Upload bot detection model - 2025-08-23 15:59
Browse files- README.md +205 -0
- config.json +27 -0
- inference_example.py +43 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- training_args.bin +3 -0
- training_info.json +75 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- text-classification
|
6 |
+
- bot-detection
|
7 |
+
- social-media
|
8 |
+
- distilroberta
|
9 |
+
- pytorch
|
10 |
+
- transformers
|
11 |
+
datasets:
|
12 |
+
- custom
|
13 |
+
widget:
|
14 |
+
- text: "🔥 AMAZING DEAL! Get 90% OFF now! Limited time only! Click here: bit.ly/deal123"
|
15 |
+
example_title: "Promotional Bot Text"
|
16 |
+
- text: "Just finished reading an interesting article about machine learning applications in healthcare."
|
17 |
+
example_title: "Human-like Text"
|
18 |
+
- text: "Follow for follow? Like my posts and I'll like yours back! 💯"
|
19 |
+
example_title: "Social Media Bot"
|
20 |
+
- text: "Had a wonderful dinner with my family tonight. These moments are precious."
|
21 |
+
example_title: "Authentic Human Text"
|
22 |
+
metrics:
|
23 |
+
- accuracy
|
24 |
+
- f1
|
25 |
+
- precision
|
26 |
+
- recall
|
27 |
+
model-index:
|
28 |
+
- name: distilroberta-bot-detection
|
29 |
+
results:
|
30 |
+
- task:
|
31 |
+
type: text-classification
|
32 |
+
name: Bot Detection
|
33 |
+
metrics:
|
34 |
+
- type: accuracy
|
35 |
+
value: 0.9423
|
36 |
+
name: Test Accuracy
|
37 |
+
- type: f1
|
38 |
+
value: 0.9424
|
39 |
+
name: Test F1-Score (Weighted)
|
40 |
+
- type: precision
|
41 |
+
value: 0.9428
|
42 |
+
name: Test Precision (Weighted)
|
43 |
+
- type: recall
|
44 |
+
value: 0.9423
|
45 |
+
name: Test Recall (Weighted)
|
46 |
+
---
|
47 |
+
|
48 |
+
# Bot Detection Model - DistilRoBERTa
|
49 |
+
|
50 |
+
## Model Description
|
51 |
+
|
52 |
+
This model is a fine-tuned DistilRoBERTa-base model for binary classification of social media text to distinguish between human-authored and bot-generated content. The model uses class-weighted training to handle dataset imbalance and has been validated using 5-fold cross-validation.
|
53 |
+
|
54 |
+
## Performance
|
55 |
+
|
56 |
+
### Cross-Validation Results (5-Fold)
|
57 |
+
| Metric | Mean ± Std | Range |
|
58 |
+
|--------|------------|-------|
|
59 |
+
| **Accuracy** | 0.9433 ± 0.0052 | 0.9385 - 0.9497 |
|
60 |
+
| **F1-Score (Weighted)** | 0.9434 ± 0.0051 | 0.9387 - 0.9497 |
|
61 |
+
| **Precision (Weighted)** | 0.9444 ± 0.0045 | 0.9397 - 0.9498 |
|
62 |
+
|
63 |
+
### Test Set Performance
|
64 |
+
- **Accuracy**: 0.9423
|
65 |
+
- **F1-Score (Weighted)**: 0.9424
|
66 |
+
- **Precision (Weighted)**: 0.9428
|
67 |
+
- **Recall (Weighted)**: 0.9423
|
68 |
+
- **Inference Speed**: 232.83 samples/second
|
69 |
+
|
70 |
+
## Usage
|
71 |
+
|
72 |
+
### Quick Start
|
73 |
+
```python
|
74 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
75 |
+
import torch
|
76 |
+
import re
|
77 |
+
|
78 |
+
# Load model and tokenizer
|
79 |
+
model_name = "junaid1993/distilroberta-bot-detection"
|
80 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
81 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
82 |
+
