File size: 11,435 Bytes
f7a3ffd ea05f46 f7a3ffd f4d598d f7a3ffd f4d598d f7a3ffd f4d598d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
from threading import Thread
from typing import Iterator
from transformers import AutoModel, AutoTokenizer, AutoImageProcessor, TextIteratorStreamer
from PIL import Image as PILImage
import tempfile
import torch
import gradio as gr
def get_gradio_demo(model, tokenizer, image_processor) -> gr.Interface:
def get_prompt(message: str, chat_history: list[tuple[str, str]],
system_prompt: str) -> str:
texts = [f'#instruction: {system_prompt}\n', '#context:\n']
texts += [f"human: {user_input.strip()}\nagent: {response.strip()}\n" for user_input, response in chat_history if isinstance(user_input, str)]
texts += [f'human: {message.strip()}']
return ''.join(texts)
def get_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> int:
prompt = get_prompt(message, chat_history, system_prompt)
input_ids = tokenizer([prompt], return_tensors='np', add_special_tokens=False)['input_ids']
return input_ids.shape[-1]
def run(image: PILImage.Image,
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 192,
temperature: float = 0.1,
top_p: float = 0.9,
top_k: int = 50) -> Iterator[str]:
prompt = get_prompt(message, chat_history, system_prompt)
patch_images = image_processor([image], return_tensors="pt").pixel_values.to(torch.float16).to('cuda')
inputs = tokenizer([prompt], return_tensors='pt').to('cuda')
streamer = TextIteratorStreamer(tokenizer, timeout=10.) #
generate_kwargs = dict(
inputs,
patch_images=patch_images,
streamer=streamer,
max_length=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield ''.join(outputs).replace("not yet.", "").replace("<s>", "").replace("</s>", "").strip()
# -------
DEFAULT_SYSTEM_PROMPT = """can you specify which region the context describes?"""
MAX_MAX_NEW_TOKENS = 512
DEFAULT_MAX_NEW_TOKENS = 128
MAX_INPUT_TOKEN_LENGTH = 512
DESCRIPTION = """<h1 align="center">TiO Demo</h1>
<div align="center">https://huggingface.co/jxu124/TiO</div>
"""
LICENSE = """
<p/>
---
"""
if not torch.cuda.is_available():
DESCRIPTION += '\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>'
def upload_image(file_obj):
chatbot = [[(file_obj.name,), None]]
return (gr.update(visible=False), gr.update(interactive=True, placeholder='Type a message...',), chatbot)
def clear_and_save_textbox(message: str) -> tuple[str, str]:
return '', message
def display_input(message: str,
history: list[tuple[str, str]]) -> list[tuple[str, str]]:
if len(history) == 0:
raise gr.Error(f'Upload an image first and try again.')
history.append((message, ''))
return history
def delete_prev_fn(
history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]:
try:
message, _ = history.pop()
except IndexError:
message = ''
return history, message or ''
def generate(
message: str,
history_with_input: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int,
temperature: float,
top_p: float,
top_k: int,
) -> Iterator[list[tuple[str, str]]]:
if max_new_tokens > MAX_MAX_NEW_TOKENS:
raise ValueError
image = PILImage.open(history_with_input[0][0][0])
history = history_with_input[:-1]
generator = run(image, message, history, system_prompt, max_new_tokens, temperature, top_p, top_k)
try:
first_response = next(generator)
yield history + [(message, first_response)]
except StopIteration:
yield history + [(message, '')]
for response in generator:
if "region:" in response:
bboxes = model.utils.sbbox_to_bbox(response)
if len(bboxes):
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as f:
model.utils.show_mask(image, bboxes).save(f)
chatbot = history + [(message, "OK, I see."), (None, (f.name,))]
else:
chatbot = history + [(message, response)]
yield chatbot
def process_example(message: str) -> tuple[str, list[tuple[str, str]]]:
generator = generate(message, [], DEFAULT_SYSTEM_PROMPT, 192, 1, 0.95, 50)
for x in generator:
pass
return '', x
def check_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> None:
input_token_length = get_input_token_length(message, chat_history[:-1], system_prompt)
if input_token_length > MAX_INPUT_TOKEN_LENGTH:
raise gr.Error(f'The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again.')
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
with gr.Group():
chatbot = gr.Chatbot(label='Chatbot')
imagebox = gr.File(
file_types=["image"],
show_label=False,
)
with gr.Row():
textbox = gr.Textbox(
container=False,
show_label=False,
interactive=False,
placeholder='Upload an image...',
scale=10,
)
submit_button = gr.Button('Submit',
variant='primary',
scale=1,
min_width=0)
with gr.Row():
retry_button = gr.Button('🔄 Retry', variant='secondary')
undo_button = gr.Button('↩️ Undo', variant='secondary')
clear_button = gr.Button('🗑️ Clear', variant='secondary')
saved_input = gr.State()
with gr.Accordion(label='Advanced options', open=False):
system_prompt = gr.Textbox(label='System prompt',
value=DEFAULT_SYSTEM_PROMPT,
lines=6)
max_new_tokens = gr.Slider(
label='Max new tokens',
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
)
temperature = gr.Slider(
label='Temperature',
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.5,
)
top_p = gr.Slider(
label='Top-p (nucleus sampling)',
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
)
top_k = gr.Slider(
label='Top-k',
minimum=1,
maximum=1000,
step=1,
value=20,
)
gr.Markdown(LICENSE)
imagebox.upload(
fn=upload_image,
inputs=imagebox,
outputs=[imagebox, textbox, chatbot],
api_name=None,
queue=False,
)
textbox.submit(
fn=clear_and_save_textbox,
inputs=textbox,
outputs=[textbox, saved_input],
api_name=None,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=None,
queue=False,
).then(
fn=check_input_token_length,
inputs=[saved_input, chatbot, system_prompt],
api_name=None,
queue=False,
).success(
fn=generate,
inputs=[
saved_input,
chatbot,
system_prompt,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name="generate",
)
button_event_preprocess = submit_button.click(
fn=clear_and_save_textbox,
inputs=textbox,
outputs=[textbox, saved_input],
api_name=None,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=None,
queue=False,
).then(
fn=check_input_token_length,
inputs=[saved_input, chatbot, system_prompt],
api_name=None,
queue=False,
).success(
fn=generate,
inputs=[
saved_input,
chatbot,
system_prompt,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name=None,
)
retry_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=None,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=None,
queue=False,
).then(
fn=generate,
inputs=[
saved_input,
chatbot,
system_prompt,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name=None,
)
undo_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=None,
queue=False,
).then(
fn=lambda x: x,
inputs=[saved_input],
outputs=textbox,
api_name=None,
queue=False,
)
clear_button.click(
fn=lambda: ([], '', gr.update(value=None, visible=True), gr.update(interactive=False, placeholder='Upload an image...',)),
outputs=[chatbot, saved_input, imagebox, textbox],
queue=False,
api_name=None,
)
return demo
def main(model_id: str = 'jxu124/TiO', host: str = "0.0.0.0", port: int = None):
assert torch.cuda.is_available()
model = AutoModel.from_pretrained(model_id, trust_remote_code=True, torch_dtype=torch.float16).cuda()
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False)
image_processor = AutoImageProcessor.from_pretrained(model_id)
# ---- gradio demo ----
model.get_gradio_demo(tokenizer, image_processor).queue(max_size=20).launch(server_name=host, server_port=port)
if __name__ == "__main__":
import fire
fire.Fire(main)
|