kernel
File size: 55,950 Bytes
eb8ddce
 
 
 
 
 
 
 
 
 
77427db
eb8ddce
 
 
 
 
 
 
 
77427db
eb8ddce
77427db
557701f
 
eb8ddce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77427db
eb8ddce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77427db
eb8ddce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77427db
eb8ddce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77427db
eb8ddce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77427db
eb8ddce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77427db
eb8ddce
 
 
 
 
 
 
77427db
eb8ddce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77427db
eb8ddce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
557701f
eb8ddce
 
 
 
 
 
 
 
 
 
557701f
eb8ddce
557701f
eb8ddce
 
 
 
 
557701f
eb8ddce
557701f
eb8ddce
557701f
eb8ddce
557701f
eb8ddce
 
 
 
 
 
557701f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
import os
import math
import itertools

import pytest
import torch
import torch.nn.functional as F
from torch._C import parse_schema

from einops import rearrange, repeat
apply_rotary_emb = None

from padding import pad_input, unpad_input
from test_util import (
    attention_ref,
    generate_qkv,
    generate_random_padding_mask,
)

import kernels

flash_attn3 = kernels.get_kernel("kernels-community/flash-attn3")
ops = flash_attn3._ops.ops
add_op_namespace_prefix = flash_attn3._ops.add_op_namespace_prefix


DISABLE_BACKWARD = os.getenv("FLASH_ATTENTION_DISABLE_BACKWARD", "FALSE") == "TRUE"
DISABLE_SPLIT = os.getenv("FLASH_ATTENTION_DISABLE_SPLIT", "FALSE") == "TRUE"
DISABLE_PAGEDKV = os.getenv("FLASH_ATTENTION_DISABLE_PAGEDKV", "FALSE") == "TRUE"
DISABLE_APPENDKV = os.getenv("FLASH_ATTENTION_DISABLE_APPENDKV", "FALSE") == "TRUE"
DISABLE_LOCAL = os.getenv("FLASH_ATTENTION_DISABLE_LOCAL", "FALSE") == "TRUE"
DISABLE_SOFTCAP = os.getenv("FLASH_ATTENTION_DISABLE_SOFTCAP", "FALSE") == "TRUE"
DISABLE_PACKGQA = os.getenv("FLASH_ATTENTION_DISABLE_PACKGQA", "FALSE") == "TRUE"
DISABLE_FP16 = os.getenv("FLASH_ATTENTION_DISABLE_FP16", "FALSE") == "TRUE"
DISABLE_FP8 = os.getenv("FLASH_ATTENTION_DISABLE_FP8", "FALSE") == "TRUE" or torch.cuda.get_device_capability("cuda")[0] < 9
DISABLE_HDIM64 = os.getenv("FLASH_ATTENTION_DISABLE_HDIM64", "FALSE") == "TRUE"
DISABLE_HDIM96 = os.getenv("FLASH_ATTENTION_DISABLE_HDIM96", "FALSE") == "TRUE"
DISABLE_HDIM128 = os.getenv("FLASH_ATTENTION_DISABLE_HDIM128", "FALSE") == "TRUE"
DISABLE_HDIM192 = os.getenv("FLASH_ATTENTION_DISABLE_HDIM192", "FALSE") == "TRUE"
DISABLE_HDIM256 = os.getenv("FLASH_ATTENTION_DISABLE_HDIM256", "FALSE") == "TRUE"

COMPILED_HDIMS = (
    []
    + ([64] if not DISABLE_HDIM64 else [])
    + ([96] if not DISABLE_HDIM96 else [])
    + ([128] if not DISABLE_HDIM128 else [])
    + ([192] if not DISABLE_HDIM192 else [])
    + ([256] if not DISABLE_HDIM256 else [])
)


