johnnyboycurtis commited on
Commit
18b6fa6
·
verified ·
1 Parent(s): 9812871

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
Information-Retrieval_evaluation_NanoHotpotQA_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
+ -1,-1,0.52,0.72,0.78,0.84,0.52,0.26,0.29333333333333333,0.44,0.19199999999999995,0.48,0.11799999999999997,0.59,0.6260238095238094,0.5100561926686322,0.42411880082621667
Information-Retrieval_evaluation_NanoMSMARCO_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
+ -1,-1,0.1,0.3,0.36,0.5,0.1,0.1,0.09999999999999998,0.3,0.07200000000000001,0.36,0.05000000000000001,0.5,0.21799206349206346,0.28485485704257546,0.2376543689656436
Information-Retrieval_evaluation_NanoNQ_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
+ -1,-1,0.16,0.32,0.44,0.6,0.16,0.14,0.10666666666666666,0.29,0.08800000000000001,0.4,0.06000000000000001,0.55,0.27757936507936504,0.3275898550868451,0.26400137799924467
NanoBEIR_evaluation_mean_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
+ -1,-1,0.26,0.4466666666666666,0.5266666666666667,0.6466666666666666,0.26,0.16666666666666666,0.16666666666666666,0.3433333333333333,0.11733333333333333,0.41333333333333333,0.076,0.5466666666666667,0.3738650793650793,0.3741669682660176,0.3085915159303683
README.md ADDED
@@ -0,0 +1,939 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - dense
10
+ - generated_from_trainer
11
+ - dataset_size:20420717
12
+ - loss:CachedMultipleNegativesRankingLoss
13
+ - loss:CachedMultipleNegativesSymmetricRankingLoss
14
+ widget:
15
+ - source_sentence: what is the difference between body spray and eau de toilette?
16
+ sentences:
17
+ - Eau de Toilette (EDT) is ideal for those that may find the EDP or Perfume oil
18
+ too strong, with 7%-12% fragrance concentration in alcohol. Gives four to five
19
+ hours wear. Body Mist is a light refreshing fragrance perfect for layering with
20
+ other products from the same family. 3-5% fragrance concentration in alcohol.
21
+ - To join the Army as an enlisted member you must usually take the Armed Services
22
+ Vocational Aptitude Battery (ASVAB) test and get a good score. The maximum ASVAB
23
+ score is 99. For enlistment into the Army you must get a minimum ASVAB score of
24
+ 31.
25
+ - 'Points needed to redeem rewards with Redbox Perks: 1,500 points = FREE 1-night
26
+ DVD rental. 1,750 points = FREE Blu-ray rental. 2,500 points = FREE 1-night Game
27
+ rental.'
28
+ - source_sentence: hurtles definition
29
+ sentences:
30
+ - BCIP-NBT Solution is a 5-bromo, 4-chloro, 3-indolylphosphate (BCIP)/Nitro-Blue
31
+ Tetrazolium (NBT) substrate, used for the localization of alkaline phosphatase
32
+ (AP) labeled probes on western, northern, southern and dot blots.
33
+ - 'Definition of hurtle for English Language Learners. : 1 to move or fall with
34
+ great speed and force. : 2 to cause (something or someone) to move or go with
35
+ great speed and force.'
36
+ - 10 most extreme places on Earth. A dongle is a piece of hardware that attaches
37
+ to a computer and allows a piece of secured software to run. The device does not
38
+ contain the software in its entirety, but rather is an electronic key that unlocks
39
+ the program on a computer.0 most extreme places on Earth. A dongle is a piece
40
+ of hardware that attaches to a computer and allows a piece of secured software
41
+ to run. The device does not contain the software in its entirety, but rather is
42
+ an electronic key that unlocks the program on a computer.
43
+ - source_sentence: what is nbt solution used for
44
+ sentences:
45
+ - Nembutal Sodium Solution [edit]. Nembutal Sodium Solution (pentobarbital sodium
46
+ injection) is a sterile solution for intravenous or intramuscular injection. Each
47
+ mL contains pentobarbital sodium 50 mg, in a vehicle of propylene glycol, 40%,
48
+ alcohol, 10% and water for injection, to volume.
49
+ - BCIP-NBT Solution is a 5-bromo, 4-chloro, 3-indolylphosphate (BCIP)/Nitro-Blue
50
+ Tetrazolium (NBT) substrate, used for the localization of alkaline phosphatase
51
+ (AP) labeled probes on western, northern, southern and dot blots.
52
+ - 'Definition of hurtle for English Language Learners. : 1 to move or fall with
53
+ great speed and force. : 2 to cause (something or someone) to move or go with
54
+ great speed and force.'
55
+ - source_sentence: definition doula
56
+ sentences:
57
+ - "The Trivago Guy, aka Tim Williams, the Houston-born actor and Berlin resident\
58
+ \ who stars in hotel-search site Trivagoâ\x80\x99s TV commercials in North America,\
59
+ \ says heâ\x80\x99s perplexed and amused about all the attention heâ\x80\x99s\
60
+ \ getting from the TV spots, and heâ\x80\x99s enjoying every minute of it. â\x80\
61
+ \x9CBring it on, I love it,â\x80\x9D Williams says."
62
+ - Average Length of Doula Study. Typically, a birth doula needs to finish 7 to 12
63
+ hours of childbirth education, 16 hours of birth doula training, and attend at
64
+ two to five births. A postpartum doula usually attends about 27 hours of postpartum
65
+ doula education and assists two or more women with postpartum support.
66
+ - Doula. A doula, is a nonmedical person who assists a woman before, during, or
67
+ after childbirth, as well as her partner and/or family by providing information,
68
+ physical assistance, and emotional support.
69
+ - source_sentence: who is catch me if you can based on
70
+ sentences:
71
+ - Catch Me If You Can Catch Me If You Can is a 2002 American biographical crime
72
+ film directed and produced by Steven Spielberg from a screenplay by Jeff Nathanson.
73
+ The film is based on the life of Frank Abagnale, who, before his 19th birthday,
74
+ successfully performed cons worth millions of dollars by posing as a Pan American
75
+ World Airways pilot, a Georgia doctor and a Louisiana parish prosecutor. His primary
76
+ crime was check fraud; he became so experienced that the FBI eventually turned
77
+ to him for help in catching other checking forgers. The film stars Leonardo DiCaprio
78
+ and Tom Hanks, with Christopher Walken, Martin Sheen, and Nathalie Baye in supporting
79
+ roles.
80
+ - Ghost Rider (Johnny Blaze) Centurious appeared, stealing Blaze's soul into his
81
+ soul crystal. Zarathos, weakened from the ordeal used the last of his strength
82
+ to shatter the crystal, freeing Blaze's soul and many others contained inside
83
+ of the crystal as well. Before the crystal was reformed, Centurious was absorbed
84
+ into the crystal. Zarathos followed him into the crystal, freeing Blaze from the
85
+ curse, restoring his soul, and ending his time as the Ghost Rider.[31]
86
+ - Colonial Brazil In contrast to the neighboring Spanish possessions, which had
87
+ several viceroyalties with jurisdiction initially over New Spain (Mexico) and
88
+ Peru, and in the eighteenth century expanded to viceroyalties of Rio de la Plata
89
+ and New Granada, the Portuguese colony of Brazil was settled mainly in the coastal
90
+ area by the Portuguese and a large black slave population working sugar plantations
91
+ and mines. The boom and bust economic cycles were linked to export products. Brazil's
92
+ sugar age, with the development of plantation slavery, merchants serving as middle
93
+ men between production sites, Brazilian ports, and Europe was undermined by the
94
+ growth of the sugar industry in the Caribbean on islands that European powers
95
+ seized from Spain. Gold and diamonds were discovered and mined in southern Brazil
96
+ through the end of the colonial era. Brazilian cities were largely port cities
97
+ and the colonial administrative capital was moved several times in response to
98
+ the rise and fall of export products' importance. Unlike Spanish America that
99
+ fragmented in many republics, Brazil remained as a single administrative unit
100
+ with a monarch, giving rise to the largest country in Latin America. Like Spanish
101
+ America with European Spanish, Brazil had linguistic integrity of Portuguese.
102
+ Both Spanish America and Brazil were Roman Catholic.
