from typing import Dict, Iterable, List, Optional, Tuple, Union import collections import glob import json import hashlib import itertools import logging import multiprocessing import os import pickle import random import requests import sys import zipfile import datasets import numpy as np import torch import tqdm import transformers from cde.lib.dist import get_num_proc, get_rank def get_cde_cache_dir() -> str: script_directory = os.path.normpath( os.path.join( os.path.dirname(os.path.abspath(__file__)), os.pardir, os.pardir, ) ) return os.path.join(script_directory, "data") def get_cache_location_from_kwargs(**kwargs): cache_location = os.path.join( get_cde_cache_dir(), "cluster" ) os.makedirs(cache_location, exist_ok=True) return os.path.join(cache_location, md5_hash_kwargs(**kwargs)) def process_qrels_uncached(corpus: datasets.Dataset, qrels: datasets.Dataset) -> Tuple[Dict[str, List[float]], Dict[str, List[str]]]: qrels_idxs = collections.defaultdict(list) qrels_scores = collections.defaultdict(list) corpus_ids = np.array(corpus['_id']) skipped_qrels = 0 for ex in tqdm.tqdm(qrels, desc='processing qrels', colour='#964B00', leave=False): # # example: # { # 'query-id': 1, # 'corpus-id': 'b0680508-2019-04-18T13:48:51Z-00002-000', # 'score': 2 # } # q_id = str(ex['query-id']) c_idxs = (corpus_ids == str(ex['corpus-id'])).nonzero()[0] # assert len(c_idxs) <= 1, f"error - duplicate corpus ID? (found {len(c_idxs)} matches)" # if len(c_idxs): qrels_idxs[q_id].append(c_idxs[0]) qrels_scores[q_id].append(ex['score']) else: skipped_qrels += 1 # if skipped_qrels > 0: logging.warning(f'Warning: Skipped {skipped_qrels}/{len(qrels)} qrels.') return qrels_idxs, qrels_scores def process_qrels( corpus: datasets.Dataset, qrels: datasets.Dataset, use_cache: bool = True ) -> Tuple[Dict[str, List[float]], Dict[str, List[str]]]: dataset_cache_file = '_'.join( (corpus.cache_files[0]['filename'], qrels.cache_files[0]['filename']) ) cache_file = strip_extension(dataset_cache_file) + '_processed_qrels.p' os.makedirs(os.path.dirname(cache_file), exist_ok=True) if not (use_cache and os.path.exists(cache_file)): qrels_idxs, qrels_scores = process_qrels_uncached( corpus=corpus, qrels=qrels ) if use_cache: pickle.dump((qrels_idxs, qrels_scores), open(cache_file, 'wb')) else: qrels_idxs, qrels_scores = pickle.load(open(cache_file, 'rb')) return qrels_idxs, qrels_scores def strip_extension(filename: str) -> str: """Strips file extension. Ex: >> strip_extension('/root/dir/sub/file.ext') '/root/dir/sub/file' """ return os.path.splitext(filename)[0] def md5_hash(t: Tuple[str]) -> str: return hashlib.md5('__'.join(t).encode()).hexdigest() def md5_hash_kwargs(**kwargs) -> str: # We ignore special hf args that start with _ like '__cached__setup_devices'. safe_kwargs = {k: str(v) for k,v in kwargs.items() if not k.startswith('_')} s = json.dumps(safe_kwargs, sort_keys=True) return hashlib.md5(s.encode()).hexdigest() def download_url(url: str, save_path: str, chunk_size: int = 1024): """Download url with progress bar using tqdm https://stackoverflow.com/questions/15644964/python-progress-bar-and-downloads Args: url (str): downloadable url save_path (str): local path to save the downloaded file chunk_size (int, optional): chunking of files. Defaults to 1024. """ r = requests.get(url, stream=True) total = int(r.headers.get('Content-Length', 0)) with open(save_path, 'wb') as fd, tqdm.tqdm( desc=save_path, total=total, unit='iB', unit_scale=True, unit_divisor=chunk_size, ) as bar: for data in r.iter_content(chunk_size=chunk_size): size = fd.write(data) bar.update(size) def unzip(zip_file: str, out_dir: str): print("unzipping =>", zip_file) zip_ = zipfile.ZipFile(zip_file, "r") zip_.extractall(path=out_dir) zip_.close() def download_url_and_unzip(url: str, out_dir: str, chunk_size: int = 1024) -> str: os.makedirs(out_dir, exist_ok=True) dataset = url.split("/")[-1] zip_file = os.path.join(out_dir, dataset) if not os.path.isfile(zip_file): logging.info("Downloading {} ...".format(dataset)) download_url(url, zip_file, chunk_size) if not os.path.isdir(zip_file.replace(".zip", "")): logging.info("Unzipping {} ...".format(dataset)) unzip(zip_file, out_dir) return os.path.join(out_dir, dataset.replace(".zip", "")) def tqdm_if_main_worker(iterable: Iterable, **kwargs) -> Iterable: if get_rank() == 0: return tqdm.tqdm(iterable, **kwargs) else: return iterable class ContextualModelConfig(transformers.configuration_utils.PretrainedConfig): """We create a dummy configuration class that will just set properties based on whatever kwargs we pass in. When this class is initialized (see experiments.py) we pass in the union of all data, model, and training args, all of which should get saved to the config json. """ def __init__(self, **kwargs): for key, value in kwargs.items(): try: json.dumps(value) setattr(self, key, value) except TypeError: # value was not JSON-serializable, skip continue super().__init__() def independent_crop( input_ids: torch.Tensor, pad_token_id: int, l1: int = 256, l2: int = 256) -> Tuple[torch.Tensor, torch.Tensor]: """Returns two independent crops from input_ids. Assumes input_ids has a beginning and end token, like [101, ..., 102, 0, 0, 0]. Args: input_ids: tensor of IDs pad_token_id: ID of pad tokens in input_ids l1: length of span 1, cropped l2: length of span 2, cropped Returns: span1: first crop (of length l1) span2: second crop (of length l2) """ # Count tokens until pad. if (input_ids == pad_token_id).sum() == 0: N = len(input_ids) else: N = (input_ids == pad_token_id).int().argmax().item() #### ### ## ## Contriever: We use the random cropping data ## augmentation, with documents of 256 tokens and span ## sizes sampled between 5% and 50% of the document ## length ## ### ##### ####### LaPraDor: The maximum lengths set for queries and ####### documents are 64 and 350... ##### # TODO is this divide-by-two a good idea? (Don't want s1=s2 ever..) nl1 = min(N//2, l1) nl2 = min(N//2, l2) s1_start = random.randint(1, N-nl1) s2_start = random.randint(1, N-nl2) s1_idxs = itertools.chain( [0], range(s1_start, s1_start+nl1), [N-1] ) s1 = input_ids[torch.tensor(list(s1_idxs))] s2_idxs = itertools.chain( [0], range(s2_start, s2_start+nl2), [N-1] ) s2 = input_ids[torch.tensor(list(s2_idxs))] return (s1, s2) def load_dataset_tables( files: Iterable[str], num_workers: int = 16 ) -> Iterable[datasets.table.MemoryMappedTable]: import concurrent from multiprocessing import Pool # num_workers = min(num_workers, len(files)) num_workers = min(32, len(files)) use_threads = True if use_threads: pool_cls = concurrent.futures.ThreadPoolExecutor pool_kwargs = {"max_workers": num_workers} else: pool_cls = Pool pool_kwargs = {"processes": num_workers} with pool_cls(**pool_kwargs) as pool: if len(files) > 10: files = tqdm_if_main_worker( files, desc=f"Loading {len(files)} files with {num_workers} workers", total=len(files), colour="#ffbd88" ) result = list( pool.map(datasets.table.MemoryMappedTable.from_file, files) ) return result def datasets_fast_load_from_disk(cache_path: str) -> datasets.Dataset: logging.info(f"fast_load_from_disk called with path:", cache_path) dataset_info_path = os.path.join(cache_path, "dataset_info.json") with open(dataset_info_path, encoding="utf-8") as dataset_info_file: dataset_info = datasets.DatasetInfo.from_dict(json.load(dataset_info_file)) dataset_state_path = os.path.join(cache_path, "state.json") with open(dataset_state_path, encoding="utf-8") as state_file: state = json.load(state_file) files = glob.glob(os.path.join(cache_path, "data-*.arrow")) files = sorted(files) num_workers = get_num_proc() ds_tables = load_dataset_tables( files=files, num_workers=num_workers ) arrow_table = datasets.table.concat_tables(ds_tables) split = state["_split"] split = datasets.splits.Split(split) if split is not None else split # print("returning dataset") return datasets.Dataset( arrow_table=arrow_table, info=dataset_info, split=split, fingerprint=state["_fingerprint"], ) def tokenize_dataset( dataset: datasets.Dataset, tokenizer: transformers.PreTrainedTokenizer, max_length: int, text_key: str, padding_strategy: str ) -> datasets.Dataset: def tokenize_text(ex: Dict) -> Dict: tt = tokenizer( ex[text_key], max_length=max_length, truncation=True, padding=padding_strategy, ) for k,v in tt.items(): ex[f"{text_key}_{k}"] = v ex["length"] = [len(tt) for tt in ex[f"{text_key}_input_ids"]] return ex # generate unique hash for tokenizer vocab = tokenizer.vocab vocab_words = tuple(sorted(vocab.keys(), key=lambda word: vocab[word])) vocab_hash = md5_hash(vocab_words) data_fingerprint = '__'.join(( dataset._fingerprint, str(vocab_hash), str(max_length), text_key, padding_strategy )) data_fingerprint = md5_hash(data_fingerprint) dataset = dataset.map( tokenize_text, new_fingerprint=data_fingerprint, batched=True, load_from_cache_file=True, ) return dataset class TensorRunningAverages: _store_sum: Dict[str, torch.Tensor] _store_total: Dict[str, torch.Tensor] def __init__(self): self._store_sum = {} self._store_total = {} def __iter__(self) -> Iterable[str]: return iter(self._store_sum.keys()) def update(self, key: str, val: Union[int, float, torch.Tensor]) -> None: if key not in self._store_sum: self.clear(key) if isinstance(val, torch.Tensor): val = val.item() # tensor -> num self._store_sum[key] += val self._store_total[key] += 1 def get(self, key: str) -> float: total = max(self._store_total.get(key).item(), 1.0) return (self._store_sum[key] / float(total)).item() or 0.0 def clear(self, key: str) -> None: self._store_sum[key] = torch.tensor(0.0, dtype=torch.float32) self._store_total[key] = torch.tensor(0, dtype=torch.int32) def clear_all(self) -> None: for key in self._store_sum: self.clear(key) def get_and_clear_all(self) -> Dict[str, float]: metrics = {} for key in self: metrics[key] = self.get(key) self.clear(key) return metrics def load_embedder_and_tokenizer(name: str) -> Tuple[ transformers.PreTrainedModel, transformers.PreTrainedTokenizer ]: if name.startswith("nomic") or (name == "bert-base-uncased"): from cde.lib.nomic_bert import NomicBertModel if name.endswith("--from-scratch"): name = name.replace("--from-scratch", "") config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True) model = NomicBertModel._from_config(config) else: model = NomicBertModel.from_pretrained( name, add_pooling_layer=False ) tokenizer = transformers.AutoTokenizer.from_pretrained(name) elif name in ["gtr-base", "gtr_base"]: model = transformers.AutoModel.from_pretrained( "sentence-transformers/gtr-t5-base" ).encoder tokenizer = transformers.AutoTokenizer.from_pretrained( "sentence-transformers/gtr-t5-base" ) elif name == "pile-t5-base-encoder": model = transformers.AutoModel.from_pretrained( "EleutherAI/pile-t5-base" ).encoder tokenizer = transformers.AutoTokenizer.from_pretrained( "EleutherAI/pile-t5-base" ) tokenizer.pad_token = tokenizer.eos_token elif name == "pile-t5-base-decoder": model = transformers.AutoModel.from_pretrained( "EleutherAI/pile-t5-base" ).decoder