|
83 |
+
def preprocess_text(text):
|
84 |
+
"""Clean text for bot detection"""
|
85 |
+
if not isinstance(text, str):
|
86 |
+
return ""
|
87 |
+
|
88 |
+
# Remove URLs
|
89 |
+
text = re.sub(r'http\S+|www\.\S+', '', text)
|
90 |
+
# Remove @ and # symbols
|
91 |
+
text = re.sub(r'[@#]', '', text)
|
92 |
+
# Remove punctuation and special characters
|
93 |
+
text = re.sub(r'[^\w\s]', '', text)
|
94 |
+
# Remove numbers
|
95 |
+
text = re.sub(r'\d+', '', text)
|
96 |
+
# Clean whitespace
|
97 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
98 |
+
|
99 |
+
return text.lower()
|
100 |
+
|
101 |
+
def predict_bot(text, threshold=0.5):
|
102 |
+
"""Predict if text is bot-generated"""
|
103 |
+
clean_text = preprocess_text(text)
|
104 |
+
|
105 |
+
if not clean_text:
|
106 |
+
return {"prediction": "unknown", "confidence": 0.5}
|
107 |
+
|
108 |
+
inputs = tokenizer(
|
109 |
+
clean_text,
|
110 |
+
return_tensors="pt",
|
111 |
+
truncation=True,
|
112 |
+
padding=True,
|
113 |
+
max_length=512
|
114 |
+
)
|
115 |
+
|
116 |
+
with torch.no_grad():
|
117 |
+
outputs = model(**inputs)
|
118 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
119 |
+
|
120 |
+
bot_prob = probabilities[0][1].item()
|
121 |
+
prediction = "bot" if bot_prob > threshold else "human"
|
122 |
+
|
123 |
+
return {
|
124 |
+
"prediction": prediction,
|
125 |
+
"bot_probability": round(bot_prob, 4),
|
126 |
+
"human_probability": round(probabilities[0][0].item(), 4)
|
127 |
+
}
|
128 |
+
|
129 |
+
# Example usage
|
130 |
+
text = "🔥 AMAZING DEAL! Click here now!"
|
131 |
+
result = predict_bot(text)
|
132 |
+
print(f"Prediction: {result['prediction']} (Bot: {result['bot_probability']})")
|
133 |
+
```
|
134 |
+
|
135 |
+
## Training Details
|
136 |
+
|
137 |
+
### Model Architecture
|
138 |
+
- **Base Model**: distilroberta-base
|
139 |
+
- **Task**: Binary sequence classification
|
140 |
+
- **Classes**: Human (0) vs Bot (1)
|
141 |
+
- **Parameters**: ~82M parameters
|
142 |
+
|
143 |
+
### Training Configuration
|
144 |
+
- **Epochs**: 10 (with early stopping)
|
145 |
+
- **Batch Size**: 2 per device, gradient accumulation steps: 8
|
146 |
+
- **Learning Rate**: Automatic (AdamW optimizer)
|
147 |
+
- **Weight Decay**: 0.01
|
148 |
+
- **Mixed Precision**: FP16
|
149 |
+
- **Class Weighting**: Applied to handle dataset imbalance
|
150 |
+
|
151 |
+
### Data Preprocessing
|
152 |
+
1. URL removal
|
153 |
+
2. Special character cleaning (@ symbols, hashtags)
|
154 |
+
3. Punctuation removal
|
155 |
+
4. Number removal
|
156 |
+
5. Whitespace normalization
|
157 |
+
6. Lowercase conversion
|
158 |
+
|
159 |
+
### Validation Methodology
|
160 |
+
- **Cross-Validation**: 5-fold Stratified K-Fold
|
161 |
+
- **Test Split**: 20% holdout set
|
162 |
+
- **Metrics**: Accuracy, Precision, Recall, F1-score (both weighted and macro)
|
163 |
+
|
164 |
+
## Limitations
|
165 |
+
|
166 |
+
- **Domain**: Primarily trained on social media text patterns
|
167 |
+
- **Language**: English text only
|
168 |
+
- **Temporal**: Bot patterns may evolve over time, requiring retraining
|
169 |
+