103
+ datasets:
104
+ - sentence-transformers/msmarco-msmarco-distilbert-base-v3
105
+ - sentence-transformers/gooaq
106
+ - sentence-transformers/natural-questions
107
+ pipeline_tag: sentence-similarity
108
+ library_name: sentence-transformers
109
+ metrics:
110
+ - cosine_accuracy@1
111
+ - cosine_accuracy@3
112
+ - cosine_accuracy@5
113
+ - cosine_accuracy@10
114
+ - cosine_precision@1
115
+ - cosine_precision@3
116
+ - cosine_precision@5
117
+ - cosine_precision@10
118
+ - cosine_recall@1
119
+ - cosine_recall@3
120
+ - cosine_recall@5
121
+ - cosine_recall@10
122
+ - cosine_ndcg@10
123
+ - cosine_mrr@10
124
+ - cosine_map@100
125
+ model-index:
126
+ - name: ModernBERT-small-1.5-Retrieval-BEIR-Tuned
127
+ results:
128
+ - task:
129
+ type: information-retrieval
130
+ name: Information Retrieval
131
+ dataset:
132
+ name: NanoMSMARCO
133
+ type: NanoMSMARCO
134
+ metrics:
135
+ - type: cosine_accuracy@1
136
+ value: 0.08
137
+ name: Cosine Accuracy@1
138
+ - type: cosine_accuracy@3
139
+ value: 0.3
140
+ name: Cosine Accuracy@3
141
+ - type: cosine_accuracy@5
142
+ value: 0.36
143
+ name: Cosine Accuracy@5
144
+ - type: cosine_accuracy@10
145
+ value: 0.5
146
+ name: Cosine Accuracy@10
147
+ - type: cosine_precision@1
148
+ value: 0.08
149
+ name: Cosine Precision@1
150
+ - type: cosine_precision@3
151
+ value: 0.09999999999999998
152
+ name: Cosine Precision@3
153
+ - type: cosine_precision@5
154
+ value: 0.07200000000000001
155
+ name: Cosine Precision@5
156
+ - type: cosine_precision@10
157
+ value: 0.05000000000000001
158
+ name: Cosine Precision@10
159
+ - type: cosine_recall@1
160
+ value: 0.08
161
+ name: Cosine Recall@1
162
+ - type: cosine_recall@3
163
+ value: 0.3
164
+ name: Cosine Recall@3
165
+ - type: cosine_recall@5
166
+ value: 0.36
167
+ name: Cosine Recall@5
168
+ - type: cosine_recall@10
169
+ value: 0.5
170
+ name: Cosine Recall@10
171
+ - type: cosine_ndcg@10
172
+ value: 0.2774734521140046
173
+ name: Cosine Ndcg@10
174
+ - type: cosine_mrr@10
175
+ value: 0.20799206349206348
176
+ name: Cosine Mrr@10
177
+ - type: cosine_map@100
178
+ value: 0.22779015501462538
179
+ name: Cosine Map@100
180
+ - task:
181
+ type: information-retrieval
182
+ name: Information Retrieval
183
+ dataset:
184
+ name: NanoNQ
185
+ type: NanoNQ
186
+ metrics:
187
+ - type: cosine_accuracy@1
188
+ value: 0.16
189
+ name: Cosine Accuracy@1
190
+ - type: cosine_accuracy@3
191
+ value: 0.32
192
+ name: Cosine Accuracy@3
193
+ - type: cosine_accuracy@5
194
+ value: 0.44
195
+ name: Cosine Accuracy@5
196
+ - type: cosine_accuracy@10
197
+ value: 0.6
198
+ name: Cosine Accuracy@10
199
+ - type: cosine_precision@1
200
+ value: 0.16
201
+ name: Cosine Precision@1
202
+ - type: cosine_precision@3
203
+ value: 0.10666666666666666
204
+ name: Cosine Precision@3
205
+ - type: cosine_precision@5
206
+ value: 0.08800000000000001
207
+ name: Cosine Precision@5
208
+ - type: cosine_precision@10
209
+ value: 0.06000000000000001
210
+ name: Cosine Precision@10
211
+ - type: cosine_recall@1
212
+ value: 0.14
213
+ name: Cosine Recall@1
214
+ - type: cosine_recall@3
215
+ value: 0.29
216
+ name: Cosine Recall@3
217
+ - type: cosine_recall@5
218
+ value: 0.4
219
+ name: Cosine Recall@5
220
+ - type: cosine_recall@10
221
+ value: 0.55
222
+ name: Cosine Recall@10
223
+ - type: cosine_ndcg@10
224
+ value: 0.3273011574644101
225
+ name: Cosine Ndcg@10
226
+ - type: cosine_mrr@10
227
+ value: 0.27730158730158727
228
+ name: Cosine Mrr@10
229
+ - type: cosine_map@100
230
+ value: 0.2638075437451129
231
+ name: Cosine Map@100
232
+ - task:
233
+ type: information-retrieval
234
+ name: Information Retrieval
235
+ dataset:
236
+ name: NanoHotpotQA
237
+ type: NanoHotpotQA
238
+ metrics:
239
+ - type: cosine_accuracy@1
240
+ value: 0.52
241
+ name: Cosine Accuracy@1
242
+ - type: cosine_accuracy@3
243
+ value: 0.72
244
+ name: Cosine Accuracy@3
245
+ - type: cosine_accuracy@5
246
+ value: 0.78
247
+ name: Cosine Accuracy@5
248
+ - type: cosine_accuracy@10
249
+ value: 0.84
250
+ name: Cosine Accuracy@10
251
+ - type: cosine_precision@1
252
+ value: 0.52
253
+ name: Cosine Precision@1
254
+ - type: cosine_precision@3
255
+ value: 0.29333333333333333
256
+ name: Cosine Precision@3
257
+ - type: cosine_precision@5
258
+ value: 0.19199999999999995
259
+ name: Cosine Precision@5
260
+ - type: cosine_precision@10
261
+ value: 0.11799999999999997
262
+ name: Cosine Precision@10
263
+ - type: cosine_recall@1
264
+ value: 0.26
265
+ name: Cosine Recall@1
266
+ - type: cosine_recall@3
267
+ value: 0.44
268
+ name: Cosine Recall@3
269
+ - type: cosine_recall@5
270
+ value: 0.48
271
+ name: Cosine Recall@5
272
+ - type: cosine_recall@10
273
+ value: 0.59
274
+ name: Cosine Recall@10
275
+ - type: cosine_ndcg@10
276
+ value: 0.5097756918840387
277
+ name: Cosine Ndcg@10
278
+ - type: cosine_mrr@10
279
+ value: 0.625547619047619
280
+ name: Cosine Mrr@10
281
+ - type: cosine_map@100
282
+ value: 0.4238786723152704
283
+ name: Cosine Map@100
284
+ - task:
285
+ type: nano-beir
286
+ name: Nano BEIR
287
+ dataset:
288
+ name: NanoBEIR mean
289
+ type: NanoBEIR_mean
290
+ metrics:
291
+ - type: cosine_accuracy@1
292
+ value: 0.25333333333333335
293
+ name: Cosine Accuracy@1
294
+ - type: cosine_accuracy@3
295
+ value: 0.4466666666666666
296
+ name: Cosine Accuracy@3
297
+ - type: cosine_accuracy@5
298
+ value: 0.5266666666666667
299
+ name: Cosine Accuracy@5
300
+ - type: cosine_accuracy@10
301
+ value: 0.6466666666666666
302
+ name: Cosine Accuracy@10
303
+ - type: cosine_precision@1
304
+ value: 0.25333333333333335
305
+ name: Cosine Precision@1
306
+ - type: cosine_precision@3
307
+ value: 0.16666666666666666
308
+ name: Cosine Precision@3
309
+ - type: cosine_precision@5
310
+ value: 0.11733333333333333
311
+ name: Cosine Precision@5
312
+ - type: cosine_precision@10
313
+ value: 0.076
314
+ name: Cosine Precision@10
315
+ - type: cosine_recall@1
316
+ value: 0.16
317
+ name: Cosine Recall@1
318
+ - type: cosine_recall@3
319
+ value: 0.3433333333333333
320
+ name: Cosine Recall@3
321
+ - type: cosine_recall@5
322
+ value: 0.41333333333333333
323
+ name: Cosine Recall@5
324
+ - type: cosine_recall@10
325
+ value: 0.5466666666666667
326
+ name: Cosine Recall@10
327
+ - type: cosine_ndcg@10
328
+ value: 0.3715167671541511
329
+ name: Cosine Ndcg@10
330
+ - type: cosine_mrr@10
331
+ value: 0.37028042328042327
332
+ name: Cosine Mrr@10
333
+ - type: cosine_map@100
334
+ value: 0.3051587903583362
335
+ name: Cosine Map@100
336
+ ---
337
+
338
+ # ModernBERT-small-1.5-Retrieval-BEIR-Tuned
339
+
340
+ This is a [sentence-transformers](https://www.SBERT.net) model trained on the [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) and [natural_questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) datasets. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
341
+
342
+ ## Model Details
343
+
344
+ ### Model Description
345
+ - **Model Type:** Sentence Transformer
346
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
347
+ - **Maximum Sequence Length:** 1024 tokens
348
+ - **Output Dimensionality:** 384 dimensions
349
+ - **Similarity Function:** Cosine Similarity
350
+ - **Training Datasets:**
351
+ - [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3)
352
+ - [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
353
+ - [natural_questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
354
+ - **Language:** en
355
+ - **License:** apache-2.0
356
+
357
+ ### Model Sources
358
+
359
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
360
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
361
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
362
+
363
+ ### Full Model Architecture
364
+
365
+ ```
366
+ SentenceTransformer(
367
+ (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
368
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
369
+ )
370
+ ```
371
+
372
+ ## Usage
373
+
374
+ ### Direct Usage (Sentence Transformers)
375
+
376
+ First install the Sentence Transformers library:
377
+
378
+ ```bash
379
+ pip install -U sentence-transformers
380
+ ```
381
+
382
+ Then you can load this model and run inference.
