File size: 5,107 Bytes
85e238e
1abd43d
 
 
 
85e238e
520a92d
 
 
 
 
 
1abd43d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85e238e
520a92d
85e238e
520a92d
 
 
 
85e238e
520a92d
85e238e
520a92d
85e238e
520a92d
85e238e
520a92d
85e238e
520a92d
85e238e
fadab48
85e238e
fadab48
85e238e
520a92d
 
 
85e238e
520a92d
 
 
 
 
 
 
85e238e
520a92d
 
 
 
 
 
85e238e
520a92d
 
 
 
 
 
 
 
 
 
 
85e238e
520a92d
85e238e
520a92d
 
85e238e
520a92d
 
 
1abd43d
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
---
language:
- fr
- en
license: apache-2.0
library_name: transformers
tags:
- lucie
- lucie-boosted
- llama
datasets:
- jpacifico/french-orca-dpo-pairs-revised
model-index:
- name: Lucie-Boosted-7B-Instruct
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 25.66
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Lucie-Boosted-7B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 10.26
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Lucie-Boosted-7B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 0.76
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Lucie-Boosted-7B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 2.24
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Lucie-Boosted-7B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 3.4
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Lucie-Boosted-7B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 7.0
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Lucie-Boosted-7B-Instruct
      name: Open LLM Leaderboard
---
### Lucie-Boosted-7B-Instruct

Post-training optimization of the foundation model [OpenLLM-France/Lucie-7B-Instruct](https://huggingface.co/OpenLLM-France/Lucie-7B-Instruct)  
DPO fine-tuning using the [jpacifico/french-orca-dpo-pairs-revised](https://huggingface.co/datasets/jpacifico/french-orca-dpo-pairs-revised) RLHF dataset.  
Training in French also enhances the model's overall performance.  
*Lucie-7B has a context size of 32K tokens*  

### OpenLLM Leaderboard

coming soon  

### MT-Bench

coming soon

### Usage

You can run this model using this [Colab notebook](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Chocolatine_14B_inference_test_colab.ipynb) 

You can also run Lucie-Boosted using the following code:  

```python
import transformers
from transformers import AutoTokenizer

# Format prompt
message = [
    {"role": "system", "content": "You are a helpful assistant chatbot."},
    {"role": "user", "content": "What is a Large Language Model?"}
]
tokenizer = AutoTokenizer.from_pretrained(new_model)
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)

# Create pipeline
pipeline = transformers.pipeline(
    "text-generation",
    model=new_model,
    tokenizer=tokenizer
)

# Generate text
sequences = pipeline(
    prompt,
    do_sample=True,
    temperature=0.7,
    top_p=0.9,
    num_return_sequences=1,
    max_length=200,
)
print(sequences[0]['generated_text'])
```

### Limitations

The Lucie-Boosted model is a quick demonstration that the Lucie foundation model can be easily fine-tuned to achieve compelling performance.  
It does not have any moderation mechanism.  

- **Developed by:** Jonathan Pacifico, 2025  
- **Model type:** LLM 
- **Language(s) (NLP):** French, English  
- **License:** Apache-2.0
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/jpacifico__Lucie-Boosted-7B-Instruct-details)

|      Metric       |Value|
|-------------------|----:|
|Avg.               | 8.22|
|IFEval (0-Shot)    |25.66|
|BBH (3-Shot)       |10.26|
|MATH Lvl 5 (4-Shot)| 0.76|
|GPQA (0-shot)      | 2.24|
|MuSR (0-shot)      | 3.40|
|MMLU-PRO (5-shot)  | 7.00|