File size: 5,022 Bytes
17e0773
 
 
 
 
 
 
46ef547
8bb63f4
 
 
17e0773
46ef547
 
8bb63f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17e0773
 
 
 
8bb63f4
17e0773
 
 
 
46ef547
17e0773
8bb63f4
 
 
 
 
 
 
 
 
 
 
 
17e0773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bb63f4
 
17e0773
8bb63f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17e0773
 
 
 
 
 
8bb63f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
---
language:
- en
base_model: Qwen/Qwen3-8B
library_name: transformers
pipeline_tag: text-generation
tags:
- axolotl
- reasoning
- math
- commonsense
license: apache-2.0
datasets:
- NousResearch/Hermes-3-Dataset
model-index:
- name: Qwen3-Hermes8B-v1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag
      type: hellaswag
    metrics:
    - type: accuracy
      value: 0.823
      name: Accuracy
  - task:
      type: text-generation
      name: Mathematical Reasoning
    dataset:
      name: GSM8K
      type: gsm8k
    metrics:
    - type: accuracy
      value: 0.871
      name: Accuracy
  - task:
      type: text-generation
      name: Theory of Mind
    dataset:
      name: TheoryPlay
      type: theoryplay
    metrics:
    - type: accuracy
      value: 0.35
      name: Accuracy
---

# Qwen3-Hermes8B-v1

This is a merged LoRA model based on Qwen/Qwen3-8B, SFT on Hermes3 Dataset. The model demonstrates strong performance across reasoning, mathematical problem-solving, and commonsense understanding tasks.

## Model Details

- **Base Model**: Qwen/Qwen3-8B
- **Language**: English (en)
- **Library**: transformers
- **Training Method**: LoRA fine-tuning with Axolotl
- **Infrastructure**: 8xB200 Cluster from PrimeIntellect
- **Training Framework**: DeepSpeed Zero2

## Performance

| Benchmark | Score | Description |
|-----------|-------|-------------|
| **HellaSwag** | 82.3% | Commonsense reasoning and natural language inference |
| **GSM8K** | 87.1% | Grade school math word problems |
| **TheoryPlay** | 35% | Theory of mind and social reasoning tasks |


## Usage

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "justinj92/Qwen3-Hermes8B-v1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.float16,
    device_map="auto"
)

# Example usage for reasoning tasks
text = "Sarah believes that her keys are in her purse, but they are actually on the kitchen table. Where will Sarah look for her keys?"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(
    **inputs, 
    max_length=200,
    temperature=0.1,
    do_sample=True,
    pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```

### Chat Format

This model supports the Hermes chat format:

```python
def format_chat(messages):
    formatted = ""
    for message in messages:
        role = message["role"]
        content = message["content"]
        if role == "system":
            formatted += f"<|im_start|>system\n{content}<|im_end|>\n"
        elif role == "user":
            formatted += f"<|im_start|>user\n{content}<|im_end|>\n"
        elif role == "assistant":
            formatted += f"<|im_start|>assistant\n{content}<|im_end|>\n"
    formatted += "<|im_start|>assistant\n"
    return formatted

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "Solve this math problem: A store has 45 apples. If they sell 1/3 of them in the morning and 1/5 of the remaining apples in the afternoon, how many apples are left?"}
]

prompt = format_chat(messages)
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=300, temperature=0.1)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```

## Training Details

- **Training Framework**: Axolotl with DeepSpeed Zero2 optimization
- **Hardware**: 8x NVIDIA B200 GPUs (PrimeIntellect cluster)
- **Base Model**: Qwen/Qwen3-8B
- **Training Method**: Low-Rank Adaptation (LoRA)
- **Dataset**: NousResearch/Hermes-3-Dataset
- **Training Duration**: 6 hours
- **Learning Rate**: 0.0004
- **Batch Size**: 8
- **Sequence Length**: 4096

## Evaluation Methodology

All evaluations were conducted using:
- **HellaSwag**: Standard validation set with 4-way multiple choice accuracy
- **GSM8K**: Test set with exact match accuracy on final numerical answers
- **TheoryPlay**: Validation set with accuracy on theory of mind reasoning tasks

## Limitations

- The model may still struggle with very complex mathematical proofs
- Performance on non-English languages may be limited
- May occasionally generate inconsistent responses in edge cases
- Training data cutoff affects knowledge of recent events

## Ethical Considerations

This model has been trained on curated datasets and should be used responsibly. Users should:
- Verify important information from the model
- Be aware of potential biases in training data
- Use appropriate content filtering for production applications

## Citation

```bibtex
@misc{qwen3-hermes8b-v1,
  title={Qwen3-Hermes8B-v1: A Fine-tuned Language Model for Reasoning Tasks},
  author={[Your Name]},
  year={2025},
  url={https://huggingface.co/justinj92/Qwen3-Hermes8B-v1}
}
```

## License

This model is released under the Apache 2.0 license.