383
+ ```python
384
+ from sentence_transformers import SentenceTransformer
385
+
386
+ # Download from the 🤗 Hub
387
+ model = SentenceTransformer("sentence_transformers_model_id")
388
+ # Run inference
389
+ sentences = [
390
+ 'who is catch me if you can based on',
391
+ 'Catch Me If You Can Catch Me If You Can is a 2002 American biographical crime film directed and produced by Steven Spielberg from a screenplay by Jeff Nathanson. The film is based on the life of Frank Abagnale, who, before his 19th birthday, successfully performed cons worth millions of dollars by posing as a Pan American World Airways pilot, a Georgia doctor and a Louisiana parish prosecutor. His primary crime was check fraud; he became so experienced that the FBI eventually turned to him for help in catching other checking forgers. The film stars Leonardo DiCaprio and Tom Hanks, with Christopher Walken, Martin Sheen, and Nathalie Baye in supporting roles.',
392
+ "Colonial Brazil In contrast to the neighboring Spanish possessions, which had several viceroyalties with jurisdiction initially over New Spain (Mexico) and Peru, and in the eighteenth century expanded to viceroyalties of Rio de la Plata and New Granada, the Portuguese colony of Brazil was settled mainly in the coastal area by the Portuguese and a large black slave population working sugar plantations and mines. The boom and bust economic cycles were linked to export products. Brazil's sugar age, with the development of plantation slavery, merchants serving as middle men between production sites, Brazilian ports, and Europe was undermined by the growth of the sugar industry in the Caribbean on islands that European powers seized from Spain. Gold and diamonds were discovered and mined in southern Brazil through the end of the colonial era. Brazilian cities were largely port cities and the colonial administrative capital was moved several times in response to the rise and fall of export products' importance. Unlike Spanish America that fragmented in many republics, Brazil remained as a single administrative unit with a monarch, giving rise to the largest country in Latin America. Like Spanish America with European Spanish, Brazil had linguistic integrity of Portuguese. Both Spanish America and Brazil were Roman Catholic.",
393
+ ]
394
+ embeddings = model.encode(sentences)
395
+ print(embeddings.shape)
396
+ # [3, 384]
397
+
398
+ # Get the similarity scores for the embeddings
399
+ similarities = model.similarity(embeddings, embeddings)
400
+ print(similarities)
401
+ # tensor([[ 1.0000, 0.5555, -0.1763],
402
+ # [ 0.5555, 1.0000, -0.0652],
403
+ # [-0.1763, -0.0652, 1.0000]])
404
+ ```
405
+
406
+ <!--
407
+ ### Direct Usage (Transformers)
408
+
409
+ <details><summary>Click to see the direct usage in Transformers</summary>
410
+
411
+ </details>
412
+ -->
413
+
414
+ <!--
415
+ ### Downstream Usage (Sentence Transformers)
416
+
417
+ You can finetune this model on your own dataset.
418
+
419
+ <details><summary>Click to expand</summary>
420
+
421
+ </details>
422
+ -->
423
+
424
+ <!--
425
+ ### Out-of-Scope Use
426
+
427
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
428
+ -->
429
+
430
+ ## Evaluation
431
+
432
+ ### Metrics
433
+
434
+ #### Information Retrieval
435
+
436
+ * Datasets: `NanoMSMARCO`, `NanoNQ` and `NanoHotpotQA`
437
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
438
+
439
+ | Metric | NanoMSMARCO | NanoNQ | NanoHotpotQA |
440
+ |:--------------------|:------------|:-----------|:-------------|
441
+ | cosine_accuracy@1 | 0.08 | 0.16 | 0.52 |
442
+ | cosine_accuracy@3 | 0.3 | 0.32 | 0.72 |
443
+ | cosine_accuracy@5 | 0.36 | 0.44 | 0.78 |
444
+ | cosine_accuracy@10 | 0.5 | 0.6 | 0.84 |
445
+ | cosine_precision@1 | 0.08 | 0.16 | 0.52 |
446
+ | cosine_precision@3 | 0.1 | 0.1067 | 0.2933 |
447
+ | cosine_precision@5 | 0.072 | 0.088 | 0.192 |
448
+ | cosine_precision@10 | 0.05 | 0.06 | 0.118 |
449
+ | cosine_recall@1 | 0.08 | 0.14 | 0.26 |
450
+ | cosine_recall@3 | 0.3 | 0.29 | 0.44 |
451
+ | cosine_recall@5 | 0.36 | 0.4 | 0.48 |
452
+ | cosine_recall@10 | 0.5 | 0.55 | 0.59 |
453
+ | **cosine_ndcg@10** | **0.2775** | **0.3273** | **0.5098** |
454
+ | cosine_mrr@10 | 0.208 | 0.2773 | 0.6255 |
455
+ | cosine_map@100 | 0.2278 | 0.2638 | 0.4239 |
456
+
457
+ #### Nano BEIR
458
+
459
+ * Dataset: `NanoBEIR_mean`
460
+ * Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator) with these parameters:
461
+ ```json
462
+ {
463
+ "dataset_names": [
464
+ "MSMARCO",
465
+ "NQ",
466
+ "HotpotQA"
467
+ ]
468
+ }
469
+ ```
470
+
471
+ | Metric | Value |
472
+ |:--------------------|:-----------|
473
+ | cosine_accuracy@1 | 0.2533 |
474
+ | cosine_accuracy@3 | 0.4467 |
475
+ | cosine_accuracy@5 | 0.5267 |
476
+ | cosine_accuracy@10 | 0.6467 |
477
+ | cosine_precision@1 | 0.2533 |
478
+ | cosine_precision@3 | 0.1667 |
479
+ | cosine_precision@5 | 0.1173 |
480
+ | cosine_precision@10 | 0.076 |
481
+ | cosine_recall@1 | 0.16 |
482
+ | cosine_recall@3 | 0.3433 |
483
+ | cosine_recall@5 | 0.4133 |
484
+ | cosine_recall@10 | 0.5467 |
485
+ | **cosine_ndcg@10** | **0.3715** |
486
+ | cosine_mrr@10 | 0.3703 |
487
+ | cosine_map@100 | 0.3052 |
488
+
489
+ <!--
490
+ ## Bias, Risks and Limitations
491
+
492
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
493
+ -->
494
+
495
+ <!--
496
+ ### Recommendations
497
+
498
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
499
+ -->
500
+
501
+ ## Training Details
502
+
503
+ ### Training Datasets
504
+
505
+ #### msmarco
506
+
507
+ * Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
508
+ * Size: 17,307,990 training samples
509
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
510
+ * Approximate statistics based on the first 1000 samples:
511
+ | | anchor | positive | negative |
512
+ |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
513
+ | type | string | string | string |
514
+ | details | <ul><li>min: 5 tokens</li><li>mean: 9.57 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 44 tokens</li><li>mean: 83.39 tokens</li><li>max: 211 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 83.62 tokens</li><li>max: 268 tokens</li></ul> |
515
+ * Samples:
516
+ | anchor | positive | negative |
517
+ |:----------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
518
+ | <code>what are the liberal arts?</code> | <code>liberal arts. 1. the academic course of instruction at a college intended to provide general knowledge and comprising the arts, humanities, natural sciences, and social sciences, as opposed to professional or technical subjects.</code> | <code>The liberal arts education at the secondary school level prepares the student for higher education at a university. They are thus meant for the more academically minded students. In addition to the usual curriculum, students of a liberal arts education often study Latin and Ancient Greek. Some liberal arts education provide general education, others have a specific focus.</code> |
