File size: 11,731 Bytes
4ce7387 db29485 4ce7387 db29485 4ce7387 4723c19 4ce7387 4723c19 4ce7387 db29485 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
---
license: other
license_name: kanana
license_link: LICENSE
language:
- ko
- en
base_model:
- kakaocorp/kanana-1.5-v-3b-instruct
pipeline_tag: image-text-to-text
library_name: transformers
---
<p align="center">
<br>
<picture>
<img src="./assets/logo/kanana-logo.png" width="60%" style="margin: 40px auto;">
</picture>
</br>
<p align="center">
๐ค <a href="https://kko.kakao.com/kananallm">1.5 HF Models</a>   |
  ๐ <a href="https://tech.kakao.com/posts/714">Blog</a>  
<br>
## Table of Contents
- [Kanana-1.5-v-3b-instruct](#kanana-15-v-3b-instruct)
- [Intended Use](#intended-use)
- [Model Details](#model-details)
- [Evaluation](#evaluation)
- [Model Configuration Summary](#model-configuration-summary)
- [Overview](#overview)
- [Image Benchmarks (EN)](#image-benchmarks-en)
- [Image Benchmarks (KO)](#image-benchmarks-ko)
- [Multimodal Instruction Following Benchmarks (EN, KO)](#multimodal-instruction-following-benchmarks-en-ko)
- [Note on Benchmarking Methodology](#note-on-benchmarking-methodology)
- [Usage](#usage)
- [Requirements](#requirements)
- [Quickstart](#quickstart)
- [Limitations](#limitations)
- [Contributors](#contributors)
- [Contact](#contact)
<br>
# kanana-1.5-v-3b-instruct
The Unified Foundation Model (UFO) task force of Kanana at Kakao developed and released the Kanana-V family of multimodal large language models (MLLMs), a collection of pretrained text/image-to-text (TI2T) models.
## Intended Use
kanana-1.5-v-3b-instruct is intended for research and application development in multimodal understanding and text generation tasks. Typical use cases include image captioning, document understanding, OCR-based reasoning, and multimodal instruction following in both English and Korean. The model is optimized for both general-purpose and Korea-specific benchmarks, making it suitable for bilingual environments.
## Model Details
- **Developed by:** Unified Foundation Model (UFO) TF at Kakao
- **Language(s) :** ['en', 'ko']
- **Model Architecture:** kanana-1.5-v-3b-instruct has 3.6B parameters and contains image encoder, C-abstractor, and kanana-1.5-3b-instruct language model.
- **Input:** The models accept text and image inputs.
- **Output:** The models generate text only.
- **Context Length:** 32k
- **Knowledge Cutoff Date:** June 30, 2024
- **Model Release Date:** Jul 24, 2025.
- **License:** kanana-license
## Evaluation
### Model Configuration Summary
| Model | LLM | Total Parameter |
|----------------------------|----------------------------------|-----------|
| **kanana-1.5-v-3b-instruct** | kanana-1.5-3b-instruct | 3.67B |
| HCX-SEED-Vision-3B | HyperCLOVAX-SEED-Text-Base-3B | 3.72B |
| Phi-3-Vision | Phi-3-Mini | 4.15B |
| Qwen2.5-VL-3B-Instruct | Qwen2.5-3B | 3.75B |
| InternVL2.5-4B | Qwen2.5-3B-Instruct | 3.94B |
### Overview
| Model | All | Image (EN) | Image (KO) | IF (EN, KO) |
|----------------------------|--------|------------|------------|-------------|
| **kanana-1.5-v-3b-instruct** | 73.22 | 74.00 | 68.27 | 77.39 |
| HCX-SEED-Vision-3B | 59.00 | 64.81 | 51.96 | 60.23 |
| Phi-3-Vision | 48.84 | 65.41 | 36.40 | 44.71 |
| Qwen2.5-VL-3B-Instruct | 63.54 | 73.97 | 60.60 | 56.04 |
