Joosep Pata
commited on
Commit
·
d8246d6
1
Parent(s):
6c752bd
update readme
Browse files- README.md +2 -0
- cms/v2.2.0/pyg-cms_20241212_101648_120237/README.md +189 -0
README.md
CHANGED
|
@@ -19,7 +19,9 @@ Please see the linked model cards below for more details.
|
|
| 19 |
- [clic/clusters/v1.9.0](clic/clusters/v1.9.0/README.md)
|
| 20 |
- [clic/clusters/v2.0.0](clic/clusters/v2.0.0/README.md)
|
| 21 |
- [clic/clusters/v2.1.0](clic/clusters/v2.1.0/pyg-clic_20241106_104416_929167/README.md)
|
|
|
|
| 22 |
- [cms/v2.1.0](cms/v2.1.0/pyg-cms_20241101_090645_682892/README.md)
|
|
|
|
| 23 |
|
| 24 |
|
| 25 |
## Papers
|
|
|
|
| 19 |
- [clic/clusters/v1.9.0](clic/clusters/v1.9.0/README.md)
|
| 20 |
- [clic/clusters/v2.0.0](clic/clusters/v2.0.0/README.md)
|
| 21 |
- [clic/clusters/v2.1.0](clic/clusters/v2.1.0/pyg-clic_20241106_104416_929167/README.md)
|
| 22 |
+
- [clic/clusters/v2.2.0](clic/clusters/v2.2.0/pyg-clic_20250106_193536_269746/README.md)
|
| 23 |
- [cms/v2.1.0](cms/v2.1.0/pyg-cms_20241101_090645_682892/README.md)
|
| 24 |
+
- [cms/v2.2.0](cms/v2.2.0/pyg-cms_20241212_101648_120237/README.md)
|
| 25 |
|
| 26 |
|
| 27 |
## Papers
|
cms/v2.2.0/pyg-cms_20241212_101648_120237/README.md
ADDED
|
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Model Card for mlpf-cms-v2.2.0
|
| 2 |
+
|
| 3 |
+
This model reconstructs particles in a detector, based on the tracks and calorimeter clusters recorded by the detector.
|
| 4 |
+
The primary difference with respect to v2.2.0 is the inclusion of the sqrt(pt) weight term in the pT and energy regression loss.
|
| 5 |
+
Additionally, the model has been scaled down to ~5M parameters (previously ~100M) for more efficient inference.
|
| 6 |
+
|
| 7 |
+
## Model Details
|
| 8 |
+
|
| 9 |
+
The performance is measured with respect to generator-level jets and MET computed from Pythia particles, i.e. the truth-level jets and MET.
|
| 10 |
+
|
| 11 |
+
<details>
|
| 12 |
+
<summary>Jet performance</summary>
|
| 13 |
+
|
| 14 |
+
<img src="plots_checkpoint-05-3.498507/cms_pf_qcd/jet_response_iqr_over_med_pt.png" alt="ttbar jet resolution" width="300"/>
|
| 15 |
+
<img src="plots_checkpoint-05-3.498507/cms_pf_ttbar/jet_response_iqr_over_med_pt.png" alt="qq jet resolution" width="300"/>
|
| 16 |
+
<img src="plots_checkpoint-05-3.498507/cms_pf_ztt/jet_response_iqr_over_med_pt.png" alt="ttbar jet resolution" width="300"/>
|
| 17 |
+
|
| 18 |
+
</details>
|
| 19 |
+
|
| 20 |
+
<details>
|
| 21 |
+
<summary>MET performance</summary>
|
| 22 |
+
|
| 23 |
+
<img src="plots_checkpoint-05-3.498507/cms_pf_qcd/met_response_iqr_over_med.png" alt="ttbar MET resolution" width="300"/>
|
| 24 |
+
<img src="plots_checkpoint-05-3.498507/cms_pf_ttbar/met_response_iqr_over_med.png" alt="qq MET resolution" width="300"/>
|
| 25 |
+
<img src="plots_checkpoint-05-3.498507/cms_pf_ztt/met_response_iqr_over_med.png" alt="ttbar MET resolution" width="300"/>
|
| 26 |
+
|
| 27 |
+
</details>
|
| 28 |
+
|
| 29 |
+
### Model Description
|
| 30 |
+
|
| 31 |
+
- **Developed by:** CMS MLPF Team
|
| 32 |
+
- **Model type:** transformer
|
| 33 |
+
- **License:** Apache License
|
| 34 |
+
|
| 35 |
+
### Model Sources
|
| 36 |
+
|
| 37 |
+
- **Repository:** https://github.com/jpata/particleflow/releases/tag/v2.2.0
|
| 38 |
+
|
| 39 |
+
## Uses
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
This model may be used to study the physics and computational performance on ML-based reconstruction in simulation within the CMS collaboration.