519
+ | <code>what are the liberal arts?</code> | <code>liberal arts. 1. the academic course of instruction at a college intended to provide general knowledge and comprising the arts, humanities, natural sciences, and social sciences, as opposed to professional or technical subjects.</code> | <code>Liberal Arts. Upon completion of the Liberal Arts degree, students will be able to express ideas in coherent, creative, and appropriate forms, orally and in writing. Students will be able to apply their reading abilities in order to interconnect an understanding of resources to academic, professional, and personal interests.</code> |
520
+ | <code>what are the liberal arts?</code> | <code>liberal arts. 1. the academic course of instruction at a college intended to provide general knowledge and comprising the arts, humanities, natural sciences, and social sciences, as opposed to professional or technical subjects.</code> | <code>Rather than preparing students for a specific career, liberal arts programs focus on cultural literacy and hone communication and analytical skills. They often cover various disciplines, ranging from the humanities to social sciences. 1 Program Levels in Liberal Arts: Associate degree, Bachelor's degree, Master's degree.</code> |
521
+ * Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
522
+ ```json
523
+ {
524
+ "scale": 20.0,
525
+ "similarity_fct": "cos_sim",
526
+ "mini_batch_size": 64
527
+ }
528
+ ```
529
+
530
+ #### gooaq
531
+
532
+ * Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
533
+ * Size: 3,012,496 training samples
534
+ * Columns: <code>anchor</code> and <code>positive</code>
535
+ * Approximate statistics based on the first 1000 samples:
536
+ | | anchor | positive |
537
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
538
+ | type | string | string |
539
+ | details | <ul><li>min: 8 tokens</li><li>mean: 12.19 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 58.34 tokens</li><li>max: 124 tokens</li></ul> |
540
+ * Samples:
541
+ | anchor | positive |
542
+ |:---------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
543
+ | <code>is toprol xl the same as metoprolol?</code> | <code>Metoprolol succinate is also known by the brand name Toprol XL. It is the extended-release form of metoprolol. Metoprolol succinate is approved to treat high blood pressure, chronic chest pain, and congestive heart failure.</code> |
544
+ | <code>are you experienced cd steve hoffman?</code> | <code>The Are You Experienced album was apparently mastered from the original stereo UK master tapes (according to Steve Hoffman - one of the very few who has heard both the master tapes and the CDs produced over the years). ... The CD booklets were a little sparse, but at least they stayed true to the album's original design.</code> |
545
+ | <code>how are babushka dolls made?</code> | <code>Matryoshka dolls are made of wood from lime, balsa, alder, aspen, and birch trees; lime is probably the most common wood type. ... After cutting, the trees are stripped of most of their bark, although a few inner rings of bark are left to bind the wood and keep it from splitting.</code> |
546
+ * Loss: [<code>CachedMultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativessymmetricrankingloss) with these parameters:
547
+ ```json
548
+ {
549
+ "scale": 20.0,
550
+ "similarity_fct": "cos_sim",
551
+ "mini_batch_size": 64
552
+ }
553
+ ```
554
+
555
+ #### natural_questions
556
+
557
+ * Dataset: [natural_questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
558
+ * Size: 100,231 training samples
559
+ * Columns: <code>anchor</code> and <code>positive</code>
560
+ * Approximate statistics based on the first 1000 samples:
561
+ | | anchor | positive |
562
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
563
+ | type | string | string |
564
+ | details | <ul><li>min: 10 tokens</li><li>mean: 12.47 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 138.32 tokens</li><li>max: 556 tokens</li></ul> |
565
+ * Samples:
566
+ | anchor | positive |
567
+ |:----------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
568
+ | <code>when did richmond last play in a preliminary final</code> | <code>Richmond Football Club Richmond began 2017 with 5 straight wins, a feat it had not achieved since 1995. A series of close losses hampered the Tigers throughout the middle of the season, including a 5-point loss to the Western Bulldogs, 2-point loss to Fremantle, and a 3-point loss to the Giants. Richmond ended the season strongly with convincing victories over Fremantle and St Kilda in the final two rounds, elevating the club to 3rd on the ladder. Richmond's first final of the season against the Cats at the MCG attracted a record qualifying final crowd of 95,028; the Tigers won by 51 points. Having advanced to the first preliminary finals for the first time since 2001, Richmond defeated Greater Western Sydney by 36 points in front of a crowd of 94,258 to progress to the Grand Final against Adelaide, their first Grand Final appearance since 1982. The attendance was 100,021, the largest crowd to a grand final since 1986. The Crows led at quarter time and led by as many as 13, but the Tig...</code> |
569
+ | <code>who sang what in the world's come over you</code> | <code>Jack Scott (singer) At the beginning of 1960, Scott again changed record labels, this time to Top Rank Records.[1] He then recorded four Billboard Hot 100 hits – "What in the World's Come Over You" (#5), "Burning Bridges" (#3) b/w "Oh Little One" (#34), and "It Only Happened Yesterday" (#38).[1] "What in the World's Come Over You" was Scott's second gold disc winner.[6] Scott continued to record and perform during the 1960s and 1970s.[1] His song "You're Just Gettin' Better" reached the country charts in 1974.[1] In May 1977, Scott recorded a Peel session for BBC Radio 1 disc jockey, John Peel.</code> |
570
+ | <code>who produces the most wool in the world</code> | <code>Wool Global wool production is about 2 million tonnes per year, of which 60% goes into apparel. Wool comprises ca 3% of the global textile market, but its value is higher owing to dying and other modifications of the material.[1] Australia is a leading producer of wool which is mostly from Merino sheep but has been eclipsed by China in terms of total weight.[30] New Zealand (2016) is the third-largest producer of wool, and the largest producer of crossbred wool. Breeds such as Lincoln, Romney, Drysdale, and Elliotdale produce coarser fibers, and wool from these sheep is usually used for making carpets.</code> |
571
+ * Loss: [<code>CachedMultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativessymmetricrankingloss) with these parameters:
572
+ ```json
573
+ {
574
+ "scale": 20.0,
575
+ "similarity_fct": "cos_sim",
576
