Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1552.20 +/- 116.83
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f42c481ade0e5b28fe61badcada44c1fc89e9d3d43e539c05b0c6dc81f1c5c0a
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f37291d2c10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f37291d2ca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f37291d2d30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f37291d2dc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f37291d2e50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f37291d2ee0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f37291d2f70>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f37291d7040>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f37291d70d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f37291d7160>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f37291d71f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f37291d7280>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f37291cf750>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674130674293007952,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJu2ET/6oC4/vATrPrQjoj8Ke++/k+UTwF3IHz+Lfzy/WEcTvwCW2D5nNac+kdjqP20LYr+4dzbAqeTwvpVTGUBwSlu+bUTSv+7XOD8f39e/qU1xv6x3Mj2lqIa/eYlku/Z5i781U/q/3GXrPg2qlr/E6kU+8MiTvhWhJT/fIgJAM6d+v8FTsL/kXZg/ENiXvhJ3cD/ehTi9vl6pP+glBMBbZZC+cNOqP3ZKjr8M4ik/247TPjsVRD/qJ1g/QhWUvDwetL7HJBI/fKHHvip1BED2eYu/3eYCP9xl6z4Nqpa/YlHCPq+LZz/1VJY+InfaP+gkUz+T1pU/GwktP27Ngb/KcW8/SJUUvJxgd7/1uG09wtYzPx1N1j+zSIk+EDaoP71dpT9qTgtAoB1YP9TUSb3m1GW/EQ0Av6moqD45hIw99nmLv93mAj/dMwvAfX1ZP6+kGkDkWfk75wwsP1g9/7/rQKA+0SAwQP9Jez+xIpBASmytvrTb6T4w3wtAf9upvq9vRz4+TLs/kp1XP5xGZj/mfbg/9hY8QHYddT8UrOM8qdYFv0A8KD/sQCu/1OqbP4/vaj81U/q/3TMLwH19WT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABsWye1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZ/UGvgAAAADB+PK/AAAAAK6T5L0AAAAATtL5PwAAAACm34+9AAAAAJBt5z8AAAAA/RhmvAAAAABc+uu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD9mWtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAToZD0AAAAAg+r7vwAAAACEzfe9AAAAAG412T8AAAAA4QkivAAAAAC/N+A/AAAAAMVhVTwAAAAA5WzZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJYZLTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID2PYq9AAAAAKR37r8AAAAAoOH5PAAAAADfENw/AAAAACKa6b0AAAAAI6P2PwAAAAC5Pwq+AAAAAKZC6b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACEWYO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAixWRPAAAAADg5Nm/AAAAAKJKAr4AAAAAnjHkPwAAAADZhoc9AAAAANpY3z8AAAAA40C8PQAAAADlLva/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJoufkp7TlWMAWyUTegDjAF0lEdAqJICNp/PPnV9lChoBkdAmY3cKTjebmgHTegDaAhHQKiWKA1ejVR1fZQoaAZHQI8vAL7XQMRoB03oA2gIR0ComHF5WzWxdX2UKGgGR0CSITrMTviMaAdN6ANoCEdAqJiTrX18LXV9lChoBkdAlmv6H446wWgHTegDaAhHQKid0o1k1/F1fZQoaAZHQJn/E0m+j/NoB03oA2gIR0Coogmlhw2mdX2UKGgGR0CGwWXAuZkTaAdN6ANoCEdAqKRNUXHim3V9lChoBkdAllVjsD4gzWgHTegDaAhHQKikb4xk/bF1fZQoaAZHQJRPYijcmBxoB03oA2gIR0CoqaFUIcBEdX2UKGgGR0CYeWO9FnZkaAdN6ANoCEdAqK3mo1k1/HV9lChoBkdAlUJZ0bLlm2gHTegDaAhHQKiwHSThYNl1fZQoaAZHQI0z+Vs1sLxoB03oA2gIR0CosD0mD15CdX2UKGgGR0CPpSNvOyE+aAdN6ANoCEdAqLVelANXo3V9lChoBkdAkYck8Rtgr2gHTegDaAhHQKi5iIsRQJp1fZQoaAZHQJLAClGgBcRoB03oA2gIR0Cou88VQAMldX2UKGgGR0CT1Gb2USqVaAdN6ANoCEdAqLvuuTzNEHV9lChoBkdAkFYnjU/fO2gHTegDaAhHQKjBHKzRhMJ1fZQoaAZHQJedMUqQRwtoB03oA2gIR0CoxV/W1+iKdX2UKGgGR0CZ51jBl+VkaAdN6ANoCEdAqMeR+WnjyXV9lChoBkdAmPgDdtVJc2gHTegDaAhHQKjHsdnTRY11fZQoaAZHQJPGdtMwlB1oB03oA2gIR0CozNP3i704dX2UKGgGR0CXxWIiC8ODaAdN6ANoCEdAqNDxjnV5KXV9lChoBkdAmIe4OtnwomgHTegDaAhHQKjTIdo371t1fZQoaAZHQJRqjaakRBhoB03oA2gIR0Co00GfoRqXdX2UKGgGR0B6LHxc3VCpaAdNKwFoCEdAqNayrq+rVHV9lChoBkdAlP3ImgJ1JWgHTegDaAhHQKjYTD8cdYJ1fZQoaAZHQJe7TmvGIbhoB03oA2gIR0Co3IMTnJT3dX2UKGgGR0CX4eEzO5avaAdN6ANoCEdAqN7JQizLOnV9lChoBkdAmIVccENe+mgHTegDaAhHQKjiWOOsDGN1fZQoaAZHQJBnF86V+qloB03oA2gIR0Co5BDHGS6ldX2UKGgGR0CWnHeWOZLJaAdN6ANoCEdAqOg1c+qzaHV9lChoBkdAk/noRh+fAmgHTegDaAhHQKjqcT238XN1fZQoaAZHQJip49FF2FFoB03oA2gIR0Co7hEaVD8cdX2UKGgGR0CWYjYsd1dPaAdN6ANoCEdAqO+rdpItlXV9lChoBkdAl/DKVpsXSGgHTegDaAhHQKjz6uieumt1fZQoaAZHQJUFpC7btZ5oB03oA2gIR0Co9il8ohIOdX2UKGgGR0Cae/lLvkR0aAdN6ANoCEdAqPndpudf9nV9lChoBkdAmY2KpT/ACWgHTegDaAhHQKj7kAMlTm51fZQoaAZHQJtZO/RE4NtoB03oA2gIR0Co/+L3K0UodX2UKGgGR0CY3Sn9ehPCaAdN6ANoCEdAqQIdl05lv3V9lChoBkdAmalVSsKb8WgHTegDaAhHQKkFsoy9EkV1fZQoaAZHQJWYoLv1DjRoB03oA2gIR0CpB0/fGdZrdX2UKGgGR0CYe5bfgrH3aAdN6ANoCEdAqQt5ptaY/nV9lChoBkdAkL5kRvm5lWgHTegDaAhHQKkNqnrpqyp1fZQoaAZHQJS2Sd4FA3VoB03oA2gIR0CpEU3DWK/EdX2UKGgGR0CXeUKD0163aAdN6ANoCEdAqRL7zAeq73V9lChoBkdAjpUJIczZYmgHTegDaAhHQKkXbmBe5Wl1fZQoaAZHQI0uDQPZqVRoB03oA2gIR0CpGarnLaEjdX2UKGgGR0CWAtho/RmcaAdN6ANoCEdAqR04BgeA/nV9lChoBkdAjeGU9QoCuGgHTegDaAhHQKke5kiD/VB1fZQoaAZHQJPxjFvQ4S9oB03oA2gIR0CpIxGBFuvVdX2UKGgGR0CLYTn27FsIaAdN6ANoCEdAqSWOSMcZL3V9lChoBkdAjCDAiNbTt2gHTegDaAhHQKkpHBZZB9l1fZQoaAZHQI9QcKzAvctoB03oA2gIR0CpKrkw35vcdX2UKGgGR0CSQ5VBUrCnaAdN6ANoCEdAqS7svRJEpnV9lChoBkdAkPNELMLWqmgHTegDaAhHQKkxLa2WpqB1fZQoaAZHQJBpubRWtEJoB03oA2gIR0CpNNbUgB91dX2UKGgGR0CShlqHoHLSaAdN6ANoCEdAqTaHMt9QXXV9lChoBkdAlf/BlQMx5GgHTegDaAhHQKk6xGvwEyN1fZQoaAZHQJaeJT4tYjloB03oA2gIR0CpPQJEH+qBdX2UKGgGR0CXFDOjZcs2aAdN6ANoCEdAqUCpOpKjBXV9lChoBkdAkzLQemvW6WgHTegDaAhHQKlCVNhVlwt1fZQoaAZHQJSfNOtW+49oB03oA2gIR0CpRpW4NI9UdX2UKGgGR0CU3/oLG7z1aAdN6ANoCEdAqUjM/4ZdfXV9lChoBkdAksoD0g8r7WgHTegDaAhHQKlMfkcS5Ah1fZQoaAZHQJUIHWf9P1toB03oA2gIR0CpTigPd2xIdX2UKGgGR0CZWRbSZ0CBaAdN6ANoCEdAqVJZsO5J9XV9lChoBkdAl9z36VMVUWgHTegDaAhHQKlUoQr+YMR1fZQoaAZHQJqTTN9ph4NoB03oA2gIR0CpWEGmLtNSdX2UKGgGR0CZf865Gz8haAdN6ANoCEdAqVnqEQGwA3V9lChoBkdAkm2zslb/wWgHTegDaAhHQKleKcOskpt1fZQoaAZHQIc5EOuq3mVoB03oA2gIR0CpYGhOHnEEdX2UKGgGR0CPHSw482aVaAdN6ANoCEdAqWQsSsbNr3V9lChoBkdAjVgHSv1UVGgHTegDaAhHQKll0ZQYUFl1fZQoaAZHQJQ9rin5zo5oB03oA2gIR0Cpagu+ZgG9dX2UKGgGR0CNeZsWweNlaAdN6ANoCEdAqWxQxHoX9HV9lChoBkdAlcRoRywOfGgHTegDaAhHQKlwAUQCjlB1fZQoaAZHQJL6bHGS6lNoB03oA2gIR0Cpca7MxGlRdX2UKGgGR0CTB1/0ulGgaAdN6ANoCEdAqXX7r7fpEHV9lChoBkdAkbAfek56t2gHTegDaAhHQKl4PY2bXpZ1fZQoaAZHQJjlf7VJ+UhoB03oA2gIR0Cpe+mXXyy2dX2UKGgGR0CUflKOktVaaAdN6ANoCEdAqX2akEcKgXV9lChoBkdAl1m+AI6bOWgHTegDaAhHQKmB1yXlbNd1fZQoaAZHQJY8Dw8W9DhoB03oA2gIR0CphBkW69TQdX2UKGgGR0CO+9OdoWYXaAdN6ANoCEdAqYfS9Zid8XV9lChoBkdAiiuK5TZQHmgHTegDaAhHQKmJildC3PR1fZQoaAZHQJlJB9AooeBoB03oA2gIR0CpjoImG/N8dX2UKGgGR0CSK0d43WFwaAdN6ANoCEdAqZHgPRRdhXV9lChoBkdAmsjGhIvrW2gHTegDaAhHQKmW647zTWp1fZQoaAZHQJhsVPdl/YtoB03oA2gIR0CpmJumrKeTdX2UKGgGR0CVTFznied1aAdN6ANoCEdAqZzZJ/XoT3V9lChoBkdAl7sE1dgOSWgHTegDaAhHQKmfFktEofF1fZQoaAZHQJdBDB55Z8toB03oA2gIR0Cpoq3b/Ot5dX2UKGgGR0CUfyaouPFOaAdN6ANoCEdAqaRSGgzxgHV9lChoBkdAmhUFERaouWgHTegDaAhHQKmogNXo1UF1fZQoaAZHQJde3o5ggHNoB03oA2gIR0CpqrgIyCWedX2UKGgGR0CX7oDVYp2EaAdN6ANoCEdAqa5fCGetjnV9lChoBkdAmcC5YPoV22gHTegDaAhHQKmwHWxQizN1fZQoaAZHQIoQTAnDziFoB01oAmgIR0CpshrSVnmJdX2UKGgGR0CXvREfDDTCaAdN6ANoCEdAqbRUcsDnvHVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3a07ec197ed98c6e7a5741ae15b48215cc26c6777114931a88d4a2a1968e684
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2eb478390c06dc64a0dfa33b4765ce5a0d62640013c6541625f0b5aadc5e6a2d