# @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float8_e4m3fn])
@pytest.mark.parametrize("dtype", [torch.bfloat16] + ([torch.float16] if not DISABLE_FP16 else []) + ([torch.float8_e4m3fn] if not DISABLE_FP8 else []))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
# @pytest.mark.parametrize("dtype", [torch.float8_e4m3fn])
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
# @pytest.mark.parametrize("mha_type", ["mha"])
# @pytest.mark.parametrize("has_qv", [False, True])
@pytest.mark.parametrize("has_qv", [False])
# @pytest.mark.parametrize("deterministic", [False, True])
@pytest.mark.parametrize("deterministic", [False])
@pytest.mark.parametrize("softcap", [0.0] + ([15.0] if not DISABLE_SOFTCAP else []))
# @pytest.mark.parametrize("softcap", [0.0])
@pytest.mark.parametrize("local", [False] + ([True] if not DISABLE_LOCAL else []))
# @pytest.mark.parametrize("local", [False])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [True])
# @pytest.mark.parametrize("V_colmajor", [False, True])
@pytest.mark.parametrize("V_colmajor", [False])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192, 256])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64, 128, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128])
# @pytest.mark.parametrize("d", [64, 96, 128, 192])
@pytest.mark.parametrize("d", COMPILED_HDIMS)
# @pytest.mark.parametrize("d", [128])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 1),
        (64, 128),
        (128, 192),
        (256, 256),
        (239, 1),
        (799, 3),
        (113, 203),
        (113, 128),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (384, 256),
        (640, 128),
        (512, 256),
        (1024, 1024),
        (1023, 1024),
        (1024, 1023),
        (4096, 4096),
        (4224, 4224),
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(128, 128)])
def test_flash_attn_output(
        seqlen_q, seqlen_k, d, causal, local, softcap, V_colmajor, deterministic, has_qv, mha_type, dtype
):
    if V_colmajor and (seqlen_k % 16 != 0 or dtype != torch.float8_e4m3fn):
        pytest.skip("V_colmajor requires seqlen_k to be a multiple of 16 and dtype to be float8_e4m3fn")
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    # batch_size = 40
    # nheads = 16
    batch_size = 9 if seqlen_k <= 2048 else 2
    # batch_size = 1
    nheads = 6
    # nheads = 1
    nheads_kv = nheads if mha_type == "mha" else (2 if mha_type == "gqa" else 1)
    dtype_ref = torch.bfloat16 if dtype == torch.float8_e4m3fn else dtype
    dv_vals = [128, d] if d > 128 and d <= 192 else ([256, 512, d] if d <= 64 else [d])
    if dtype == torch.float8_e4m3fn:
        dv_vals = [d]
    attention_chunk_vals = [torch.randint(1, seqlen_k * 2, (1,)).item(), 0] if not DISABLE_LOCAL else [0]
    for dv, attention_chunk in itertools.product(dv_vals, attention_chunk_vals):
        q_ref = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype_ref)
        if softcap > 0.0:
            # Ensure the values of qk are at least within softcap range.
            q_ref = (q_ref * softcap / 4)
        q_ref = q_ref.to(dtype).to(dtype_ref).requires_grad_()
        k_ref = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref).requires_grad_()
        v_ref = torch.randn(batch_size, seqlen_k, nheads_kv, dv, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref).requires_grad_()
        if has_qv:
            qv_ref = torch.randn(batch_size, seqlen_q, nheads, dv, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref)
        else:
            qv_ref = None
        # Put window_size after QKV randn so that window_size changes from test to test
        window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,)).tolist()
        # window_size = (-1, -1) if not local else (16, 0)
        if dtype == torch.float8_e4m3fn:
            q_descale, k_descale, v_descale = [torch.rand(batch_size, nheads_kv, device=device, dtype=torch.float32) * 2 for _ in range(3)]
        else:
            q_descale, k_descale, v_descale = None, None, None
        q, k, v = [x.detach().to(dtype).requires_grad_() for x in (q_ref, k_ref, v_ref)]
        qv = qv_ref.detach().to(dtype).requires_grad_() if has_qv else None
        if V_colmajor:
            v = rearrange(rearrange(v.detach(), "b s h d -> b h d s").contiguous(), "b h d s -> b s h d").requires_grad_()
        out_ref, attn_ref = attention_ref(
            q_ref,
            k_ref,
            v_ref,
            None,
            None,
            causal=causal,
            qv=qv_ref,
            q_descale=q_descale, k_descale=k_descale, v_descale=v_descale,
            window_size=window_size,
            attention_chunk=attention_chunk,
            softcap=softcap
        )
        out_pt, attn_pt = attention_ref(
            q_ref,
            k_ref,
            v_ref,
            None,
            None,
            causal=causal,
            qv=qv_ref,
            q_descale=q_descale, k_descale=k_descale, v_descale=v_descale,
            window_size=window_size,
            attention_chunk=attention_chunk,
            softcap=softcap,
            upcast=False,
            reorder_ops=True,
            intermediate_dtype=dtype if dtype == torch.float8_e4m3fn else None,
        )

        # qk = torch.einsum('bshd,bthd->bhst', q_ref, k_ref).float()
        # if qv is not None:
        #     qk += torch.einsum('bshd,bthd->bhst', qv_ref, v_ref).float()
        # m = qk.amax(-1, keepdim=True)
        # s_tmp = torch.exp((qk - m) / math.sqrt(d))
        # exp_sum = s_tmp.sum(-1)
        # qk = torch.einsum('bthd,bshd->bhts', q_ref.float() / math.sqrt(d), k_ref.float())
        # lse_ref = torch.logsumexp(qk, dim=-1)

        # Numerical error if we just do any arithmetic on out_ref
        fwd_atol = 2 * (out_ref + 0.3 - 0.3 - out_ref).abs().max().item()
        rtol = 2 if softcap == 0.0 else 3

        print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
        print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
        pack_gqa_vals = [False, True] if not DISABLE_PACKGQA else [False]
        num_splits_vals = [1, 3] if not DISABLE_SPLIT else [1]
        for pack_gqa, num_splits in itertools.product(pack_gqa_vals, num_splits_vals):
            out, lse = flash_attn3.flash_attn_func(
                q,
                k,
                v,
                causal=causal,
                qv=qv,
                q_descale=q_descale, k_descale=k_descale, v_descale=v_descale,
                window_size=window_size,
                attention_chunk=attention_chunk,
                softcap=softcap,
                pack_gqa=pack_gqa,
                num_splits=num_splits
            )
            print(f"Output max diff: {(out - out_ref).abs().max().item()}")
            print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
            # if not causal:
            #     print(f"LSE max diff: {(lse - lse_ref).abs().max().item()}")
            # breakpoint()

