+
"name": "task_categories",
|
103 |
+
"value": "text-classification"
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"name": "task_ids",
|
107 |
+
"value": "natural-language-inference, multi-input-text-classification"
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"name": "language",
|
111 |
+
"value": "en"
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"name": "size_categories",
|
115 |
+
"value": "100K<n<1M"
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"name": "annotations_creators",
|
119 |
+
"value": "crowdsourced"
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"name": "language_creators",
|
123 |
+
"value": "crowdsourced, found"
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"name": "pretty_name",
|
127 |
+
"value": "Multi-Genre Natural Language Inference"
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"name": "source_datasets",
|
131 |
+
"value": "original"
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"name": "paperswithcode_id",
|
135 |
+
"value": "multinli"
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"name": "configs",
|
139 |
+
"value": "Name of the dataset subset: default {\"split\": \"train\", \"path\": \"data/train-*\"}, {\"split\": \"validation_matched\", \"path\": \"data/validation_matched-*\"}, {\"split\": \"validation_mismatched\", \"path\": \"data/validation_mismatched-*\"}"
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"name": "license",
|
143 |
+
"value": "cc-by-3.0, cc-by-sa-3.0, mit, other"
|
144 |
+
}
|
145 |
+
]
|
146 |
+
},
|
147 |
+
"governance": {
|
148 |
+
"owners": [
|
149 |
+
{
|
150 |
+
"organization": {
|
151 |
+
"name": "nyu-mll",
|
152 |
+
"url": "https://huggingface.co/nyu-mll"
|
153 |
+
}
|
154 |
+
}
|
155 |
+
]
|
156 |
+
},
|
157 |
+
"description": "\n\t\n\t\t\n\t\tDataset Card for Multi-Genre Natural Language Inference (MultiNLI)\n\t\n\n\n\t\n\t\t\n\t\tDataset Summary\n\t\n\nThe Multi-Genre Natural Language Inference (MultiNLI) corpus is a\ncrowd-sourced collection of 433k sentence pairs annotated with textual\nentailment information. The corpus is modeled on the SNLI corpus, but differs in\nthat covers a range of genres of spoken and written text, and supports a\ndistinctive cross-genre generalization evaluation. The corpus served as the\nbasis for the shared task\u2026 See the full description on the dataset page: https://huggingface.co/datasets/nyu-mll/multi_nli."
|
158 |
+
}
|
159 |
+
]
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"type": "data",
|
163 |
+
"bom-ref": "xnli-cc3d339b-005b-5c6e-ab37-dd833b7d1341",
|
164 |
+
"name": "xnli",
|
165 |
+
"data": [
|
166 |
+
{
|
167 |
+
"type": "dataset",
|
168 |
+
"bom-ref": "xnli-cc3d339b-005b-5c6e-ab37-dd833b7d1341",
|
169 |
+
"name": "xnli",
|
170 |
+
"contents": {
|
171 |
+
"url": "https://huggingface.co/datasets/xnli",
|
172 |
+
"properties": [
|
173 |
+
{
|
174 |
+
"name": "language",
|
175 |
+
"value": "ar, bg, de, el, en, es, fr, hi, ru, sw, th, tr, ur, vi, zh"
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"name": "pretty_name",
|
179 |
+
"value": "Cross-lingual Natural Language Inference"
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"name": "paperswithcode_id",
|
183 |
+
"value": "xnli"
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"name": "configs",
|
187 |
+
"value": "Name of the dataset subset: all_languages {\"split\": \"train\", \"path\": \"all_languages/train-*\"}, {\"split\": \"test\", \"path\": \"all_languages/test-*\"}, {\"split\": \"validation\", \"path\": \"all_languages/validation-*\"}"
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"name": "configs",
|
191 |
+
"value": "Name of the dataset subset: ar {\"split\": \"train\", \"path\": \"ar/train-*\"}, {\"split\": \"test\", \"path\": \"ar/test-*\"}, {\"split\": \"validation\", \"path\": \"ar/validation-*\"}"
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"name": "configs",
|
195 |
+
"value": "Name of the dataset subset: bg {\"split\": \"train\", \"path\": \"bg/train-*\"}, {\"split\": \"test\", \"path\": \"bg/test-*\"}, {\"split\": \"validation\", \"path\": \"bg/validation-*\"}"
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"name": "configs",
|
199 |
+