|
| 43 |
+
|
| 44 |
+
### Out-of-Scope Use
|
| 45 |
+
|
| 46 |
+
This model is not intended for physics measurements on real data or for use outside the CMS collaboration.
|
| 47 |
+
|
| 48 |
+
## Bias, Risks, and Limitations
|
| 49 |
+
|
| 50 |
+
The model has only been trained on simulation data and has not been validated against real data.
|
| 51 |
+
The model has not been peer reviewed or published in a peer-reviewed journal.
|
| 52 |
+
|
| 53 |
+
## How to Get Started with the Model
|
| 54 |
+
|
| 55 |
+
Use the code below to get started with the model.
|
| 56 |
+
|
| 57 |
+
```
|
| 58 |
+
#get the code
|
| 59 |
+
git clone https://github.com/jpata/particleflow
|
| 60 |
+
cd particleflow
|
| 61 |
+
git checkout v2.2.0
|
| 62 |
+
|
| 63 |
+
#get the models
|
| 64 |
+
git clone https://huggingface.co/jpata/particleflow models
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
## Training Details
|
| 68 |
+
Trained on 1x A100 for 5 epochs over ~2 days.
|
| 69 |
+
|
| 70 |
+
### Training Data
|
| 71 |
+
The following datasets were used:
|
| 72 |
+
```
|
| 73 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/1/2.5.0
|
| 74 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/2/2.5.0
|
| 75 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/3/2.5.0
|
| 76 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/4/2.5.0
|
| 77 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/5/2.5.0
|
| 78 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/6/2.5.0
|
| 79 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/7/2.5.0
|
| 80 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/8/2.5.0
|
| 81 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/9/2.5.0
|
| 82 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd/10/2.5.0
|
| 83 |
+
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/1/2.5.0
|
| 84 |
+
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/2/2.5.0
|
| 85 |
+
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/3/2.5.0
|
| 86 |
+
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/4/2.5.0
|
| 87 |
+
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/5/2.5.0
|
| 88 |
+
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/6/2.5.0
|
| 89 |
+
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/7/2.5.0
|
| 90 |
+
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/8/2.5.0
|
| 91 |
+
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/9/2.5.0
|
| 92 |
+
8.4G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_qcd_nopu/10/2.5.0
|
| 93 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/1/2.5.0
|
| 94 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/2/2.5.0
|
| 95 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/3/2.5.0
|
| 96 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/4/2.5.0
|
| 97 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/5/2.5.0
|
| 98 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/6/2.5.0
|
| 99 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/7/2.5.0
|
| 100 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/8/2.5.0
|
| 101 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/9/2.5.0
|
| 102 |
+
19G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar/10/2.5.0
|
| 103 |
+
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/1/2.5.0
|
| 104 |
+
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/2/2.5.0
|
| 105 |
+
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/3/2.5.0
|
| 106 |
+
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/4/2.5.0
|
| 107 |
+
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/5/2.5.0
|
| 108 |
+
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/6/2.5.0
|
| 109 |
+
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/7/2.5.0
|
| 110 |
+
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/8/2.5.0
|
| 111 |
+
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/9/2.5.0