            # Check that FlashAttention's numerical error is at most twice the numerical error
            # of a Pytorch implementation.
            assert (out - out_ref).abs().max().item() <= rtol * (out_pt - out_ref).abs().max().item() + fwd_atol

        if (
            not DISABLE_BACKWARD 
            and dtype != torch.float8_e4m3fn 
            and not V_colmajor 
            and not has_qv
            and not dv > 256
            and not attention_chunk != 0
        ):
            g = torch.randn_like(out)
            do_o = ((g.float() * out.float()).sum(-1)).transpose(1, 2)
            # import flash_attn_3_cuda
            # dq, dk, dv, softmax_d, dq_accum, dk_accum, dv_accum = flash_attn_3_cuda.bwd(
            #     g,
            #     q,
            #     k,
            #     v,
            #     out,
            #     lse,
            #     None,
            #     None,
            #     None,
            #     d ** (-0.5),
            #     causal,
            #     window_size[0], window_size[1],
            #     softcap,
            #     deterministic,
            #     0,  # sm_margin
            # )
            dq, dk, dv = torch.autograd.grad(out, (q, k, v), g)
            # print(f"dO_O max diff: {(softmax_d - do_o).abs().max().item()}")
            # assert (softmax_d - do_o).abs().max().item() <= 1e-5
            # assert dq_accum.abs().max().item() == 0.0

            # dS = torch.einsum('bthd,bshd->bhts', g.float(), v.float())
            # P = torch.softmax(qk, -1)
            # dP = P * (dS - do_o.transpose(1, 2).unsqueeze(1))
            # dQ = torch.einsum('bhts,bshd->bthd', dP, k.float())
            # dV = torch.einsum('bhts,bthd->bshd', P, g.float())
            # dK = torch.einsum('bhts,bthd->bshd', dP, q.float())

            # dq, dk, dv = torch.autograd.grad(out, (q, k, v), g)
            dq_ref, dk_ref, dv_ref = torch.autograd.grad(out_ref, (q_ref, k_ref, v_ref), g)
            dq_pt, dk_pt, dv_pt = torch.autograd.grad(out_pt, (q_ref, k_ref, v_ref), g)
            print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
            print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
            print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
            print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
            print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
            print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
            print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
            print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
            print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
            print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
            print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
            print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
            # breakpoint()
            dq_atol = 2 * (dq_ref + 0.3 - 0.3 - dq_ref).abs().max().item() + (0 if softcap == 0 else 3e-4)
            assert (dq - dq_ref).abs().max().item() <= rtol * (dq_pt - dq_ref).abs().max().item() + dq_atol
            dk_atol = 2 * (dk_ref + 0.3 - 0.3 - dk_ref).abs().max().item() + (0 if softcap == 0 else 3e-4)
            assert (dk - dk_ref).abs().max().item() <= rtol * (dk_pt - dk_ref).abs().max().item() + dk_atol
            dv_atol = 2 * (dv_ref + 0.3 - 0.3 - dv_ref).abs().max().item() + (0 if softcap == 0 else 3e-4)
            assert (dv - dv_ref).abs().max().item() <= rtol * (dv_pt - dv_ref).abs().max().item() + dv_atol


# @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float8_e4m3fn])
@pytest.mark.parametrize("dtype", [torch.bfloat16] + ([torch.float16] if not DISABLE_FP16 else []) + ([torch.float8_e4m3fn] if not DISABLE_FP8 else []))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
# @pytest.mark.parametrize("dtype", [torch.float8_e4m3fn])
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
# @pytest.mark.parametrize("mha_type", ["mha"])
# @pytest.mark.parametrize("has_qv", [False, True])
@pytest.mark.parametrize("has_qv", [False])
# @pytest.mark.parametrize("deterministic", [False, True])
@pytest.mark.parametrize("deterministic", [False])
@pytest.mark.parametrize("softcap", [0.0] + ([15.0] if not DISABLE_SOFTCAP else []))
# @pytest.mark.parametrize("softcap", [0.0])
@pytest.mark.parametrize("local", [False] + ([True] if not DISABLE_LOCAL else []))
# @pytest.mark.parametrize("local", [False])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [False])
@pytest.mark.parametrize("add_unused_qkv", [False, True])
# @pytest.mark.parametrize("add_unused_qkv", [True])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192, 256])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128])
# @pytest.mark.parametrize("d", [64, 96, 128])
@pytest.mark.parametrize("d", COMPILED_HDIMS)
# @pytest.mark.parametrize("d", [128])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 1),
        (1, 3),
        (2, 1),
        (511, 1),
        (3, 513),
        (64, 128),
        (128, 128),
        (256, 256),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (307, 256),
        (640, 128),
        (512, 256),
        (1024, 1024),
        (1023, 1024),
        (1024, 1023),
        (2048, 2048),
    ],
)
def test_flash_attn_varlen_output(
        seqlen_q, seqlen_k, d, add_unused_qkv, causal, local, softcap, deterministic, has_qv, mha_type, dtype
):
    device = "cuda"
    # set seed
    torch.random.manual_seed(seqlen_q + seqlen_k + d + int(causal) * 2 + int(local))
    # batch_size = 40
    # nheads = 16
    batch_size = 9 if seqlen_q <= 2048 else 2
    nheads = 6
    # batch_size = 2
    # nheads = 1
    nheads_kv = nheads if mha_type == "mha" else (2 if mha_type == "gqa" else 1)
    dtype_ref = torch.bfloat16 if dtype == torch.float8_e4m3fn else dtype
    dv_vals = [128, d] if d > 128 and d <= 192 else ([256, 512, d] if d <= 64 else [d])
    if dtype == torch.float8_e4m3fn:
        dv_vals = [d]
    attention_chunk_vals = [torch.randint(1, seqlen_k * 2, (1,)).item(), 0] if seqlen_q <= seqlen_k and not DISABLE_LOCAL else [0]
    for dv, attention_chunk in itertools.product(dv_vals, attention_chunk_vals):
        q_ref = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype_ref)
        if softcap > 0.0:
            # Ensure the values of qk are at least within softcap range.
            q_ref = (q_ref * softcap / 4).detach().requires_grad_()
        q_ref = q_ref.to(dtype).to(dtype_ref).requires_grad_()
        k_ref = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref).requires_grad_()
        v_ref = torch.randn(batch_size, seqlen_k, nheads_kv, dv, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref).requires_grad_()
        if has_qv:
            qv_ref = torch.randn(batch_size, seqlen_q, nheads, dv, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref)
        else:
            qv_ref = None
        # Put window_size after QKV randn so that window_size changes from test to test
        window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
        if dtype == torch.float8_e4m3fn:
            q_descale, k_descale, v_descale = [torch.rand(batch_size, nheads_kv, device=device, dtype=torch.float32) * 2 for _ in range(3)]
        else:
            q_descale, k_descale, v_descale = None, None, None
        q, k, v = [x.detach().requires_grad_() for x in (q_ref, k_ref, v_ref)]
        qv = qv_ref.detach() if has_qv else None
        query_padding_mask = generate_random_padding_mask(
            seqlen_q, batch_size, device, mode="random", zero_lengths=False
        )
        key_padding_mask = generate_random_padding_mask(
            seqlen_k, batch_size, device, mode="random", zero_lengths=True
        )

