--- base_model: openai/whisper-base library_name: peft model-index: - name: lowhipa-base-cv results: [] datasets: - mozilla-foundation/common_voice_11_0 pipeline_tag: automatic-speech-recognition --- # lowhipa-base-cv This Whisper-for-IPA (WhIPA) model adapter is a PEFT LoRA fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on a subset of the CommonVoice11 dataset (1k samples each from Greek, Finnish, Hungarian, Japanese, Maltese, Polish, Tamil) with G2P-based IPA transcriptions. ## Model description For deployment and description, please refer to https://github.com/jshrdt/whipa. ``` from transformers import WhisperForConditionalGeneration, WhisperTokenizer, WhisperProcessor from peft import PeftModel tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-base", task="transcribe") tokenizer.add_special_tokens({"additional_special_tokens": ["<|ip|>"] + tokenizer.all_special_tokens}) base_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base") base_model.generation_config.lang_to_id["<|ip|>"] = tokenizer.convert_tokens_to_ids(["<|ip|>"])[0] base_model.resize_token_embeddings(len(tokenizer)) whipa_model = PeftModel.from_pretrained(base_model, "jshrdt/lowhipa-base-cv") whipa_model.generation_config.language = "<|ip|>" whipa_model.generation_config.task = "transcribe" whipa_processor = WhisperProcessor.from_pretrained("openai/whisper-base", task="transcribe") ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters ### Training results ### Framework versions - PEFT 0.15.1