- **Context**: Performance may vary with text length and complexity
|
170 |
+
|
171 |
+
## Intended Use
|
172 |
+
|
173 |
+
This model is designed for:
|
174 |
+
- Social media content moderation
|
175 |
+
- Academic research on bot detection
|
176 |
+
- Content analysis and verification
|
177 |
+
|
178 |
+
## Ethical Considerations
|
179 |
+
|
180 |
+
- This model should be used responsibly and not for harassment
|
181 |
+
- Results should be interpreted with appropriate confidence thresholds
|
182 |
+
- Human oversight is recommended for critical decisions
|
183 |
+
- Regular model updates may be needed as bot techniques evolve
|
184 |
+
|
185 |
+
## Citation
|
186 |
+
|
187 |
+
```bibtex
|
188 |
+
@model{distilroberta-bot-detection-2024,
|
189 |
+
title={Bot Detection Model using DistilRoBERTa},
|
190 |
+
author={Junaid},
|
191 |
+
year={2024},
|
192 |
+
publisher={Hugging Face},
|
193 |
+
url={https://huggingface.co/junaid1993/distilroberta-bot-detection}
|
194 |
+
}
|
195 |
+
```
|
196 |
+
|
197 |
+
## License
|
198 |
+
|
199 |
+
MIT License
|
200 |
+
|
201 |
+
---
|
202 |
+
|
203 |
+
**Model Card Created**: 2025-08-23
|
204 |
+
**Framework**: PyTorch + Transformers
|
205 |
+
**Validation**: 5-Fold Cross-Validation with Class Weighting
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"RobertaForSequenceClassification"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "roberta",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"problem_type": "single_label_classification",
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.55.2",
|
24 |
+
"type_vocab_size": 1,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 50265
|
27 |
+
}
|
inference_example.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Simple Inference Example
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import torch
|
4 |
+
import re
|
5 |
+
|
6 |
+
# Load model
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("junaid1993/distilroberta-bot-detection")
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained("junaid1993/distilroberta-bot-detection")
|
9 |
+
|
10 |
+
def preprocess_text(text):
|
11 |
+
if not isinstance(text, str):
|
12 |
+
return ""
|
13 |
+
text = re.sub(r'http\S+|www\.\S+', '', text)
|
14 |
+
text = re.sub(r'[@#]', '', text)
|
15 |
+
text = re.sub(r'[^\w\s]', '', text)
|
16 |
+
text = re.sub(r'\d+', '', text)
|
17 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
18 |
+
return text.lower()
|
19 |
+
|
20 |
+
def predict_bot(text):
|
21 |
+
clean_text = preprocess_text(text)
|
22 |
+
inputs = tokenizer(clean_text, return_tensors="pt", truncation=True, max_length=512)
|
23 |
+
|
24 |
+
with torch.no_grad():
|
25 |
+
outputs = model(**inputs)
|
26 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
27 |
+
|
28 |
+
bot_prob = probabilities[0][1].item()
|
29 |
+
prediction = "Bot" if bot_prob > 0.5 else "Human"
|
30 |
+
|
31 |
+
return {"prediction": prediction, "bot_probability": bot_prob}
|
32 |
+
|
33 |
+
# Example usage
|
34 |
+
examples = [
|
35 |
+
"🔥 AMAZING DEAL! Get 90% OFF now!",
|
36 |
+
"Just finished reading a great book about AI."