        def _gen_unused_masks(padding_mask, add_unused, max_seq_len, bs, device):
            if add_unused:
                another_mask = generate_random_padding_mask(max_seq_len, bs, device)
                attn_mask = torch.logical_and(padding_mask, another_mask)
                unused_mask = torch.logical_xor(
                    torch.logical_or(padding_mask, another_mask), attn_mask
                )
            else:
                attn_mask = padding_mask
                unused_mask = None
            return attn_mask, unused_mask

        query_padding_mask, query_unused_mask = _gen_unused_masks(
            query_padding_mask, add_unused_qkv, seqlen_q, batch_size, q.device
        )
        key_padding_mask, key_unused_mask = _gen_unused_masks(
            key_padding_mask, add_unused_qkv, seqlen_k, batch_size, k.device
        )

        (
            q_unpad,
            k_unpad,
            v_unpad,
            qv_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            seqused_q,
            seqused_k,
            max_seqlen_q,
            max_seqlen_k,
            q,
            k,
            v,
            qv,
            output_pad_fn,
            dq_pad_fn,
            dk_pad_fn,
        ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, qv=qv, kvpacked=False,
                        query_unused_mask=query_unused_mask, key_unused_mask=key_unused_mask)
        q_unpad, k_unpad, v_unpad = [x.detach().to(dtype).requires_grad_() for x in (q_unpad, k_unpad, v_unpad)]
        out_ref, attn_ref = attention_ref(
            q_ref,
            k_ref,
            v_ref,
            query_padding_mask,
            key_padding_mask,
            causal=causal,
            qv=qv_ref,
            q_descale=q_descale, k_descale=k_descale, v_descale=v_descale,
            window_size=window_size,
            attention_chunk=attention_chunk,
            softcap=softcap
        )
        out_pt, attn_pt = attention_ref(
            q_ref,
            k_ref,
            v_ref,
            query_padding_mask,
            key_padding_mask,
            causal=causal,
            qv=qv_ref,
            q_descale=q_descale, k_descale=k_descale, v_descale=v_descale,
            window_size=window_size,
            attention_chunk=attention_chunk,
            softcap=softcap,
            upcast=False,
            reorder_ops=True,
            intermediate_dtype=dtype if dtype == torch.float8_e4m3fn else None,
        )


        print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
        print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

        if query_unused_mask is not None:
            q_zero_masking = rearrange(query_unused_mask, "b s -> b s 1 1")

        # Numerical error if we just do any arithmetic on out_ref
        fwd_atol = 2 * (out_ref + 0.3 - 0.3 - out_ref).abs().max().item()
        rtol = 2 if softcap == 0.0 else 3

        pack_gqa_vals = [False, True] if not DISABLE_PACKGQA else [False]
        num_splits_vals = [1, 3] if not DISABLE_SPLIT else [1]
        for pack_gqa, num_splits in itertools.product(pack_gqa_vals, num_splits_vals):
            out_unpad, lse = flash_attn3.flash_attn_varlen_func(
                q_unpad,
                k_unpad,
                v_unpad,
                cu_seqlens_q,
                cu_seqlens_k,
                max_seqlen_q,
                max_seqlen_k,
                seqused_q=seqused_q,
                seqused_k=seqused_k,
                causal=causal,
                qv=qv_unpad,
                q_descale=q_descale,
                k_descale=k_descale, v_descale=v_descale,
                window_size=window_size,
                attention_chunk=attention_chunk,
                softcap=softcap,
            )
            out = output_pad_fn(out_unpad)
            if query_unused_mask is not None:
                out.masked_fill_(q_zero_masking, 0.0)
            print(f"Output max diff: {(out - out_ref).abs().max().item()}")
            print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
            # if not causal:
            #     print(f"LSE max diff: {(lse - lse_ref).abs().max().item()}")
            # breakpoint()