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f37291d2c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f37291d2ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f37291d2d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f37291d2dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f37291d2e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f37291d2ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f37291d2f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f37291d7040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f37291d70d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f37291d7160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f37291d71f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f37291d7280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f37291cf750>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674130674293007952, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJu2ET/6oC4/vATrPrQjoj8Ke++/k+UTwF3IHz+Lfzy/WEcTvwCW2D5nNac+kdjqP20LYr+4dzbAqeTwvpVTGUBwSlu+bUTSv+7XOD8f39e/qU1xv6x3Mj2lqIa/eYlku/Z5i781U/q/3GXrPg2qlr/E6kU+8MiTvhWhJT/fIgJAM6d+v8FTsL/kXZg/ENiXvhJ3cD/ehTi9vl6pP+glBMBbZZC+cNOqP3ZKjr8M4ik/247TPjsVRD/qJ1g/QhWUvDwetL7HJBI/fKHHvip1BED2eYu/3eYCP9xl6z4Nqpa/YlHCPq+LZz/1VJY+InfaP+gkUz+T1pU/GwktP27Ngb/KcW8/SJUUvJxgd7/1uG09wtYzPx1N1j+zSIk+EDaoP71dpT9qTgtAoB1YP9TUSb3m1GW/EQ0Av6moqD45hIw99nmLv93mAj/dMwvAfX1ZP6+kGkDkWfk75wwsP1g9/7/rQKA+0SAwQP9Jez+xIpBASmytvrTb6T4w3wtAf9upvq9vRz4+TLs/kp1XP5xGZj/mfbg/9hY8QHYddT8UrOM8qdYFv0A8KD/sQCu/1OqbP4/vaj81U/q/3TMLwH19WT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABsWye1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZ/UGvgAAAADB+PK/AAAAAK6T5L0AAAAATtL5PwAAAACm34+9AAAAAJBt5z8AAAAA/RhmvAAAAABc+uu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD9mWtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAToZD0AAAAAg+r7vwAAAACEzfe9AAAAAG412T8AAAAA4QkivAAAAAC/N+A/AAAAAMVhVTwAAAAA5WzZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJYZLTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID2PYq9AAAAAKR37r8AAAAAoOH5PAAAAADfENw/AAAAACKa6b0AAAAAI6P2PwAAAAC5Pwq+AAAAAKZC6b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACEWYO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAixWRPAAAAADg5Nm/AAAAAKJKAr4AAAAAnjHkPwAAAADZhoc9AAAAANpY3z8AAAAA40C8PQAAAADlLva/