+ "mini_batch_size": 64
577
+ }
578
+ ```
579
+
580
+ ### Training Hyperparameters
581
+ #### Non-Default Hyperparameters
582
+
583
+ - `eval_strategy`: steps
584
+ - `per_device_train_batch_size`: 256
585
+ - `weight_decay`: 0.01
586
+ - `num_train_epochs`: 1
587
+ - `lr_scheduler_type`: cosine
588
+ - `warmup_ratio`: 0.1
589
+ - `bf16`: True
590
+ - `bf16_full_eval`: True
591
+ - `load_best_model_at_end`: True
592
+
593
+ #### All Hyperparameters
594
+ <details><summary>Click to expand</summary>
595
+
596
+ - `overwrite_output_dir`: False
597
+ - `do_predict`: False
598
+ - `eval_strategy`: steps
599
+ - `prediction_loss_only`: True
600
+ - `per_device_train_batch_size`: 256
601
+ - `per_device_eval_batch_size`: 8
602
+ - `per_gpu_train_batch_size`: None
603
+ - `per_gpu_eval_batch_size`: None
604
+ - `gradient_accumulation_steps`: 1
605
+ - `eval_accumulation_steps`: None
606
+ - `torch_empty_cache_steps`: None
607
+ - `learning_rate`: 5e-05
608
+ - `weight_decay`: 0.01
609
+ - `adam_beta1`: 0.9
610
+ - `adam_beta2`: 0.999
611
+ - `adam_epsilon`: 1e-08
612
+ - `max_grad_norm`: 1.0
613
+ - `num_train_epochs`: 1
614
+ - `max_steps`: -1
615
+ - `lr_scheduler_type`: cosine
616
+ - `lr_scheduler_kwargs`: {}
617
+ - `warmup_ratio`: 0.1
618
+ - `warmup_steps`: 0
619
+ - `log_level`: passive
620
+ - `log_level_replica`: warning
621
+ - `log_on_each_node`: True
622
+ - `logging_nan_inf_filter`: True
623
+ - `save_safetensors`: True
624
+ - `save_on_each_node`: False
625
+ - `save_only_model`: False
626
+ - `restore_callback_states_from_checkpoint`: False
627
+ - `no_cuda`: False
628
+ - `use_cpu`: False
629
+ - `use_mps_device`: False
630
+ - `seed`: 42
631
+ - `data_seed`: None
632
+ - `jit_mode_eval`: False
633
+ - `use_ipex`: False
634
+ - `bf16`: True
635
+ - `fp16`: False
636
+ - `fp16_opt_level`: O1
637
+ - `half_precision_backend`: auto
638
+ - `bf16_full_eval`: True
639
+ - `fp16_full_eval`: False
640
+ - `tf32`: None
641
+ - `local_rank`: 0
642
+ - `ddp_backend`: None
643
+ - `tpu_num_cores`: None
644
+ - `tpu_metrics_debug`: False
645
+ - `debug`: []
646
+ - `dataloader_drop_last`: False
647
+ - `dataloader_num_workers`: 0
648
+ - `dataloader_prefetch_factor`: None
649
+ - `past_index`: -1
650
+ - `disable_tqdm`: False
651
+ - `remove_unused_columns`: True
652
+ - `label_names`: None
653
+ - `load_best_model_at_end`: True
654
+ - `ignore_data_skip`: False
655
+ - `fsdp`: []
656
+ - `fsdp_min_num_params`: 0
657
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
658
+ - `fsdp_transformer_layer_cls_to_wrap`: None
659
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
660
+ - `deepspeed`: None
661
+ - `label_smoothing_factor`: 0.0
662
+ - `optim`: adamw_torch
663
+ - `optim_args`: None
664
+ - `adafactor`: False
665
+ - `group_by_length`: False
666
+ - `length_column_name`: length
667
+ - `ddp_find_unused_parameters`: None
668
+ - `ddp_bucket_cap_mb`: None
669
+ - `ddp_broadcast_buffers`: False
670
+ - `dataloader_pin_memory`: True
671
+ - `dataloader_persistent_workers`: False
672
+ - `skip_memory_metrics`: True
673
+ - `use_legacy_prediction_loop`: False
674
+ - `push_to_hub`: False
675
+ - `resume_from_checkpoint`: None
676
+ - `hub_model_id`: None
677
+ - `hub_strategy`: every_save
678
+ - `hub_private_repo`: None
679
+ - `hub_always_push`: False
680
+ - `hub_revision`: None
681
+ - `gradient_checkpointing`: False
682
+ - `gradient_checkpointing_kwargs`: None
683
+ - `include_inputs_for_metrics`: False
684
+ - `include_for_metrics`: []
685
+ - `eval_do_concat_batches`: True
686
+ - `fp16_backend`: auto
687
+ - `push_to_hub_model_id`: None
688
+ - `push_to_hub_organization`: None
689
+ - `mp_parameters`:
690
+ - `auto_find_batch_size`: False
691
+ - `full_determinism`: False
692
+ - `torchdynamo`: None
693
+ - `ray_scope`: last
694
+ - `ddp_timeout`: 1800
695
+ - `torch_compile`: False
696
+ - `torch_compile_backend`: None
697
+ - `torch_compile_mode`: None
698
+ - `include_tokens_per_second`: False
699
+ - `include_num_input_tokens_seen`: False
700
+ - `neftune_noise_alpha`: None
701
+ - `optim_target_modules`: None
702
+ - `batch_eval_metrics`: False
703
+ - `eval_on_start`: False
704
+ - `use_liger_kernel`: False
705
+ - `liger_kernel_config`: None
706
+ - `eval_use_gather_object`: False
707
+ - `average_tokens_across_devices`: False
708
+ - `prompts`: None
709
+ - `batch_sampler`: batch_sampler
710
+ - `multi_dataset_batch_sampler`: proportional
711
+ - `router_mapping`: {}
712
+ - `learning_rate_mapping`: {}
713
+
714
+ </details>
715
+
716
+ ### Training Logs
717
+ <details><summary>Click to expand</summary>
718
+
719
+ | Epoch | Step | Training Loss | NanoMSMARCO_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoHotpotQA_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
720
+ |:----------:|:---------:|:-------------:|:--------------------------:|:---------------------:|:---------------------------:|:----------------------------:|
721
+ | -1 | -1 | - | 0.2397 | 0.3332 | 0.4767 | 0.3499 |
722
+ | 0.0063 | 500 | 1.6152 | - | - | - | - |
723
+ | 0.0125 | 1000 | 1.6149 | - | - | - | - |
724
+ | 0.0188 | 1500 | 1.5833 | - | - | - | - |
725
+ | 0.0251 | 2000 | 1.58 | 0.2449 | 0.3259 | 0.4793 | 0.3500 |
726
+ | 0.0313 | 2500 | 1.5475 | - | - | - | - |
727
+ | 0.0376 | 3000 | 1.5432 | - | - | - | - |
728
+ | 0.0439 | 3500 | 1.5067 | - | - | - | - |
729
+ | 0.0501 | 4000 | 1.4909 | 0.2474 | 0.3124 | 0.4786 | 0.3461 |
730
+ | 0.0564 | 4500 | 1.4532 | - | - | - | - |
731
+ | 0.0627 | 5000 | 1.425 | - | - | - | - |
732
+ | 0.0689 | 5500 | 1.4394 | - | - | - | - |
733
+ | 0.0752 | 6000 | 1.42 | 0.2532 | 0.3149 | 0.4895 | 0.3525 |
734
+ | 0.0815 | 6500 | 1.3737 | - | - | - | - |
735
+ | 0.0878 | 7000 | 1.3755 | - | - | - | - |
736
+ | 0.0940 | 7500 | 1.3194 | - | - | - | - |
737
+ | 0.1003 | 8000 | 1.3143 | 0.2660 | 0.3163 | 0.4823 | 0.3548 |
738
+ | 0.1066 | 8500 | 1.3038 | - | - | - | - |
739
+ | 0.1128 | 9000 | 1.2815 | - | - | - | - |
740
+ | 0.1191 | 9500 | 1.2291 | - | - | - | - |
741
+ | 0.1254 | 10000 | 1.24 | 0.2687 | 0.3407 | 0.4876 | 0.3657 |
742
+ | 0.1316 | 10500 | 1.2383 | - | - | - | - |
743
+ | 0.1379 | 11000 | 1.2116 | - | - | - | - |
744
+ | 0.1442 | 11500 | 1.1967 | - | - | - | - |
745
+ | 0.1504 | 12000 | 1.1712 | 0.2697 | 0.3436 | 0.4888 | 0.3674 |
746
+ | 0.1567 | 12500 | 1.1781 | - | - | - | - |
747
+ | 0.1630 | 13000 | 1.1798 | - | - | - | - |
748
+ | 0.1692 | 13500 | 1.1486 | - | - | - | - |
749
+ | 0.1755 | 14000 | 1.156 | 0.2761 | 0.3490 | 0.4895 | 0.3716 |
750
+ | 0.1818 | 14500 | 1.1622 | - | - | - | - |
751
+ | 0.1880 | 15000 | 1.1638 | - | - | - | - |
752
+ | 0.1943 | 15500 | 1.1447 | - | - | - | - |
753
+ | 0.2006 | 16000 | 1.1353 | 0.2783 | 0.3427 | 0.4967 | 0.3726 |
754
+ | 0.2068 | 16500 | 1.1397 | - | - | - | - |
755
+ | 0.2131 | 17000 | 1.1346 | - | - | - | - |
756
+ | 0.2194 | 17500 | 1.1345 | - | - | - | - |
757