|
37 |
+
]
|
38 |
+
|
39 |
+
for text in examples:
|
40 |
+
result = predict_bot(text)
|
41 |
+
print(f"Text: {text}")
|
42 |
+
print(f"Prediction: {result['prediction']} ({result['bot_probability']:.3f})")
|
43 |
+
print("-" * 50)
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb6005d01fca73198876b7048d1d6cff380011e6a72779ce4285856951e1fa05
|
3 |
+
size 328492280
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<s>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<pad>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"50264": {
|
37 |
+
"content": "<mask>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"bos_token": "<s>",
|
46 |
+
"clean_up_tokenization_spaces": false,
|
47 |
+
"cls_token": "<s>",
|
48 |
+
"eos_token": "</s>",
|
49 |
+
"errors": "replace",
|
50 |
+
"extra_special_tokens": {},
|
51 |
+
"mask_token": "<mask>",
|
52 |
+
"model_max_length": 512,
|
53 |
+
"pad_token": "<pad>",
|
54 |
+
"sep_token": "</s>",
|
55 |
+
"tokenizer_class": "RobertaTokenizer",
|
56 |
+
"trim_offsets": true,
|
57 |
+
"unk_token": "<unk>"
|
58 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f15cbd61cefd39e9a728c08ffcb3a729d0182a60e8d96281339f9800bbedc8e0
|
3 |
+
size 5368
|
training_info.json
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_info": {
|
3 |
+
"model_type": "distilroberta-base",
|
4 |
+
"task": "binary_classification",
|
5 |
+
"classes": [
|
6 |
+
"human",
|
7 |
+
"bot"
|
8 |
+
],
|
9 |
+
"num_parameters": "82M",
|
10 |
+
"framework": "transformers",
|
11 |
+
"pytorch_version": ">=1.12.0"
|
12 |
+
},
|
13 |
+
"training_methodology": {
|
14 |
+
"method": "class_weighted_cross_validation",
|
15 |
+
"cv_folds": 5,
|
16 |
+
"cv_strategy": "stratified",
|
17 |
+
"early_stopping": true,
|
18 |
+
"early_stopping_patience": 3,
|
19 |
+
"mixed_precision": "fp16"
|
20 |
+
},
|
21 |
+
"hyperparameters": {
|
22 |
+
"batch_size_per_device": 2,
|
23 |
+
"gradient_accumulation_steps": 8,
|
24 |
+
"max_epochs": 10,
|
25 |
+
"weight_decay": 0.01,
|
26 |
+
"optimizer": "AdamW"
|
27 |
+
},
|
28 |
+
"performance_summary": {
|
29 |
+
"cv_metrics": {
|
30 |
+
"accuracy": {
|
31 |
+
"mean": 0.9433,
|
32 |
+
"std": 0.0052,
|
33 |
+
"min": 0.9385,
|
34 |
+
"max": 0.9497
|
35 |
+
},
|
36 |
+
"f1_weighted": {
|
37 |
+
"mean": 0.9434,
|
38 |
+
"std": 0.0051,
|
39 |
+
"min": 0.9387,
|
40 |
+
"max": 0.9497
|
41 |
+
},
|
42 |
+
"f1_macro": {
|
43 |
+
"mean": 0.9419,
|
44 |
+
"std": 0.0052,
|
45 |
+
"min": 0.9371,
|
46 |
+
"max": 0.9483
|
47 |
+
},
|
48 |
+
"precision_weighted": {
|
49 |
+
"mean": 0.9444,
|
50 |
+
"std": 0.0045,
|
51 |
+
"min": 0.9397,
|
52 |
+
"max": 0.9498
|
53 |
+
},
|
54 |
+
"recall_weighted": {
|
55 |
+
"mean": 0.9433,
|
56 |
+
"std": 0.0052,
|
57 |
+
"min": 0.9385,
|
58 |
+
"max": 0.9497
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"test_metrics": {
|
62 |
+
"loss": 0.1511,
|
63 |
+
"accuracy": 0.9423,
|
64 |
+
"precision_weighted": 0.9428,
|
65 |
+
"recall_weighted": 0.9423,
|
66 |
+
"f1_weighted": 0.9424,
|
67 |
+
"precision_macro": 0.9393,
|
68 |
+
"recall_macro": 0.9427,
|
69 |
+
"f1_macro": 0.9409,
|
70 |
+
"runtime": 121.6927,
|
71 |
+
"samples_per_second": 232.832,
|
72 |
+
"steps_per_second": 8.316
|
73 |
+
}
|
74 |
+
}
|
75 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|