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJoufkp7TlWMAWyUTegDjAF0lEdAqJICNp/PPnV9lChoBkdAmY3cKTjebmgHTegDaAhHQKiWKA1ejVR1fZQoaAZHQI8vAL7XQMRoB03oA2gIR0ComHF5WzWxdX2UKGgGR0CSITrMTviMaAdN6ANoCEdAqJiTrX18LXV9lChoBkdAlmv6H446wWgHTegDaAhHQKid0o1k1/F1fZQoaAZHQJn/E0m+j/NoB03oA2gIR0Coogmlhw2mdX2UKGgGR0CGwWXAuZkTaAdN6ANoCEdAqKRNUXHim3V9lChoBkdAllVjsD4gzWgHTegDaAhHQKikb4xk/bF1fZQoaAZHQJRPYijcmBxoB03oA2gIR0CoqaFUIcBEdX2UKGgGR0CYeWO9FnZkaAdN6ANoCEdAqK3mo1k1/HV9lChoBkdAlUJZ0bLlm2gHTegDaAhHQKiwHSThYNl1fZQoaAZHQI0z+Vs1sLxoB03oA2gIR0CosD0mD15CdX2UKGgGR0CPpSNvOyE+aAdN6ANoCEdAqLVelANXo3V9lChoBkdAkYck8Rtgr2gHTegDaAhHQKi5iIsRQJp1fZQoaAZHQJLAClGgBcRoB03oA2gIR0Cou88VQAMldX2UKGgGR0CT1Gb2USqVaAdN6ANoCEdAqLvuuTzNEHV9lChoBkdAkFYnjU/fO2gHTegDaAhHQKjBHKzRhMJ1fZQoaAZHQJedMUqQRwtoB03oA2gIR0CoxV/W1+iKdX2UKGgGR0CZ51jBl+VkaAdN6ANoCEdAqMeR+WnjyXV9lChoBkdAmPgDdtVJc2gHTegDaAhHQKjHsdnTRY11fZQoaAZHQJPGdtMwlB1oB03oA2gIR0CozNP3i704dX2UKGgGR0CXxWIiC8ODaAdN6ANoCEdAqNDxjnV5KXV9lChoBkdAmIe4OtnwomgHTegDaAhHQKjTIdo371t1fZQoaAZHQJRqjaakRBhoB03oA2gIR0Co00GfoRqXdX2UKGgGR0B6LHxc3VCpaAdNKwFoCEdAqNayrq+rVHV9lChoBkdAlP3ImgJ1JWgHTegDaAhHQKjYTD8cdYJ1fZQoaAZHQJe7TmvGIbhoB03oA2gIR0Co3IMTnJT3dX2UKGgGR0CX4eEzO5avaAdN6ANoCEdAqN7JQizLOnV9lChoBkdAmIVccENe+mgHTegDaAhHQKjiWOOsDGN1fZQoaAZHQJBnF86V+qloB03oA2gIR0Co5BDHGS6ldX2UKGgGR0CWnHeWOZLJaAdN6ANoCEdAqOg1c+qzaHV9lChoBkdAk/noRh+fAmgHTegDaAhHQKjqcT238XN1fZQoaAZHQJip49FF2FFoB03oA2gIR0Co7hEaVD8cdX2UKGgGR0CWYjYsd1dPaAdN6ANoCEdAqO+rdpItlXV9lChoBkdAl/DKVpsXSGgHTegDaAhHQKjz6uieumt1fZQoaAZHQJUFpC7btZ5oB03oA2gIR0Co9il8ohIOdX2UKGgGR0Cae/lLvkR0aAdN6ANoCEdAqPndpudf9nV9lChoBkdAmY2KpT/ACWgHTegDaAhHQKj7kAMlTm51fZQoaAZHQJtZO/RE4NtoB03oA2gIR0Co/+L3K0UodX2UKGgGR0CY3Sn9ehPCaAdN6ANoCEdAqQIdl05lv3V9lChoBkdAmalVSsKb8WgHTegDaAhHQKkFsoy9EkV1fZQoaAZHQJWYoLv1DjRoB03oA2gIR0CpB0/fGdZrdX2UKGgGR0CYe5bfgrH3aAdN6ANoCEdAqQt5ptaY/nV9lChoBkdAkL5kRvm5lWgHTegDaAhHQKkNqnrpqyp1fZQoaAZHQJS2Sd4FA3VoB03oA2gIR0CpEU3DWK/EdX2UKGgGR0CXeUKD0163aAdN6ANoCEdAqRL7zAeq73V9lChoBkdAjpUJIczZYmgHTegDaAhHQKkXbmBe5Wl1fZQoaAZHQI0uDQPZqVRoB03oA2gIR0CpGarnLaEjdX2UKGgGR0CWAtho/RmcaAdN6ANoCEdAqR04BgeA/nV9lChoBkdAjeGU9QoCuGgHTegDaAhHQKke5kiD/VB1fZQoaAZHQJPxjFvQ4S9oB03oA2gIR0CpIxGBFuvVdX2UKGgGR0CLYTn27FsIaAdN6ANoCEdAqSWOSMcZL3V9lChoBkdAjCDAiNbTt2gHTegDaAhHQKkpHBZZB9l1fZQoaAZHQI9QcKzAvctoB03oA2gIR0CpKrkw35vcdX2UKGgGR0CSQ5VBUrCnaAdN6ANoCEdAqS7svRJEpnV9lChoBkdAkPNELMLWqmgHTegDaAhHQKkxLa2WpqB1fZQoaAZHQJBpubRWtEJoB03oA2gIR0CpNNbUgB91dX2UKGgGR0CShlqHoHLSaAdN6ANoCEdAqTaHMt9QXXV9lChoBkdAlf/BlQMx5GgHTegDaAhHQKk6xGvwEyN1fZQoaAZHQJaeJT4tYjloB03oA2gIR0CpPQJEH+qBdX2UKGgGR0CXFDOjZcs2aAdN6ANoCEdAqUCpOpKjBXV9lChoBkdAkzLQemvW6WgHTegDaAhHQKlCVNhVlwt1fZQoaAZHQJSfNOtW+49oB03oA2gIR0CpRpW4NI9UdX2UKGgGR0CU3/oLG7z1aAdN6ANoCEdAqUjM/4ZdfXV9lChoBkdAksoD0g8r7WgHTegDaAhHQKlMfkcS5Ah1fZQoaAZHQJUIHWf9P1toB03oA2gIR0CpTigPd2xIdX2UKGgGR0CZWRbSZ0CBaAdN6ANoCEdAqVJZsO5J9XV9lChoBkdAl9z36VMVUWgHTegDaAhHQKlUoQr+YMR1fZQoaAZHQJqTTN9ph4NoB03oA2gIR0CpWEGmLtNSdX2UKGgGR0CZf865Gz8haAdN6ANoCEdAqVnqEQGwA3V9lChoBkdAkm2zslb/wWgHTegDaAhHQKleKcOskpt1fZQoaAZHQIc5EOuq3mVoB03oA2gIR0CpYGhOHnEEdX2UKGgGR0CPHSw482aVaAdN6ANoCEdAqWQsSsbNr3V9lChoBkdAjVgHSv1UVGgHTegDaAhHQKll0ZQYUFl1fZQoaAZHQJQ9rin5zo5oB03oA2gIR0Cpagu+ZgG9dX2UKGgGR0CNeZsWweNlaAdN6ANoCEdAqWxQxHoX9HV9lChoBkdAlcRoRywOfGgHTegDaAhHQKlwAUQCjlB1fZQoaAZHQJL6bHGS6lNoB03oA2gIR0Cpca7MxGlRdX2UKGgGR0CTB1/0ulGgaAdN6ANoCEdAqXX7r7fpEHV9lChoBkdAkbAfek56t2gHTegDaAhHQKl4PY2bXpZ1fZQoaAZHQJjlf7VJ+UhoB03oA2gIR0Cpe+mXXyy2dX2UKGgGR0CUflKOktVaaAdN6ANoCEdAqX2akEcKgXV9lChoBkdAl1m+AI6bOWgHTegDaAhHQKmB1yXlbNd1fZQoaAZHQJY8Dw8W9DhoB03oA2gIR0CphBkW69TQdX2UKGgGR0CO+9OdoWYXaAdN6ANoCEdAqYfS9Zid8XV9lChoBkdAiiuK5TZQHmgHTegDaAhHQKmJildC3PR1fZQoaAZHQJlJB9AooeBoB03oA2gIR0CpjoImG/N8dX2UKGgGR0CSK0d43WFwaAdN6ANoCEdAqZHgPRRdhXV9lChoBkdAmsjGhIvrW2gHTegDaAhHQKmW647zTWp1fZQoaAZHQJhsVPdl/YtoB03oA2gIR0CpmJumrKeTdX2UKGgGR0CVTFznied1aAdN6ANoCEdAqZzZJ/XoT3V9lChoBkdAl7sE1dgOSWgHTegDaAhHQKmfFktEofF1fZQoaAZHQJdBDB55Z8toB03oA2gIR0Cpoq3b/Ot5dX2UKGgGR0CUfyaouPFOaAdN6ANoCEdAqaRSGgzxgHV9lChoBkdAmhUFERaouWgHTegDaAhHQKmogNXo1UF1fZQoaAZHQJde3o5ggHNoB03oA2gIR0CpqrgIyCWedX2UKGgGR0CX7oDVYp2EaAdN6ANoCEdAqa5fCGetjnV9lChoBkdAmcC5YPoV22gHTegDaAhHQKmwHWxQizN1fZQoaAZHQIoQTAnDziFoB01oAmgIR0CpshrSVnmJdX2UKGgGR0CXvREfDDTCaAdN6ANoCEdAqbRUcsDnvHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5bbd584121b5e8135381f7bad357e322973f0cb00da5cb0fe21464dee9e222fe
|
3 |
+
size 1101536
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1552.197450041771, "std_reward": 116.82836959804702, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T13:32:13.911376"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8434c0710f86439f9ded6cf0d63a21717dd8fd855012371306078ba6e006945c
|
3 |
+
size 2521
|