+ | 0.2256 | 18000 | 1.13 | 0.2697 | 0.3424 | 0.5051 | 0.3724 |
758
+ | 0.2319 | 18500 | 1.1145 | - | - | - | - |
759
+ | 0.2382 | 19000 | 1.1215 | - | - | - | - |
760
+ | 0.2445 | 19500 | 1.1193 | - | - | - | - |
761
+ | 0.2507 | 20000 | 1.1329 | 0.2795 | 0.3363 | 0.4992 | 0.3717 |
762
+ | 0.2570 | 20500 | 1.1239 | - | - | - | - |
763
+ | 0.2633 | 21000 | 1.0929 | - | - | - | - |
764
+ | 0.2695 | 21500 | 1.1079 | - | - | - | - |
765
+ | 0.2758 | 22000 | 1.1192 | 0.2792 | 0.3278 | 0.5054 | 0.3708 |
766
+ | 0.2821 | 22500 | 1.1252 | - | - | - | - |
767
+ | 0.2883 | 23000 | 1.1089 | - | - | - | - |
768
+ | 0.2946 | 23500 | 1.1032 | - | - | - | - |
769
+ | 0.3009 | 24000 | 1.0974 | 0.2769 | 0.3372 | 0.5043 | 0.3728 |
770
+ | 0.3071 | 24500 | 1.1129 | - | - | - | - |
771
+ | 0.3134 | 25000 | 1.0901 | - | - | - | - |
772
+ | 0.3197 | 25500 | 1.1087 | - | - | - | - |
773
+ | 0.3259 | 26000 | 1.0921 | 0.2769 | 0.3349 | 0.5038 | 0.3719 |
774
+ | 0.3322 | 26500 | 1.0881 | - | - | - | - |
775
+ | 0.3385 | 27000 | 1.0984 | - | - | - | - |
776
+ | 0.3447 | 27500 | 1.105 | - | - | - | - |
777
+ | 0.3510 | 28000 | 1.1022 | 0.2766 | 0.3353 | 0.5043 | 0.3721 |
778
+ | 0.3573 | 28500 | 1.0925 | - | - | - | - |
779
+ | 0.3635 | 29000 | 1.1009 | - | - | - | - |
780
+ | 0.3698 | 29500 | 1.1043 | - | - | - | - |
781
+ | 0.3761 | 30000 | 1.0893 | 0.2772 | 0.3279 | 0.5055 | 0.3702 |
782
+ | 0.3823 | 30500 | 1.1084 | - | - | - | - |
783
+ | 0.3886 | 31000 | 1.0885 | - | - | - | - |
784
+ | 0.3949 | 31500 | 1.1046 | - | - | - | - |
785
+ | 0.4012 | 32000 | 1.0925 | 0.2775 | 0.3273 | 0.5052 | 0.3700 |
786
+ | 0.4074 | 32500 | 1.1126 | - | - | - | - |
787
+ | 0.4137 | 33000 | 1.0946 | - | - | - | - |
788
+ | 0.4200 | 33500 | 1.0979 | - | - | - | - |
789
+ | 0.4262 | 34000 | 1.0852 | 0.2775 | 0.3273 | 0.5098 | 0.3715 |
790
+ | 0.4325 | 34500 | 1.0925 | - | - | - | - |
791
+ | 0.4388 | 35000 | 1.0919 | - | - | - | - |
792
+ | 0.4450 | 35500 | 1.0878 | - | - | - | - |
793
+ | 0.4513 | 36000 | 1.0775 | 0.2781 | 0.3273 | 0.5098 | 0.3717 |
794
+ | 0.4576 | 36500 | 1.0898 | - | - | - | - |
795
+ | 0.4638 | 37000 | 1.0858 | - | - | - | - |
796
+ | 0.4701 | 37500 | 1.0822 | - | - | - | - |
797
+ | 0.4764 | 38000 | 1.0831 | 0.2849 | 0.3273 | 0.5098 | 0.3740 |
798
+ | 0.4826 | 38500 | 1.0886 | - | - | - | - |
799
+ | 0.4889 | 39000 | 1.089 | - | - | - | - |
800
+ | 0.4952 | 39500 | 1.0986 | - | - | - | - |
801
+ | 0.5014 | 40000 | 1.0885 | 0.2775 | 0.3276 | 0.5101 | 0.3717 |
802
+ | 0.5077 | 40500 | 1.0903 | - | - | - | - |
803
+ | 0.5140 | 41000 | 1.0883 | - | - | - | - |
804
+ | 0.5202 | 41500 | 1.1009 | - | - | - | - |
805
+ | 0.5265 | 42000 | 1.0909 | 0.2781 | 0.3276 | 0.5101 | 0.3719 |
806
+ | 0.5328 | 42500 | 1.0843 | - | - | - | - |
807
+ | 0.5390 | 43000 | 1.086 | - | - | - | - |
808
+ | 0.5453 | 43500 | 1.0762 | - | - | - | - |
809
+ | 0.5516 | 44000 | 1.0781 | 0.2781 | 0.3276 | 0.5101 | 0.3719 |
810
+ | 0.5579 | 44500 | 1.0952 | - | - | - | - |
811
+ | 0.5641 | 45000 | 1.0814 | - | - | - | - |
812
+ | 0.5704 | 45500 | 1.0815 | - | - | - | - |
813
+ | **0.5767** | **46000** | **1.0889** | **0.2849** | **0.3276** | **0.5101** | **0.3742** |
814
+ | 0.5829 | 46500 | 1.087 | - | - | - | - |
815
+ | 0.5892 | 47000 | 1.0786 | - | - | - | - |
816
+ | 0.5955 | 47500 | 1.0846 | - | - | - | - |
817
+ | 0.6017 | 48000 | 1.095 | 0.2849 | 0.3273 | 0.5101 | 0.3741 |
818
+ | 0.6080 | 48500 | 1.0839 | - | - | - | - |
819
+ | 0.6143 | 49000 | 1.0899 | - | - | - | - |
820
+ | 0.6205 | 49500 | 1.0903 | - | - | - | - |
821
+ | 0.6268 | 50000 | 1.0915 | 0.2775 | 0.3273 | 0.5098 | 0.3715 |
822
+ | 0.6331 | 50500 | 1.0764 | - | - | - | - |
823
+ | 0.6393 | 51000 | 1.1006 | - | - | - | - |
824
+ | 0.6456 | 51500 | 1.0968 | - | - | - | - |
825
+ | 0.6519 | 52000 | 1.084 | 0.2849 | 0.3273 | 0.5101 | 0.3741 |
826
+ | 0.6581 | 52500 | 1.0892 | - | - | - | - |
827
+ | 0.6644 | 53000 | 1.09 | - | - | - | - |
828
+ | 0.6707 | 53500 | 1.0946 | - | - | - | - |
829
+ | 0.6769 | 54000 | 1.0861 | 0.2775 | 0.3273 | 0.5098 | 0.3715 |
830
+ | 0.6832 | 54500 | 1.0962 | - | - | - | - |
831
+ | 0.6895 | 55000 | 1.0841 | - | - | - | - |
832
+ | 0.6958 | 55500 | 1.0894 | - | - | - | - |
833
+ | 0.7020 | 56000 | 1.082 | 0.2775 | 0.3273 | 0.5098 | 0.3715 |
834
+ | 0.7083 | 56500 | 1.0939 | - | - | - | - |
835
+ | 0.7146 | 57000 | 1.096 | - | - | - | - |
836
+ | 0.7208 | 57500 | 1.1048 | - | - | - | - |
837
+ | 0.7271 | 58000 | 1.0853 | 0.2849 | 0.3273 | 0.5098 | 0.3740 |
838
+ | 0.7334 | 58500 | 1.0893 | - | - | - | - |
839
+ | 0.7396 | 59000 | 1.0946 | - | - | - | - |
840
+ | 0.7459 | 59500 | 1.0985 | - | - | - | - |
841
+ | 0.7522 | 60000 | 1.099 | 0.2849 | 0.3273 | 0.5098 | 0.3740 |
842
+ | 0.7584 | 60500 | 1.0972 | - | - | - | - |
843
+ | 0.7647 | 61000 | 1.0812 | - | - | - | - |
844
+ | 0.7710 | 61500 | 1.0744 | - | - | - | - |
845
+ | 0.7772 | 62000 | 1.0781 | 0.2775 | 0.3273 | 0.5101 | 0.3716 |
846
+ | 0.7835 | 62500 | 1.0823 | - | - | - | - |
847
+ | 0.7898 | 63000 | 1.0819 | - | - | - | - |
848
+ | 0.7960 | 63500 | 1.0911 | - | - | - | - |
849
+ | 0.8023 | 64000 | 1.1069 | 0.2775 | 0.3273 | 0.5098 | 0.3715 |
850
+ | 0.8086 | 64500 | 1.0786 | - | - | - | - |
851
+ | 0.8148 | 65000 | 1.0872 | - | - | - | - |
852
+ | 0.8211 | 65500 | 1.0776 | - | - | - | - |
853
+ | 0.8274 | 66000 | 1.0849 | 0.2849 | 0.3273 | 0.5098 | 0.3740 |
854
+ | 0.8336 | 66500 | 1.0778 | - | - | - | - |
855
+ | 0.8399 | 67000 | 1.0972 | - | - | - | - |
856
+ | 0.8462 | 67500 | 1.0835 | - | - | - | - |
857
+ | 0.8525 | 68000 | 1.0927 | 0.2849 | 0.3273 | 0.5098 | 0.3740 |
858
+ | 0.8587 | 68500 | 1.082 | - | - | - | - |
859
+ | 0.8650 | 69000 | 1.0742 | - | - | - | - |
860
+ | 0.8713 | 69500 | 1.0886 | - | - | - | - |
861
+ | 0.8775 | 70000 | 1.0828 | 0.2775 | 0.3273 | 0.5098 | 0.3715 |
862
+ | 0.8838 | 70500 | 1.0863 | - | - | - | - |
863
+ | 0.8901 | 71000 | 1.0905 | - | - | - | - |
864
+ | 0.8963 | 71500 | 1.0856 | - | - | - | - |
865
+ | 0.9026 | 72000 | 1.0946 | 0.2775 | 0.3273 | 0.5098 | 0.3715 |
866
+ | 0.9089 | 72500 | 1.102 | - | - | - | - |
867
+ | 0.9151 | 73000 | 1.0819 | - | - | - | - |
868
+ | 0.9214 | 73500 | 1.0884 | - | - | - | - |
869
+ | 0.9277 | 74000 | 1.0888 | 0.2775 | 0.3273 | 0.5098 | 0.3715 |
870
+ | 0.9339 | 74500 | 1.0756 | - | - | - | - |
871
+ | 0.9402 | 75000 | 1.0767 | - | - | - | - |
872
+ | 0.9465 | 75500 | 1.0821 | - | - | - | - |
873
+ | 0.9527 | 76000 | 1.0891 | 0.2775 | 0.3273 | 0.5098 | 0.3715 |
874
+ | 0.9590 | 76500 | 1.0923 | - | - | - | - |
875
+ | 0.9653 | 77000 | 1.0765 | - | - | - | - |
876
+ | 0.9715 | 77500 | 1.075 | - | - | - | - |
877
+ | 0.9778 | 78000 | 1.0902 | 0.2775 | 0.3273 | 0.5098 | 0.3715 |
878
+ | 0.9841 | 78500 | 1.0833 | - | - | - | - |
879
+ | 0.9903 | 79000 | 1.0746 | - | - | - | - |
880
+ | 0.9966 | 79500 | 1.0872 | - | - | - | - |
881
+
882
+ * The bold row denotes the saved checkpoint.
