File size: 2,211 Bytes
67d18b1
 
 
 
 
cb9dc83
67d18b1
 
 
 
 
 
cb9dc83
67d18b1
 
 
cb9dc83
 
 
 
 
67d18b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d255665
e4621a4
25ab24e
e1459dd
cb9dc83
67d18b1
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: topic_classification_03
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# topic_classification_03

This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.0459
- Train Sparse Categorical Accuracy: 0.6535
- Validation Loss: 1.1181
- Validation Sparse Categorical Accuracy: 0.6354
- Epoch: 5

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch |
|:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:|
| 1.2710     | 0.5838                            | 1.1683          | 0.6156                                 | 0     |
| 1.1546     | 0.6193                            | 1.1376          | 0.6259                                 | 1     |
| 1.1163     | 0.6314                            | 1.1247          | 0.6292                                 | 2     |
| 1.0888     | 0.6400                            | 1.1253          | 0.6323                                 | 3     |
| 1.0662     | 0.6473                            | 1.1182          | 0.6344                                 | 4     |
| 1.0459     | 0.6535                            | 1.1181          | 0.6354                                 | 5     |


### Framework versions

- Transformers 4.20.1
- TensorFlow 2.9.1
- Datasets 2.3.2
- Tokenizers 0.12.1