update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: xlnet-large-cased-ner-food-recipe-v2
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# xlnet-large-cased-ner-food-recipe-v2
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.1036
|
23 |
+
- Precision: 0.7976
|
24 |
+
- Recall: 0.7874
|
25 |
+
- F1: 0.7925
|
26 |
+
- Accuracy: 0.9663
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 5e-07
|
46 |
+
- train_batch_size: 8
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 5
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 0.5 | 400 | 0.3117 | 0.3718 | 0.0264 | 0.0493 | 0.8933 |
|
58 |
+
| 0.4072 | 1.01 | 800 | 0.2093 | 0.7573 | 0.2371 | 0.3612 | 0.9160 |
|
59 |
+
| 0.2943 | 1.51 | 1200 | 0.1434 | 0.7922 | 0.6436 | 0.7102 | 0.9523 |
|
60 |
+
| 0.2159 | 2.01 | 1600 | 0.1269 | 0.7806 | 0.7091 | 0.7431 | 0.9581 |
|
61 |
+
| 0.1737 | 2.51 | 2000 | 0.1183 | 0.7974 | 0.7365 | 0.7657 | 0.9610 |
|
62 |
+
| 0.1737 | 3.02 | 2400 | 0.1111 | 0.8044 | 0.7674 | 0.7855 | 0.9638 |
|
63 |
+
| 0.1483 | 3.52 | 2800 | 0.1076 | 0.8085 | 0.7765 | 0.7922 | 0.9653 |
|
64 |
+
| 0.1423 | 4.02 | 3200 | 0.1051 | 0.8061 | 0.7797 | 0.7927 | 0.9658 |
|
65 |
+
| 0.1385 | 4.52 | 3600 | 0.1036 | 0.7976 | 0.7874 | 0.7925 | 0.9663 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.27.4
|
71 |
+
- Pytorch 2.0.0+cu118
|
72 |
+
- Datasets 2.11.0
|
73 |
+
- Tokenizers 0.13.3
|