883
+ </details>
884
+
885
+ ### Framework Versions
886
+ - Python: 3.11.13
887
+ - Sentence Transformers: 5.0.0
888
+ - Transformers: 4.53.1
889
+ - PyTorch: 2.7.1+cu128
890
+ - Accelerate: 1.8.1
891
+ - Datasets: 4.0.0
892
+ - Tokenizers: 0.21.2
893
+
894
+ ## Citation
895
+
896
+ ### BibTeX
897
+
898
+ #### Sentence Transformers
899
+ ```bibtex
900
+ @inproceedings{reimers-2019-sentence-bert,
901
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
902
+ author = "Reimers, Nils and Gurevych, Iryna",
903
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
904
+ month = "11",
905
+ year = "2019",
906
+ publisher = "Association for Computational Linguistics",
907
+ url = "https://arxiv.org/abs/1908.10084",
908
+ }
909
+ ```
910
+
911
+ #### CachedMultipleNegativesRankingLoss
912
+ ```bibtex
913
+ @misc{gao2021scaling,
914
+ title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
915
+ author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
916
+ year={2021},
917
+ eprint={2101.06983},
918
+ archivePrefix={arXiv},
919
+ primaryClass={cs.LG}
920
+ }
921
+ ```
922
+
923
+ <!--
924
+ ## Glossary
925
+
926
+ *Clearly define terms in order to be accessible across audiences.*
927
+ -->
928
+
929
+ <!--
930
+ ## Model Card Authors
931
+
932
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
933
+ -->
934
+
935
+ <!--
936
+ ## Model Card Contact
937
+
938
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
939
+ -->
config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ModernBertModel"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 50281,
8
+ "classifier_activation": "gelu",
9
+ "classifier_bias": false,
10
+ "classifier_dropout": 0.0,
11
+ "classifier_pooling": "cls",
12
+ "cls_token_id": 50281,
13
+ "decoder_bias": true,
14
+ "deterministic_flash_attn": false,
15
+ "embedding_dropout": 0.0,
16
+ "eos_token_id": 50282,
17
+ "global_attn_every_n_layers": 3,
18
+ "global_rope_theta": 160000.0,
19
+ "hidden_activation": "gelu",
20
+ "hidden_size": 384,
21
+ "initializer_cutoff_factor": 2.0,
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 576,
24
+ "local_attention": 128,
25
+ "local_rope_theta": 10000.0,
26
+ "max_position_embeddings": 1024,
27
+ "mlp_bias": false,
28
+ "mlp_dropout": 0.0,
29
+ "model_type": "modernbert",
30
+ "norm_bias": false,
31
+ "norm_eps": 1e-05,
32
+ "num_attention_heads": 6,
33
+ "num_hidden_layers": 6,
34
+ "pad_token_id": 50283,
35
+ "repad_logits_with_grad": false,
36
+ "sep_token_id": 50282,
37
+ "sparse_pred_ignore_index": -100,
38
+ "sparse_prediction": false,
39
+ "torch_dtype": "bfloat16",
40
+ "transformers_version": "4.53.1",
41
+ "vocab_size": 50368
42
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "SentenceTransformer",
3
+ "__version__": {
4
+ "sentence_transformers": "5.0.0",
5
+ "transformers": "4.53.1",
6
+ "pytorch": "2.7.1+cu128"
7
+ },
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66b0b2a8a86aaf4d2547f316bb13d351f38bb13283ed25a6f0a062ff610ca64e
3
+ size 53736776
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 1024,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,952 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "|||IP_ADDRESS|||",
5
+ "lstrip": false,
6
+ "normalized": true,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "1": {
12
+ "content": "<|padding|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "50254": {
20
+ "content": " ",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": false
26
+ },
27
+ "50255": {
28
+ "content": " ",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": false
34
+ },
35
+ "50256": {
36
+ "content": " ",
37
+ "lstrip": false,
38
+ "normalized": true,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": false
42
+ },
43
+ "50257": {
44
+ "content": " ",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "50258": {
52
+ "content": " ",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ },
59
+ "50259": {
60
+ "content": " ",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": false
66
+ },
67
+ "50260": {
68
+ "content": " ",
69
+ "lstrip": false,
70
+ "normalized": true,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": false
74
+ },
75
+ "50261": {
76
+ "content": " ",
77
+ "lstrip": false,
78
+ "normalized": true,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": false
82
+ },
83
+ "50262": {
84
+ "content": " ",
85
+ "lstrip": false,
86
+ "normalized": true,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": false
90
+ },
91
+ "50263": {
92
+ "content": " ",
93
+ "lstrip": false,
94
+ "normalized": true,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": false
98
+ },
99
+ "50264": {
100
+ "content": " ",
101
+ "lstrip": false,
102
+ "normalized": true,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": false
106
+ },
107
+ "50265": {
108
+ "content": " ",
109
+ "lstrip": false,
110
+ "normalized": true,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": false
114
+ },
115
+ "50266": {
116
+ "content": " ",
117
+ "lstrip": false,
118
+ "normalized": true,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": false
122
+ },
123
+ "50267": {
124
+ "content": " ",
125
+ "lstrip": false,
126
+ "normalized": true,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": false
130
+ },
131
+ "50268": {
132
+ "content": " ",
133
+ "lstrip": false,
134
+ "normalized": true,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": false
138
+ },
139
+ "50269": {
140
+ "content": " ",
141
+ "lstrip": false,
142
+ "normalized": true,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": false
146
+ },
147
+ "50270": {
148
+ "content": " ",
149
+ "lstrip": false,
150
+ "normalized": true,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": false
154
+ },
155
+ "50271": {
156
+ "content": " ",
157
+ "lstrip": false,
158
+ "normalized": true,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": false
162
+ },
163
+ "50272": {
164
+ "content": " ",
165
+ "lstrip": false,
166
+ "normalized": true,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": false
170
+ },
171
+ "50273": {
172
+ "content": " ",
173
+ "lstrip": false,
174
+ "normalized": true,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": false
178
+ },
179
+ "50274": {
180
+ "content": " ",
181
+ "lstrip": false,
182
+ "normalized": true,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": false
186
+ },
187
+ "50275": {
188
+ "content": " ",
189
+ "lstrip": false,
190
+ "normalized": true,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": false
194
+ },
195
+ "50276": {
196
+ "content": " ",
197
+ "lstrip": false,
198
+ "normalized": true,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": false
202
+ },
203
+ "50277": {
204
+ "content": "|||EMAIL_ADDRESS|||",
205
+ "lstrip": false,
206
+ "normalized": true,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": false
210
+ },
211
+ "50278": {
212
+ "content": "|||PHONE_NUMBER|||",
213
+ "lstrip": false,
214
+ "normalized": true,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": false
218
+ },
219
+ "50279": {
220
+ "content": "<|endoftext|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "50280": {
228
+ "content": "[UNK]",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "50281": {
236
+ "content": "[CLS]",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "50282": {
244
+ "content": "[SEP]",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "50283": {
252
+ "content": "[PAD]",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "50284": {
260
+ "content": "[MASK]",
261
+ "lstrip": true,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "50285": {
268
+ "content": "[unused0]",
269
+ "lstrip": false,
270
+ "normalized": true,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": false
274
+ },
275
+ "50286": {
276
+ "content": "[unused1]",
277
+ "lstrip": false,
278
+ "normalized": true,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": false
282
+ },
283
+ "50287": {
284
+ "content": "[unused2]",
285
+ "lstrip": false,
286
+ "normalized": true,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": false
290
+ },
291
+ "50288": {
292
+ "content": "[unused3]",
293
+ "lstrip": false,
294
+ "normalized": true,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": false
298
+ },
299
+ "50289": {
300
+ "content": "[unused4]",
301
+ "lstrip": false,
302
+ "normalized": true,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": false
306
+ },
307
+ "50290": {
308
+ "content": "[unused5]",
309
+ "lstrip": false,
310
+ "normalized": true,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": false
314
+ },
315
+ "50291": {
316
+ "content": "[unused6]",
317
+ "lstrip": false,
318
+ "normalized": true,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": false
322
+ },
323
+ "50292": {
324
+ "content": "[unused7]",
325
+ "lstrip": false,
326
+ "normalized": true,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": false
330
+ },
331
+ "50293": {
332
+ "content": "[unused8]",
333
+ "lstrip": false,
334
+ "normalized": true,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": false
338
+ },
339
+ "50294": {
340
+ "content": "[unused9]",
341
+ "lstrip": false,
342
+ "normalized": true,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": false
346
+ },
347
+ "50295": {
348
+ "content": "[unused10]",
349
+ "lstrip": false,
350
+ "normalized": true,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": false
354
+ },
355
+ "50296": {
356
+ "content": "[unused11]",
357
+ "lstrip": false,
358
+ "normalized": true,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": false
362
+ },
363
+ "50297": {
364
+ "content": "[unused12]",
365
+ "lstrip": false,
366
+ "normalized": true,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": false
370
+ },
371
+ "50298": {
372
+ "content": "[unused13]",
373
+ "lstrip": false,
374
+ "normalized": true,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": false
378
+ },
379
+ "50299": {
380
+ "content": "[unused14]",
381
+ "lstrip": false,
382
+ "normalized": true,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": false
386
+ },
387
+ "50300": {
388
+ "content": "[unused15]",
389
+ "lstrip": false,
390
+ "normalized": true,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": false
394
+ },
395
+ "50301": {
396
+ "content": "[unused16]",
397
+ "lstrip": false,
398
+ "normalized": true,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": false
402
+ },
403
+ "50302": {
404
+ "content": "[unused17]",
405
+ "lstrip": false,
406
+ "normalized": true,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": false
410
+ },
411
+ "50303": {
412
+ "content": "[unused18]",
413
+ "lstrip": false,
414
+ "normalized": true,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": false
418
+ },
419
+ "50304": {
420
+ "content": "[unused19]",
421
+ "lstrip": false,
422
+ "normalized": true,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": false
426
+ },
427
+ "50305": {
428
+ "content": "[unused20]",
429
+ "lstrip": false,
430
