kanak8278 commited on
Commit
e3b5a85
·
1 Parent(s): 8ba2fb8

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: xlnet-large-cased-ner-food-recipe-v2
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # xlnet-large-cased-ner-food-recipe-v2
19
+
20
+ This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1036
23
+ - Precision: 0.7976
24
+ - Recall: 0.7874
25
+ - F1: 0.7925
26
+ - Accuracy: 0.9663
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-07
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 5
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 0.5 | 400 | 0.3117 | 0.3718 | 0.0264 | 0.0493 | 0.8933 |
58
+ | 0.4072 | 1.01 | 800 | 0.2093 | 0.7573 | 0.2371 | 0.3612 | 0.9160 |
59
+ | 0.2943 | 1.51 | 1200 | 0.1434 | 0.7922 | 0.6436 | 0.7102 | 0.9523 |
60
+ | 0.2159 | 2.01 | 1600 | 0.1269 | 0.7806 | 0.7091 | 0.7431 | 0.9581 |
61
+ | 0.1737 | 2.51 | 2000 | 0.1183 | 0.7974 | 0.7365 | 0.7657 | 0.9610 |
62
+ | 0.1737 | 3.02 | 2400 | 0.1111 | 0.8044 | 0.7674 | 0.7855 | 0.9638 |
63
+ | 0.1483 | 3.52 | 2800 | 0.1076 | 0.8085 | 0.7765 | 0.7922 | 0.9653 |
64
+ | 0.1423 | 4.02 | 3200 | 0.1051 | 0.8061 | 0.7797 | 0.7927 | 0.9658 |
65
+ | 0.1385 | 4.52 | 3600 | 0.1036 | 0.7976 | 0.7874 | 0.7925 | 0.9663 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.27.4
71
+ - Pytorch 2.0.0+cu118
72
+ - Datasets 2.11.0
73
+ - Tokenizers 0.13.3