File size: 2,211 Bytes
67d18b1 cb9dc83 67d18b1 cb9dc83 67d18b1 cb9dc83 67d18b1 d255665 e4621a4 25ab24e e1459dd cb9dc83 67d18b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: topic_classification_03
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# topic_classification_03
This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.0459
- Train Sparse Categorical Accuracy: 0.6535
- Validation Loss: 1.1181
- Validation Sparse Categorical Accuracy: 0.6354
- Epoch: 5
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch |
|:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:|
| 1.2710 | 0.5838 | 1.1683 | 0.6156 | 0 |
| 1.1546 | 0.6193 | 1.1376 | 0.6259 | 1 |
| 1.1163 | 0.6314 | 1.1247 | 0.6292 | 2 |
| 1.0888 | 0.6400 | 1.1253 | 0.6323 | 3 |
| 1.0662 | 0.6473 | 1.1182 | 0.6344 | 4 |
| 1.0459 | 0.6535 | 1.1181 | 0.6354 | 5 |
### Framework versions
- Transformers 4.20.1
- TensorFlow 2.9.1
- Datasets 2.3.2
- Tokenizers 0.12.1
|