+ "normalized": true,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": false
434
+ },
435
+ "50306": {
436
+ "content": "[unused21]",
437
+ "lstrip": false,
438
+ "normalized": true,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": false
442
+ },
443
+ "50307": {
444
+ "content": "[unused22]",
445
+ "lstrip": false,
446
+ "normalized": true,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": false
450
+ },
451
+ "50308": {
452
+ "content": "[unused23]",
453
+ "lstrip": false,
454
+ "normalized": true,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": false
458
+ },
459
+ "50309": {
460
+ "content": "[unused24]",
461
+ "lstrip": false,
462
+ "normalized": true,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": false
466
+ },
467
+ "50310": {
468
+ "content": "[unused25]",
469
+ "lstrip": false,
470
+ "normalized": true,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": false
474
+ },
475
+ "50311": {
476
+ "content": "[unused26]",
477
+ "lstrip": false,
478
+ "normalized": true,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": false
482
+ },
483
+ "50312": {
484
+ "content": "[unused27]",
485
+ "lstrip": false,
486
+ "normalized": true,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": false
490
+ },
491
+ "50313": {
492
+ "content": "[unused28]",
493
+ "lstrip": false,
494
+ "normalized": true,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": false
498
+ },
499
+ "50314": {
500
+ "content": "[unused29]",
501
+ "lstrip": false,
502
+ "normalized": true,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": false
506
+ },
507
+ "50315": {
508
+ "content": "[unused30]",
509
+ "lstrip": false,
510
+ "normalized": true,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": false
514
+ },
515
+ "50316": {
516
+ "content": "[unused31]",
517
+ "lstrip": false,
518
+ "normalized": true,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": false
522
+ },
523
+ "50317": {
524
+ "content": "[unused32]",
525
+ "lstrip": false,
526
+ "normalized": true,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": false
530
+ },
531
+ "50318": {
532
+ "content": "[unused33]",
533
+ "lstrip": false,
534
+ "normalized": true,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": false
538
+ },
539
+ "50319": {
540
+ "content": "[unused34]",
541
+ "lstrip": false,
542
+ "normalized": true,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": false
546
+ },
547
+ "50320": {
548
+ "content": "[unused35]",
549
+ "lstrip": false,
550
+ "normalized": true,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": false
554
+ },
555
+ "50321": {
556
+ "content": "[unused36]",
557
+ "lstrip": false,
558
+ "normalized": true,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": false
562
+ },
563
+ "50322": {
564
+ "content": "[unused37]",
565
+ "lstrip": false,
566
+ "normalized": true,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": false
570
+ },
571
+ "50323": {
572
+ "content": "[unused38]",
573
+ "lstrip": false,
574
+ "normalized": true,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": false
578
+ },
579
+ "50324": {
580
+ "content": "[unused39]",
581
+ "lstrip": false,
582
+ "normalized": true,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": false
586
+ },
587
+ "50325": {
588
+ "content": "[unused40]",
589
+ "lstrip": false,
590
+ "normalized": true,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": false
594
+ },
595
+ "50326": {
596
+ "content": "[unused41]",
597
+ "lstrip": false,
598
+ "normalized": true,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": false
602
+ },
603
+ "50327": {
604
+ "content": "[unused42]",
605
+ "lstrip": false,
606
+ "normalized": true,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": false
610
+ },
611
+ "50328": {
612
+ "content": "[unused43]",
613
+ "lstrip": false,
614
+ "normalized": true,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": false
618
+ },
619
+ "50329": {
620
+ "content": "[unused44]",
621
+ "lstrip": false,
622
+ "normalized": true,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": false
626
+ },
627
+ "50330": {
628
+ "content": "[unused45]",
629
+ "lstrip": false,
630
+ "normalized": true,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": false
634
+ },
635
+ "50331": {
636
+ "content": "[unused46]",
637
+ "lstrip": false,
638
+ "normalized": true,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": false
642
+ },
643
+ "50332": {
644
+ "content": "[unused47]",
645
+ "lstrip": false,
646
+ "normalized": true,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": false
650
+ },
651
+ "50333": {
652
+ "content": "[unused48]",
653
+ "lstrip": false,
654
+ "normalized": true,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": false
658
+ },
659
+ "50334": {
660
+ "content": "[unused49]",
661
+ "lstrip": false,
662
+ "normalized": true,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": false
666
+ },
667
+ "50335": {
668
+ "content": "[unused50]",
669
+ "lstrip": false,
670
+ "normalized": true,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": false
674
+ },
675
+ "50336": {
676
+ "content": "[unused51]",
677
+ "lstrip": false,
678
+ "normalized": true,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": false
682
+ },
683
+ "50337": {
684
+ "content": "[unused52]",
685
+ "lstrip": false,
686
+ "normalized": true,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": false
690
+ },
691
+ "50338": {
692
+ "content": "[unused53]",
693
+ "lstrip": false,
694
+ "normalized": true,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": false
698
+ },
699
+ "50339": {
700
+ "content": "[unused54]",
701
+ "lstrip": false,
702
+ "normalized": true,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": false
706
+ },
707
+ "50340": {
708
+ "content": "[unused55]",
709
+ "lstrip": false,
710
+ "normalized": true,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": false
714
+ },
715
+ "50341": {
716
+ "content": "[unused56]",
717
+ "lstrip": false,
718
+ "normalized": true,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": false
722
+ },
723
+ "50342": {
724
+ "content": "[unused57]",
725
+ "lstrip": false,
726
+ "normalized": true,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": false
730
+ },
731
+ "50343": {
732
+ "content": "[unused58]",
733
+ "lstrip": false,
734
+ "normalized": true,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": false
738
+ },
739
+ "50344": {
740
+ "content": "[unused59]",
741
+ "lstrip": false,
742
+ "normalized": true,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": false
746
+ },
747
+ "50345": {
748
+ "content": "[unused60]",
749
+ "lstrip": false,
750
+ "normalized": true,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": false
754
+ },
755
+ "50346": {
756
+ "content": "[unused61]",
757
+ "lstrip": false,
758
+ "normalized": true,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": false
762
+ },
763
+ "50347": {
764
+ "content": "[unused62]",
765
+ "lstrip": false,
766
+ "normalized": true,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": false
770
+ },
771
+ "50348": {
772
+ "content": "[unused63]",
773
+ "lstrip": false,
774
+ "normalized": true,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": false
778
+ },
779
+ "50349": {
780
+ "content": "[unused64]",
781
+ "lstrip": false,
782
+ "normalized": true,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": false
786
+ },
787
+ "50350": {
788
+ "content": "[unused65]",
789
+ "lstrip": false,
790
+ "normalized": true,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": false
794
+ },
795
+ "50351": {
796
+ "content": "[unused66]",
797
+ "lstrip": false,
798
+ "normalized": true,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": false
802
+ },
803
+ "50352": {
804
+ "content": "[unused67]",
805
+ "lstrip": false,
806
+ "normalized": true,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": false
810
+ },
811
+ "50353": {
812
+ "content": "[unused68]",
813
+ "lstrip": false,
814
+ "normalized": true,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": false
818
+ },
819
+ "50354": {
820
+ "content": "[unused69]",
821
+ "lstrip": false,
822
+ "normalized": true,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": false
826
+ },
827
+ "50355": {
828
+ "content": "[unused70]",
829
+ "lstrip": false,
830
+ "normalized": true,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": false
834
+ },
835
+ "50356": {
836
+ "content": "[unused71]",
837
+ "lstrip": false,
838
+ "normalized": true,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": false
842
+ },
843
+ "50357": {
844
+ "content": "[unused72]",
845
+ "lstrip": false,
846
+ "normalized": true,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": false
850
+ },
851
+ "50358": {
852
+ "content": "[unused73]",
853
+ "lstrip": false,
854
+ "normalized": true,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": false
858
+ },
859
+ "50359": {
860
+ "content": "[unused74]",
861
+ "lstrip": false,
862
+ "normalized": true,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": false
866
+ },
867
+ "50360": {
868
+ "content": "[unused75]",
869
+ "lstrip": false,
870
+ "normalized": true,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": false
874
+ },
875
+ "50361": {
876
+ "content": "[unused76]",
877
+ "lstrip": false,
878
+ "normalized": true,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": false
882
+ },
883
+ "50362": {
884
+ "content": "[unused77]",
885
+ "lstrip": false,
886
+ "normalized": true,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": false
890
+ },
891
+ "50363": {
892
+ "content": "[unused78]",
893
+ "lstrip": false,
894
+ "normalized": true,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": false
898
+ },
899
+ "50364": {
900
+ "content": "[unused79]",
901
+ "lstrip": false,
902
+ "normalized": true,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": false
906
+ },
907
+ "50365": {
908
+ "content": "[unused80]",
909
+ "lstrip": false,
910
+ "normalized": true,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": false
914
+ },
915
+ "50366": {
916
+ "content": "[unused81]",
917
+ "lstrip": false,
918
+ "normalized": true,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": false
922
+ },
923
+ "50367": {
924
+ "content": "[unused82]",
925
+ "lstrip": false,
926
+ "normalized": true,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": false
930
+ }
931
+ },
932
+ "clean_up_tokenization_spaces": true,
933
+ "cls_token": "[CLS]",
934
+ "extra_special_tokens": {},
935
+ "mask_token": "[MASK]",
936
+ "max_length": 1024,
937
+ "model_input_names": [
938
+ "input_ids",
939
+ "attention_mask"
940
+ ],
941
+ "model_max_length": 1024,
942
+ "pad_to_multiple_of": null,
943
+ "pad_token": "[PAD]",
944
+ "pad_token_type_id": 0,
945
+ "padding_side": "right",
946
+ "sep_token": "[SEP]",
947
+ "stride": 0,
948
+ "tokenizer_class": "PreTrainedTokenizerFast",
949
+ "truncation_side": "right",
950
+ "truncation_strategy": "longest_first",
951
+ "unk_token": "[UNK]"
952
+ }