|
| 112 |
+
8.6G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ttbar_nopu/10/2.5.0
|
| 113 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/1/2.5.0
|
| 114 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/2/2.5.0
|
| 115 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/3/2.5.0
|
| 116 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/4/2.5.0
|
| 117 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/5/2.5.0
|
| 118 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/6/2.5.0
|
| 119 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/7/2.5.0
|
| 120 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/8/2.5.0
|
| 121 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/9/2.5.0
|
| 122 |
+
18G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt/10/2.5.0
|
| 123 |
+
5.8G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/1/2.5.0
|
| 124 |
+
5.8G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/2/2.5.0
|
| 125 |
+
5.7G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/3/2.5.0
|
| 126 |
+
5.8G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/4/2.5.0
|
| 127 |
+
5.7G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/5/2.5.0
|
| 128 |
+
5.7G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/6/2.5.0
|
| 129 |
+
5.7G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/7/2.5.0
|
| 130 |
+
5.7G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/8/2.5.0
|
| 131 |
+
5.7G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/9/2.5.0
|
| 132 |
+
5.8G /scratch/persistent/joosep/tensorflow_datasets/cms_pf_ztt_nopu/10/2.5.0
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
## Training Procedure
|
| 136 |
+
|
| 137 |
+
```bash
|
| 138 |
+
#!/bin/bash
|
| 139 |
+
#SBATCH --partition gpu
|
| 140 |
+
#SBATCH --gres gpu:a100:1
|
| 141 |
+
#SBATCH --mem-per-gpu 300G
|
| 142 |
+
#SBATCH -o logs/slurm-%x-%j-%N.out
|
| 143 |
+
|
| 144 |
+
IMG=/home/software/singularity/pytorch.simg:2024-12-03
|
| 145 |
+
cd ~/particleflow
|
| 146 |
+
|
| 147 |
+
ulimit -n 100000
|
| 148 |
+
singularity exec -B /scratch/persistent --nv \
|
| 149 |
+
--env PYTHONPATH=`pwd` \
|
| 150 |
+
--env KERAS_BACKEND=torch \
|
| 151 |
+
$IMG python3 mlpf/pipeline.py --gpus 1 \
|
| 152 |
+
--data-dir /scratch/persistent/joosep/tensorflow_datasets --config parameters/pytorch/pyg-cms.yaml \
|
| 153 |
+
--train --conv-type attention \
|
| 154 |
+
--gpu-batch-multiplier 5 --checkpoint-freq 1 --num-workers 8 --prefetch-factor 50 --comet --ntest 1000 --test-datasets cms_pf_qcd_nopu
|
| 155 |
+
```
|
| 156 |
+
|
| 157 |
+
## Evaluation
|
| 158 |
+
```bash
|
| 159 |
+
#!/bin/bash
|
| 160 |
+
#SBATCH --partition gpu
|
| 161 |
+
#SBATCH --gres gpu:mig:1
|
| 162 |
+
#SBATCH --mem-per-gpu 100G
|
| 163 |
+
#SBATCH -o logs/slurm-%x-%j-%N.out
|
| 164 |
+
|
| 165 |
+
IMG=/home/software/singularity/pytorch.simg:2024-08-18
|
| 166 |
+
cd ~/particleflow
|
| 167 |
+
|
| 168 |
+
WEIGHTS=experiments/pyg-cms_20241212_101648_120237/checkpoints/checkpoint-05-3.498507.pth
|
| 169 |
+
DATASET=$1
|
| 170 |
+
env
|
| 171 |
+
singularity exec -B /local -B /scratch/persistent --nv \
|
| 172 |
+
--env PYTHONPATH=`pwd` \
|
| 173 |
+
--env KERAS_BACKEND=torch \
|
| 174 |
+
$IMG python mlpf/pipeline.py --gpus 1 \
|
| 175 |
+
--data-dir /scratch/persistent/joosep/tensorflow_datasets --config parameters/pytorch/pyg-cms.yaml \
|
| 176 |
+
--test --make-plots --gpu-batch-multiplier 2 --load $WEIGHTS --ntest 10000 --dtype bfloat16 --num-workers 1 --prefetch-factor 10 --test-datasets $DATASET
|
| 177 |
+
```
|
| 178 |
+
## Citation
|
| 179 |
+
|
| 180 |
+
## Glossary
|
| 181 |
+
|
| 182 |
+
- PF: particle flow reconstruction
|
| 183 |
+
- MLPF: machine learning for particle flow
|
| 184 |
+
- CMS: Compact Muon Solenoid
|
| 185 |
+
|
| 186 |
+
## Model Card Contact
|
| 187 |
+
|
| 188 |
+
Joosep Pata, [email protected]
|
| 189 |
+
|