tokenizer = transformers.AutoTokenizer.from_pretrained( "EleutherAI/pile-t5-base" ) tokenizer.pad_token = tokenizer.eos_token elif name.startswith("gpt2") or name.startswith("meta-llama") or ("Llama" in name): model = transformers.AutoModelForCausalLM.from_pretrained( name, # torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2" if torch.cuda.is_available() else "sdpa", low_cpu_mem_usage=True, # device_map="auto", ) model.padding_side = "right" tokenizer = transformers.AutoTokenizer.from_pretrained(name) tokenizer.pad_token = tokenizer.eos_token tokenizer.add_eos_token = True elif "Modern" in name: print("special loading for ModernBERT!") # [1] needed for faster training # model = transformers.AutoModel.from_pretrained(name, trust_remote_code=True, reference_compile=True) # [2] needed for non-breaking inference model = transformers.AutoModel.from_pretrained(name, trust_remote_code=True, reference_compile=False) tokenizer = transformers.AutoTokenizer.from_pretrained(name) else: model = transformers.AutoModel.from_pretrained(name, trust_remote_code=True) tokenizer = transformers.AutoTokenizer.from_pretrained(name) return model, tokenizer def inputs_for_key(inputs: Dict[str, torch.Tensor], key: str): key += "_" return {k.replace(key, ""): v for k,v in inputs.items() if k.startswith(key)} def count_cpus() -> int: try: return len(os.sched_getaffinity(0)) except AttributeError: return multiprocessing.cpu_count() def shuffle_batches(g: torch.Generator, list_of_tensors: List[torch.Tensor]) -> List[int]: all_indices = [] for batch_tensor in tqdm_if_main_worker(list_of_tensors, colour="green", desc="Sampler shuffling per-batch"): rand_perm = torch.randperm(len(batch_tensor), generator=g) batch_list = batch_tensor[rand_perm].tolist() all_indices.extend(batch_list) return all_indices # def shuffle_batches_multiproc(g: torch.Generator, list_of_tensors: List[torch.Tensor], num_processes: int = 8) -> List[int]: # all_indices = [] # print(f"Shuffling {len(list_of_tensors)} tensors with {num_processes} workers.") # pbar = tqdm_if_main_worker(list_of_tensors, colour="orange", desc=f"Sampler shuffling per-batch (nproc={num_processes})") # pool = multiprocessing.Pool(processes=num_processes) # chunk_size = len(list_of_tensors) // num_processes # chunks = [list_of_tensors[i:i + chunk_size] for i in range(0, len(list_of_tensors), chunk_size)] # worker_func = functools.partial(shuffle_batches, g=g) # results = pool.map(worker_func, chunks) # all_indices = [] # for result in results: # all_indices.extend(result) # pbar.update() # return all_indices def exit_if_running_or_finished_wandb( project_name: str, exp_group: str, exp_name: str ) -> None: print("Checking if experiment is already running...") import wandb api = wandb.Api() running_runs = api.runs( path="cde-0", filters={ "display_name": exp_name, "state": {"$regex": "Running|Finished"}, "config.exp_group": exp_group, } ) print("Found", len(running_runs), f"runs with name {exp_name} and group {exp_group} in {project_name}.") if len(running_runs) > 0: print("Exiting because experiment is already running or completed.") sys.exit(0) HN_FILTER_TOKENIZER_MAP = { "nomic": "nomic-ai/nomic-embed-text-v1", "stella": "dunzhang/stella_en_400M_v5", "sbert": "sentence-transformers/all-MiniLM-L6-v2", "sentence_t5": "sentence-transformers/sentence-t5-base", "gte": "Alibaba-NLP/gte-large-en-v1.5", } def load_hn_filter_tokenizer(tokenizer_name: str) -> Optional[transformers.PreTrainedTokenizer]: if tokenizer_name in HN_FILTER_TOKENIZER_MAP: return transformers.AutoTokenizer.from_pretrained(HN_FILTER_TOKENIZER_MAP[tokenizer_name]) else: return None