            # Check that FlashAttention's numerical error is at most 3x the numerical error
            # of a Pytorch implementation.
            assert (out - out_ref).abs().max().item() <= rtol * (out_pt - out_ref).abs().max().item() + fwd_atol


        if (
            not DISABLE_BACKWARD 
            and dtype != torch.float8_e4m3fn 
            and not has_qv
            and not dv > 256
            and not attention_chunk != 0
        ):
            g_unpad = torch.randn_like(out_unpad)
            do_o = ((g_unpad.float() * out_unpad.float()).sum(-1)).transpose(-1, -2)
            # import flash_attn_3_cuda
            # dq_unpad, dk_unpad, dv_unpad, softmax_d, dq_accum, lse_log2 = flash_attn_3_cuda.bwd_varlen(
            #     g_unpad,
            #     q_unpad,
            #     k_unpad,
            #     v_unpad,
            #     out_unpad,
            #     lse,
            #     None,
            #     None,
            #     None,
            #     cu_seqlens_q,
            #     cu_seqlens_k,
            #     None, None,
            #     max_seqlen_q,
            #     max_seqlen_k,
            #     d ** (-0.5),
            #     causal,
            #     window_size[0], window_size[1],
            #     softcap,
            #     deterministic,
            #     0,  # sm_margin
            # )
            dq_unpad, dk_unpad, dv_unpad = torch.autograd.grad(out_unpad, (q_unpad, k_unpad, v_unpad), g_unpad)
            dq = dq_pad_fn(dq_unpad)
            dk = dk_pad_fn(dk_unpad)
            dv = dk_pad_fn(dv_unpad)
            if key_unused_mask is not None:
                k_zero_masking = rearrange(key_unused_mask, "b s -> b s 1 1")
                dk.masked_fill_(k_zero_masking, 0.0)
                dv.masked_fill_(k_zero_masking, 0.0)
            if query_unused_mask is not None:
                dq.masked_fill_(q_zero_masking, 0.0)
            # print(f"dO_O max diff: {(softmax_d - do_o).abs().max().item()}")
            # assert (softmax_d - do_o).abs().max().item() <= 1e-5
            # assert dq_accum.abs().max().item() == 0.0
            g = output_pad_fn(g_unpad)

            # qk = torch.einsum('bthd,bshd->bhts', q / (d ** 0.5), k).float()
            # qk = torch.masked_fill(qk, rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
            # dS = torch.einsum('bthd,bshd->bhts', g.float(), v.float())
            # P = torch.softmax(qk, -1)
            # dP = P * (dS - (g.float() * out.float()).sum(-1).transpose(1, 2).unsqueeze(-1))
            # dQ = torch.einsum('bhts,bshd->bthd', dP, k.float())
            # dV = torch.einsum('bhts,bthd->bshd', P, g.float())
            # dK = torch.einsum('bhts,bthd->bshd', dP, q.float())


            # dq, dk, dv = torch.autograd.grad(out, (q, k, v), g)
            dq_ref, dk_ref, dv_ref = torch.autograd.grad(out_ref, (q_ref, k_ref, v_ref), g)
            dq_pt, dk_pt, dv_pt = torch.autograd.grad(out_pt, (q_ref, k_ref, v_ref), g)
            print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
            print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
            print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
            print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
            print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
            print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
            print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
            print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
            print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
            print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
            print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
            print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
            # breakpoint()
            dq_atol = 2 * (dq_ref + 0.3 - 0.3 - dq_ref).abs().max().item() + (0 if softcap == 0 else 3e-4)
            assert (dq - dq_ref).abs().max().item() <= rtol * (dq_pt - dq_ref).abs().max().item() + dq_atol
            dk_atol = 2 * (dk_ref + 0.3 - 0.3 - dk_ref).abs().max().item() + (0 if softcap == 0 else 3e-4)
            assert (dk - dk_ref).abs().max().item() <= rtol * (dk_pt - dk_ref).abs().max().item() + dk_atol
            dv_atol = 2 * (dv_ref + 0.3 - 0.3 - dv_ref).abs().max().item() + (0 if softcap == 0 else 3e-4)
            assert (dv - dv_ref).abs().max().item() <= rtol * (dv_pt - dv_ref).abs().max().item() + dv_atol