| InternVL2.5-4B | 61.35 | 74.73 | 54.68 | 54.63 |
### Image Benchmarks (EN)
| Model | average | MMMU (Val) | MathVista | DocVQA | ChartQA | OCRBench | InfoVQA | TextVQA | RealWorldQA | MMStar | MMB | SEED-image | MMVet | LLaVA-Wild | scienceqa | AI2D |
|----------------------------|--------------|------------|-----------|--------|---------|----------|---------|---------|-------------|--------|-------|------------|-------|------------|-----------|-------|
| **kanana-1.5-v-3b-instruct** | 74.00 | 43.89 | 56.00 | 93.06 | 81.20 | 82.50 | 73.62 | 78.62 | 65.36 | 56.32 | 78.44 | 75.17 | 65.87 | 89.60 | 95.61 | 74.81 |
| HCX-SEED-Vision-3B | 64.81 | 38.89 | 47.40 | 79.87 | 71.88 | 62.90 | 55.59 | 73.51 | 62.48 | 46.66 | 72.42 | 74.84 | 47.27 | 79.30 | 86.84 | 72.31 |
| Phi-3-Vision | 65.41 | 45.33 | 43.60 | 87.04 | 81.40 | 63.60 | 54.80 | 69.61 | 59.08 | 47.47 | 73.37 | 71.69 | 45.96 | 70.40 | 90.84 | 76.98 |
| Qwen2.5-VL-3B-Instruct | 73.97 | 50.67 | 62.00 | 94.19 | 83.60 | 79.10 | 77.22 | 77.77 | 59.74 | 56.26 | 77.75 | 74.83 | 61.06 | 96.90 | 79.69 | 78.79 |
| InternVL2.5-4B | 74.73 | 52.33 | 61.80 | 92.13 | 82.76 | 79.20 | 69.73 | 78.24 | 62.88 | 59.72 | 81.96 | 75.59 | 61.38 | 86.30 | 97.14 | 79.83 |
### Image Benchmarks (KO)
| Model | average | KoOCRBench | KoMMDBench | KoChartTask | KoMathSolution | KoCosMed | KoFoodMenu | KoEntity | KoExam | KoCelebV2 |
|----------------------------|--------------|----------------------|------------|-------------|----------------|----------|------------|----------|--------|-----------|
| **kanana-1.5-v-3b-instruct** | 68.27 | 85.93 | 74.00 | 84.96 | 36.88 | 87.58 | 70.84 | 72.04 | 58.99 | 43.24 |
| HCX-SEED-Vision-3B | 51.96 | 32.91 | 64.57 | 73.55 | 27.88 | 78.16 | 57.08 | 64.12 | 31.82 | 37.58 |
| Phi-3-Vision | 36.40 | 25.13 | 37.93 | 52.36 | 38.75 | 56.75 | 34.70 | 31.71 | 24.05 | 26.25 |
| Qwen2.5-VL-3B-Instruct | 60.60 | 50.67 | 61.75 | 84.96 | 47.13 | 82.01 | 66.32 | 58.15 | 60.68 | 33.72 |
| InternVL2.5-4B | 54.68 | 20.52 | 62.65 | 82.61 | 46.50 | 82.66 | 65.09 | 50.42 | 47.43 | 34.23 |
### Multimodal Instruction Following Benchmarks (EN, KO)
| Model | average | MIABench | MIABench-Ko | MM-IFEval | MM-OmniAlign |
|----------------------------|--------------|----------|-------------|-----------|--------------|
| **kanana-1.5-v-3b-instruct** | 77.39 | 90.28 | 91.17 | 56.67 | 71.43 |
| HCX-SEED-Vision-3B | 60.23 | 85.81 | 81.80 | 47.91 | 25.40 |
| Phi-3-Vision | 44.71 | 85.78 | 38.35 | 44.37 | 10.32 |
| Qwen2.5-VL-3B-Instruct | 56.04 | 82.55 | 59.61 | 39.14 | 42.86 |
| InternVL2.5-4B | 54.63 | 85.68 | 68.35 | 43.06 | 21.43 |
### Note on Benchmarking Methodology
All benchmarks were re-measured under identical software conditions to ensure fair comparison.
- **[VLMEvalKit](https://github.com/open-compass/VLMEvalKit)** was used for MMMU, MathVista, ScienceQA, MIA-Bench, MM-IFEval and MM-OmniAlign.
- **[lmms-eval](https://github.com/EvolvingLMMs-Lab/lmms-eval)** was employed for DocVQA, ChartQA, OCRBench, InfoVQA, TextVQA, RealWorldQA, MMStar, MMB, and SEED-image.
- HCX-SEED-Vision-3B was evaluated without the use of any auxiliary tools (e.g., external OCR engines or Lens features), as such tools are not publicly available and therefore not included in our evaluation setup.
