--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xlnet-large-cased-ner-food-recipe-v2 results: [] --- # xlnet-large-cased-ner-food-recipe-v2 This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1036 - Precision: 0.7976 - Recall: 0.7874 - F1: 0.7925 - Accuracy: 0.9663 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.5 | 400 | 0.3117 | 0.3718 | 0.0264 | 0.0493 | 0.8933 | | 0.4072 | 1.01 | 800 | 0.2093 | 0.7573 | 0.2371 | 0.3612 | 0.9160 | | 0.2943 | 1.51 | 1200 | 0.1434 | 0.7922 | 0.6436 | 0.7102 | 0.9523 | | 0.2159 | 2.01 | 1600 | 0.1269 | 0.7806 | 0.7091 | 0.7431 | 0.9581 | | 0.1737 | 2.51 | 2000 | 0.1183 | 0.7974 | 0.7365 | 0.7657 | 0.9610 | | 0.1737 | 3.02 | 2400 | 0.1111 | 0.8044 | 0.7674 | 0.7855 | 0.9638 | | 0.1483 | 3.52 | 2800 | 0.1076 | 0.8085 | 0.7765 | 0.7922 | 0.9653 | | 0.1423 | 4.02 | 3200 | 0.1051 | 0.8061 | 0.7797 | 0.7927 | 0.9658 | | 0.1385 | 4.52 | 3600 | 0.1036 | 0.7976 | 0.7874 | 0.7925 | 0.9663 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3