# @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float8_e4m3fn])
@pytest.mark.parametrize("dtype", [torch.bfloat16] + ([torch.float8_e4m3fn] if not DISABLE_FP8 else []))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
# @pytest.mark.parametrize("dtype", [torch.float8_e4m3fn])
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
# @pytest.mark.parametrize("mha_type", ["mha"])
@pytest.mark.parametrize("new_kv", [False] + ([True] if not DISABLE_APPENDKV else []))
# @pytest.mark.parametrize("new_kv", [True])
@pytest.mark.parametrize("causal,local", [(False, False), (True, False)] + ([(False, True)] if not DISABLE_LOCAL else []))
# @pytest.mark.parametrize("causal,local", [(False, False), (True, False)])
# @pytest.mark.parametrize("causal,local", [(False, False)])
@pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True, False] if not DISABLE_APPENDKV else [True])
# @pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True])
@pytest.mark.parametrize("has_rotary_seqlens", [False, True])
# @pytest.mark.parametrize("has_rotary_seqlens", [False])
@pytest.mark.parametrize("rotary_interleaved", [False, True] if not DISABLE_APPENDKV else [False])
# @pytest.mark.parametrize("rotary_interleaved", [True])
@pytest.mark.parametrize("rotary_fraction", [0.0, 0.5, 1.0] if (not DISABLE_APPENDKV) and (apply_rotary_emb is not None) else [0.0])
# @pytest.mark.parametrize("rotary_fraction", [0.0])
@pytest.mark.parametrize("page_size", [None] + ([1, 4, 128] if not DISABLE_PAGEDKV else []))
# @pytest.mark.parametrize("page_size", [None])
@pytest.mark.parametrize("has_leftpad", [False, True])
# @pytest.mark.parametrize("has_leftpad", [False])
@pytest.mark.parametrize("has_batch_idx", [False, True])
# @pytest.mark.parametrize("has_batch_idx", [False])
@pytest.mark.parametrize("varlen_q", [False, True])
# @pytest.mark.parametrize("varlen_q", [False])
# @pytest.mark.parametrize("d", [32, 59, 64, 80, 128, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
@pytest.mark.parametrize("d", [128])
# @pytest.mark.parametrize("d", [192])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 128),
        (1, 339),
        (3, 1024),
        (64, 800),
        (64, 256),
        (3, 799),
        (64, 2048),
        (16, 20000),
        # (1, 128 * 1024),
        # (16, 128 * 1024),
        (128, 128),
        (256, 512),  # To test appending KV with more than 1 block
        (2048, 3577),  # Enough tile to test persistent scheduler
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
def test_flash_attn_kvcache(
    seqlen_q,
    seqlen_k,
    d,
    varlen_q,
    has_batch_idx,
    has_leftpad,
    page_size,
    rotary_fraction,
    rotary_interleaved,
    has_rotary_seqlens,
    seqlen_new_eq_seqlen_q,
    causal,
    local,
    new_kv,
    mha_type,
    dtype,
):
    if page_size is not None and seqlen_k % page_size != 0:
        pytest.skip()
    if seqlen_q > seqlen_k and new_kv:
        pytest.skip()
    if not new_kv and rotary_fraction > 0.0:
        pytest.skip()
    if rotary_fraction == 0.0 and has_rotary_seqlens:
        pytest.skip()
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    batch_size = 5
    # batch_size = 1
    batch_size_cache = batch_size if not has_batch_idx else batch_size * 2
    nheads = 6
    # nheads = 1
    # rotary_dim must be a multiple of 16, and must be <= d
    rotary_dim = math.floor(int(rotary_fraction * d) / 16) * 16
    nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
    assert nheads % nheads_k == 0
    dtype_ref = torch.bfloat16 if dtype == torch.float8_e4m3fn else dtype
    dv_vals = [128, d] if d > 128 and d <= 192 else ([256, 512, d] if d <= 64 else [d])
    if dtype == torch.float8_e4m3fn:
        dv_vals = [d]
    attention_chunk_vals = [torch.randint(1, seqlen_k * 2, (1,)).item(), 0] if (causal or local) and not DISABLE_LOCAL else [0]
    for dv, attention_chunk in itertools.product(dv_vals, attention_chunk_vals):
        has_qv = d == 64 and dv >= 256
        q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref)
        if has_qv:
            qv = torch.randn(batch_size, seqlen_q, nheads, dv, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref)
        else:
            qv = None
        if varlen_q:
            query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
            q_unpad, indices_q, cu_seqlens_q, max_seqlen_q, *rest = unpad_input(q, query_padding_mask)
            output_pad_fn = lambda output_unpad: pad_input(
                output_unpad, indices_q, batch_size, seqlen_q
            )
            qv_unpad = rearrange(qv, "b s ... -> (b s) ...")[indices_q] if has_qv else None
        else:
            query_padding_mask = None
            q_unpad = q
            qv_unpad = qv
            cu_seqlens_q, max_seqlen_q = None, None
        # Put window_size after QKV randn so that window_size changes from test to test
        window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))