- **Important note for ChartQA**: It was identified that the original rule-based parser used by lmms-eval marked answers ending with a period (".") as incorrect due to parsing issues. To address this, the parser logic was modified to remove any trailing period before parsing the response. All ChartQA evaluations presented here reflect results obtained after applying this parser adjustment.
The following in-house benchmarks evaluate Korean-language tasks and Korea-specific knowledge:
| Benchmark | Purpose |
|-----------|---------|
| **KoOCRBench** | Korean character recognition (OCR) |
| **KoMMDBench**, **KoEntity**, **KoCelebV2** | Korean knowledge & cultural visual QA |
| **KoFoodMenu**, **KoCosMed** | Korean text-based visual QA |
| **KoChartTask** | Chart understanding in Korean |
| **KoExam**, **KoMathSolution** | Multimodal Problem-solving in Korean (general exams & mathematics) |
| **MIABench-Ko** | Korean multimodal instruction-following benchmark (derived from MIABench) |
## Usage
### Requirements
```
pip install transformers accelerate timm omegaconf
```
`transformers>=4.45.0` or the latest version is recommended.
### Quickstart
The following is a code snippet that briefly demonstrates how to load a model and process input data using the `AutoClass` from `transformers`.
```python
from PIL import Image
import torch
from transformers import AutoModelForVision2Seq, AutoProcessor
MODEL = "kakaocorp/kanana-1.5-v-3b-instruct"
# Load the model on the available device(s)
model = AutoModelForVision2Seq.from_pretrained(
MODEL,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
model.eval()
# Load processor
processor = AutoProcessor.from_pretrained(MODEL, trust_remote_code=True)
# Prepare input batch
batch = []
for _ in range(1): # dummy loop to demonstrate batch processing
image_files = [
"./examples/waybill.png"
]
sample = {
"image": [Image.open(image_file_path).convert("RGB") for image_file_path in image_files],
"conv": [
{"role": "system", "content": "The following is a conversation between a curious human and AI assistant."},
{"role": "user", "content": " ".join(["<image>"] * len(image_files))},
{"role": "user", "content": "์ฌ์ง์์ ๋ณด๋ด๋ ์ฌ๋๊ณผ ๋ฐ๋ ์ฌ๋ ์ ๋ณด๋ฅผ json ํํ๋ก ์ ๋ฆฌํด์ค."},
]
}
batch.append(sample)
inputs = processor.batch_encode_collate(
batch, padding_side="left", add_generation_prompt=True, max_length=8192
)
inputs = {k: v.to(model.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
# Set the generation config
gen_kwargs = {
"max_new_tokens": 2048,
"temperature": 0,
"top_p": 1.0,
"num_beams": 1,
"do_sample": False,
}
# Generate text
gens = model.generate(
**inputs,
**gen_kwargs,
)
text_outputs = processor.tokenizer.batch_decode(gens, skip_special_tokens=True)
print(text_outputs) # ['```json\n{\n "๋ณด๋ด๋๋ถ": {\n "์ฑ๋ช
": "์นด์นด์ค",\n "์ฃผ์": "๊ฒฝ๊ธฐ๋ ์ฑ๋จ์ ํ๊ต์ญ๋ก 166"\n },\n "๋ฐ๋๋ถ": {\n "์ฑ๋ช
": "์นด๋๋",\n "์ฃผ์": "์ ์ฃผ๋ ์ ์ฃผ์ ์ฒจ๋จ๋ก 242"\n }\n}\n```']
```
## Limitations
- The model may generate inaccurate or misleading content, especially in scenarios requiring precise factual understanding (e.g., scientific diagrams or mathematical reasoning).
- Performance on languages other than Korean and English has not been evaluated and may be poor.
- The model is not designed for medical, legal, or other high-stakes domains.
- The model may reflect social biases present in the pretraining data.
## Contributors
- Beomhee Park, Byeonguk Bae, Byungseok Roh, Daejin Jo, Donghee Son, Dongjin Lee, Hyunwoong Ko, Jaemyung Lee, Jeehye Lee, Sunghun Kang, Wooyoung Kang
- Listed in alphabetical order (first name)
## Contact
- Kanana MLLM Core Team Technical Support: [email protected]
- Business & Partnership Contact: [email protected] |