kanak8278 commited on
Commit
daf2de6
·
1 Parent(s): a676254

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: electra-large-discriminator-ner-food-combined-weighted-v2
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # electra-large-discriminator-ner-food-combined-weighted-v2
19
+
20
+ This model is a fine-tuned version of [google/electra-large-discriminator](https://huggingface.co/google/electra-large-discriminator) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1185
23
+ - Precision: 0.7681
24
+ - Recall: 0.8893
25
+ - F1: 0.8242
26
+ - Accuracy: 0.9630
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-06
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 24
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.1326 | 1.12 | 500 | 0.1213 | 0.7978 | 0.8984 | 0.8451 | 0.9691 |
58
+ | 0.1059 | 2.25 | 1000 | 0.1185 | 0.7681 | 0.8893 | 0.8242 | 0.9630 |
59
+ | 0.1109 | 3.37 | 1500 | 0.1378 | 0.7766 | 0.8784 | 0.8244 | 0.9592 |
60
+ | 0.0907 | 4.49 | 2000 | 0.1279 | 0.7791 | 0.8897 | 0.8307 | 0.9642 |
61
+ | 0.0732 | 5.62 | 2500 | 0.1521 | 0.7933 | 0.8918 | 0.8397 | 0.9669 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.27.4
67
+ - Pytorch 2.0.0+cu118
68
+ - Datasets 2.11.0
69
+ - Tokenizers 0.13.3