        seqlen_new = seqlen_q if seqlen_new_eq_seqlen_q else torch.randint(1, seqlen_q + 1, (1,)).item()
        cu_seqlens_k_new = None
        key_new_padding_mask = None
        if new_kv:
            k = torch.randn(batch_size, seqlen_new, nheads_k, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref)
            v = torch.randn(batch_size, seqlen_new, nheads_k, dv, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref)
            if varlen_q:  # k & v are also varlen
                key_new_padding_mask = generate_random_padding_mask(seqlen_new, batch_size, device, mode="random")
                k_unpad, indices_k, cu_seqlens_k_new, *rest = unpad_input(k, key_new_padding_mask)
                v_unpad, *rest = unpad_input(v, key_new_padding_mask)
            else:
                k_unpad, v_unpad = k, v
        else:
            k, v, k_unpad, v_unpad = None, None, None, None
        if page_size is None:
            k_cache = torch.randn(batch_size_cache, seqlen_k, nheads_k, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref)
            v_cache = torch.randn(batch_size_cache, seqlen_k, nheads_k, dv, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref)
            page_table = None
        else:
            (
                k_cache,
                v_cache,
                page_table,
                k_cache_paged,
                v_cache_paged,
                num_blocks,
            ) = _generate_block_kvcache(
                seqlen_k, page_size, batch_size_cache, nheads_k, d, dv, device, dtype, dtype_ref
            )
        cache_seqlens = torch.randint(
            0 if new_kv else 1,
            # If we don't use seqlen_q in the case of causal and rotary, cos/sin won't be long enough
            (
                (seqlen_k - (seqlen_q if (causal or local) and rotary_dim > 1 else seqlen_new) + 1)
                if new_kv
                else (seqlen_k + 1)
            ),
            (batch_size,),
            dtype=torch.int32,
            device=device,
        )
        if has_leftpad:
            cache_leftpad = torch.cat([torch.randint(0, cache_seqlens[i].item(), (1,), dtype=torch.int32, device=device)
                                    if cache_seqlens[i].item() > 0 else torch.zeros(1, dtype=torch.int32, device=device)
                                    for i in range(batch_size)])
        else:
            cache_leftpad = None
        if has_batch_idx:
            cache_batch_idx = torch.randperm(batch_size_cache, dtype=torch.int32, device=device)[
                :batch_size
            ]
        else:
            cache_batch_idx = None
        arange = rearrange(torch.arange(seqlen_k, device=device), "s -> 1 s")
        cache_seqlens_expanded = rearrange(cache_seqlens, "b -> b 1")
        if not new_kv:
            key_padding_mask = arange < cache_seqlens_expanded
        else:
            k_new_seqlens = key_new_padding_mask.sum(-1, keepdims=True) if varlen_q else seqlen_new
            key_padding_mask = arange < cache_seqlens_expanded + k_new_seqlens
        if has_leftpad:
            key_padding_mask = torch.logical_and(
                key_padding_mask, arange >= cache_leftpad.unsqueeze(-1).expand(-1, seqlen_k)
            )
        # cache_seqlens = torch.tensor([64], dtype=torch.int32, device=device)
        rotary_seqlens = cache_seqlens if not has_rotary_seqlens else cache_seqlens // 2
        if rotary_dim > 0:
            angle = (
                torch.rand(
                    seqlen_k if page_size is None else num_blocks * page_size,
                    rotary_dim // 2,
                    device=device,
                )
                * 2
                * math.pi
            )
            cos = torch.cos(angle).to(dtype=dtype_ref).to(dtype).to(dtype_ref)
            sin = torch.sin(angle).to(dtype=dtype_ref).to(dtype).to(dtype_ref)
            if causal or local:
                q_ro = apply_rotary_emb(
                    q, cos, sin, seqlen_offsets=rotary_seqlens, interleaved=rotary_interleaved
                )
            else:
                q_ro = rearrange(
                    apply_rotary_emb(
                        rearrange(q, "b s h d -> b 1 (s h) d"),
                        cos,
                        sin,
                        seqlen_offsets=rotary_seqlens,
                        interleaved=rotary_interleaved,
                    ),
                    "b 1 (s h) d -> b s h d",
                    s=seqlen_q,
                )
            # q_ro = q
            k_ro = apply_rotary_emb(
                k, cos, sin, seqlen_offsets=rotary_seqlens, interleaved=rotary_interleaved
            )
        else:
            cos, sin = None, None
            q_ro, k_ro = q, k
        # k_cache[:, 64:] = -1
        k_cache_ref = (k_cache if not has_batch_idx else k_cache[cache_batch_idx]).clone()
        v_cache_ref = (v_cache if not has_batch_idx else v_cache[cache_batch_idx]).clone()
        if new_kv:
            update_mask = torch.logical_and(
                cache_seqlens_expanded <= arange, arange < cache_seqlens_expanded + k_new_seqlens
            )
            k_to_update = rearrange(k_ro, "b s ... -> (b s) ...")
            v_to_update = rearrange(v, "b s ... -> (b s) ...")
            if varlen_q:
                k_to_update = k_to_update[indices_k]
                v_to_update = v_to_update[indices_k]
            k_cache_ref[update_mask] = k_to_update
            v_cache_ref[update_mask] = v_to_update
        k_cache_rep = repeat(k_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
        v_cache_rep = repeat(v_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
        out_ref, _ = attention_ref(
            q_ro,
            k_cache_rep,
            v_cache_rep,
            query_padding_mask,
            key_padding_mask,
            causal=causal,
            qv=qv,
            window_size=window_size,
            attention_chunk=attention_chunk,
            key_leftpad=cache_leftpad,
        )
        out_pt, _ = attention_ref(
            q_ro,
            k_cache_rep,
            v_cache_rep,
            query_padding_mask,
            key_padding_mask,
            causal=causal,
            qv=qv,
            window_size=window_size,
            attention_chunk=attention_chunk,
            upcast=False,
            reorder_ops=True,
            key_leftpad=cache_leftpad,
            intermediate_dtype=dtype if dtype == torch.float8_e4m3fn else None
        )
        q = q.to(dtype)
        q_unpad = q_unpad.to(dtype) if varlen_q else None
        k_cache = k_cache.to(dtype)
        v_cache = v_cache.to(dtype)
        k_cache_paged = k_cache_paged.to(dtype) if page_size is not None else None
        v_cache_paged = v_cache_paged.to(dtype) if page_size is not None else None
        k = k.to(dtype) if k is not None else None
        v = v.to(dtype) if v is not None else None
        k_unpad = k_unpad.to(dtype) if k_unpad is not None else None
        v_unpad = v_unpad.to(dtype) if v_unpad is not None else None
        qv = qv.to(dtype) if qv is not None else None
        qv_unpad = qv_unpad.to(dtype) if (varlen_q and qv is not None) else None
        cos = cos.to(dtype) if cos is not None else None
        sin = sin.to(dtype) if sin is not None else None
        k_cache_saved = k_cache.clone() if page_size is None else k_cache_paged.clone()
        v_cache_saved = v_cache.clone() if page_size is None else v_cache_paged.clone()
        num_splits_vals = [1, 0] if not DISABLE_SPLIT else [1]
        precompute_metadata_vals = [False, True]
        for num_splits, precompute_metadata in itertools.product(num_splits_vals, precompute_metadata_vals):
            if precompute_metadata:
                scheduler_metadata = flash_attn3.get_scheduler_metadata(
                    batch_size, max_seqlen_q if varlen_q else seqlen_q, seqlen_k, nheads, nheads_k, d,
                    cache_seqlens, q.dtype, headdim_v=dv, cu_seqlens_q=cu_seqlens_q,
                    cu_seqlens_k_new=cu_seqlens_k_new, cache_leftpad=cache_leftpad,
                    max_seqlen_k_new=seqlen_new, page_size=page_size,
                    causal=causal, window_size=window_size, attention_chunk=attention_chunk,
                    num_splits=num_splits
                )
            else:
                scheduler_metadata = None
            # Repeat to test metadata reuse
            for _ in range(1 if not precompute_metadata else 2):
                if page_size is None:
                    k_cache.copy_(k_cache_saved)
                    v_cache.copy_(v_cache_saved)
                else:
                    k_cache_paged.copy_(k_cache_saved)
                    v_cache_paged.copy_(v_cache_saved)
                out, lse, *rest = flash_attn3.flash_attn_with_kvcache(
                    q if not varlen_q else q_unpad,
                    k_cache if page_size is None else k_cache_paged,
                    v_cache if page_size is None else v_cache_paged,
                    k if not new_kv or not varlen_q else k_unpad,
                    v if not new_kv or not varlen_q else v_unpad,
                    qv=qv if not varlen_q else qv_unpad,
                    rotary_cos=cos,
                    rotary_sin=sin,
                    cache_seqlens=cache_seqlens,
                    cache_batch_idx=cache_batch_idx,
                    cache_leftpad=cache_leftpad,
                    page_table=page_table,
                    cu_seqlens_q=cu_seqlens_q,
                    cu_seqlens_k_new=cu_seqlens_k_new,
                    max_seqlen_q=max_seqlen_q,
                    rotary_seqlens=rotary_seqlens,
                    causal=causal,
                    window_size=window_size,
                    attention_chunk=attention_chunk,
                    rotary_interleaved=rotary_interleaved,
                    scheduler_metadata=scheduler_metadata,
                    num_splits=num_splits,
                    return_softmax_lse=True
                )
                if varlen_q:
                    out = output_pad_fn(out)
                # out = flash_attn_with_kvcache(
                #     q, k_cache, v_cache, cache_seqlens=cache_seqlens, causal=causal, window_size=window_size
                # )
                # out = flash_attn_with_kvcache(q, k_cache, v_cache, causal=causal, window_size=window_size)
                # qk = torch.einsum("bqhd,bkhd->bhqk", q, k_cache_ref)
                # m = qk.amax(-1, keepdim=True)
                # s_tmp = torch.exp((qk - m) / math.sqrt(d))
                # o1 = torch.einsum('bhst,bthd->bshd', s_tmp, v_cache_ref)
                # lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
                # probs = torch.softmax(qk, dim=-1)
                print(f"Output max diff: {(out - out_ref).abs().max().item()}")
                print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
                print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
                print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
                # breakpoint()