"value": "Name of the dataset subset: de {\"split\": \"train\", \"path\": \"de/train-*\"}, {\"split\": \"test\", \"path\": \"de/test-*\"}, {\"split\": \"validation\", \"path\": \"de/validation-*\"}"
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"name": "configs",
|
203 |
+
"value": "Name of the dataset subset: el {\"split\": \"train\", \"path\": \"el/train-*\"}, {\"split\": \"test\", \"path\": \"el/test-*\"}, {\"split\": \"validation\", \"path\": \"el/validation-*\"}"
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"name": "configs",
|
207 |
+
"value": "Name of the dataset subset: en {\"split\": \"train\", \"path\": \"en/train-*\"}, {\"split\": \"test\", \"path\": \"en/test-*\"}, {\"split\": \"validation\", \"path\": \"en/validation-*\"}"
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"name": "configs",
|
211 |
+
"value": "Name of the dataset subset: es {\"split\": \"train\", \"path\": \"es/train-*\"}, {\"split\": \"test\", \"path\": \"es/test-*\"}, {\"split\": \"validation\", \"path\": \"es/validation-*\"}"
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"name": "configs",
|
215 |
+
"value": "Name of the dataset subset: fr {\"split\": \"train\", \"path\": \"fr/train-*\"}, {\"split\": \"test\", \"path\": \"fr/test-*\"}, {\"split\": \"validation\", \"path\": \"fr/validation-*\"}"
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"name": "configs",
|
219 |
+
"value": "Name of the dataset subset: hi {\"split\": \"train\", \"path\": \"hi/train-*\"}, {\"split\": \"test\", \"path\": \"hi/test-*\"}, {\"split\": \"validation\", \"path\": \"hi/validation-*\"}"
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"name": "configs",
|
223 |
+
"value": "Name of the dataset subset: ru {\"split\": \"train\", \"path\": \"ru/train-*\"}, {\"split\": \"test\", \"path\": \"ru/test-*\"}, {\"split\": \"validation\", \"path\": \"ru/validation-*\"}"
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"name": "configs",
|
227 |
+
"value": "Name of the dataset subset: sw {\"split\": \"train\", \"path\": \"sw/train-*\"}, {\"split\": \"test\", \"path\": \"sw/test-*\"}, {\"split\": \"validation\", \"path\": \"sw/validation-*\"}"
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"name": "configs",
|
231 |
+
"value": "Name of the dataset subset: th {\"split\": \"train\", \"path\": \"th/train-*\"}, {\"split\": \"test\", \"path\": \"th/test-*\"}, {\"split\": \"validation\", \"path\": \"th/validation-*\"}"
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"name": "configs",
|
235 |
+
"value": "Name of the dataset subset: tr {\"split\": \"train\", \"path\": \"tr/train-*\"}, {\"split\": \"test\", \"path\": \"tr/test-*\"}, {\"split\": \"validation\", \"path\": \"tr/validation-*\"}"
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"name": "configs",
|
239 |
+
"value": "Name of the dataset subset: ur {\"split\": \"train\", \"path\": \"ur/train-*\"}, {\"split\": \"test\", \"path\": \"ur/test-*\"}, {\"split\": \"validation\", \"path\": \"ur/validation-*\"}"
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"name": "configs",
|
243 |
+
"value": "Name of the dataset subset: vi {\"split\": \"train\", \"path\": \"vi/train-*\"}, {\"split\": \"test\", \"path\": \"vi/test-*\"}, {\"split\": \"validation\", \"path\": \"vi/validation-*\"}"
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"name": "configs",
|
247 |
+
"value": "Name of the dataset subset: zh {\"split\": \"train\", \"path\": \"zh/train-*\"}, {\"split\": \"test\", \"path\": \"zh/test-*\"}, {\"split\": \"validation\", \"path\": \"zh/validation-*\"}"
|
248 |
+
}
|
249 |
+
]
|
250 |
+
},
|
251 |
+
"governance": {
|
252 |
+
"owners": [
|
253 |
+
{
|
254 |
+
"organization": {
|
255 |
+
"name": "facebook",
|
256 |
+
"url": "https://huggingface.co/facebook"
|
257 |
+
}
|
258 |
+
}
|
259 |
+
]
|
260 |
+
},
|
261 |
+
"description": "\n\t\n\t\t\n\t\tDataset Card for \"xnli\"\n\t\n\n\n\t\n\t\t\n\t\tDataset Summary\n\t\n\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n\n\t\n\t\t\n\t\tSupported Tasks and Leaderboards\n\t\n\nMore Information Needed\n\n\t\n\t\t\n\t\tLanguages\n\t\n\nMore Information\u2026 See the full description on the dataset page: https://huggingface.co/datasets/facebook/xnli."
|
262 |
+
}
|
263 |
+
]
|
264 |
+
}
|
265 |
+
]
|
266 |
+
}
|