                # Check that FlashAttention's numerical error is at most twice the numerical error
                # of a Pytorch implementation.
                if new_kv:
                    if page_size is None:
                        k_cache_select = (
                            k_cache.to(dtype_ref) if not has_batch_idx else k_cache.to(dtype_ref)[cache_batch_idx]
                        )
                        v_cache_select = (
                            v_cache.to(dtype_ref) if not has_batch_idx else v_cache.to(dtype_ref)[cache_batch_idx]
                        )
                    else:
                        k_cache_select = rearrange(
                            k_cache_paged.to(dtype_ref)[(page_table if not has_batch_idx else page_table[cache_batch_idx]).flatten()],
                            "(b nblocks) block_size ... -> b (nblocks block_size) ...",
                            b=batch_size,
                        )[:, :seqlen_k].to(dtype_ref)
                        v_cache_select = rearrange(
                            v_cache_paged.to(dtype_ref)[(page_table if not has_batch_idx else page_table[cache_batch_idx]).flatten()],
                            "(b nblocks) block_size ... -> b (nblocks block_size) ...",
                            b=batch_size,
                        )[:, :seqlen_k].to(dtype_ref)
                    k_cache_ref = k_cache_ref.to(dtype).to(dtype_ref)
                    v_cache_ref = v_cache_ref.to(dtype).to(dtype_ref)
                    if dtype is not torch.float8_e4m3fn:
                        assert torch.equal(v_cache_select, v_cache_ref)
                    else:
                        assert torch.allclose(v_cache_select, v_cache_ref, rtol=1e-3, atol=1e-3)
                    # breakpoint()
                    # if rotary_dim == 0 and dtype is not torch.float8_e4m3fn:
                    if rotary_dim == 0:
                        assert torch.equal(k_cache_select, k_cache_ref)
                    else:
                        # if not torch.allclose(k_cache_select, k_cache_ref, rtol=1e-3, atol=1e-3):
                        #     breakpoint()
                        if dtype is not torch.float8_e4m3fn:
                            assert torch.allclose(k_cache_select, k_cache_ref, rtol=1e-3, atol=1e-3)
                        else:
                            assert torch.allclose(k_cache_select, k_cache_ref, rtol=1e-1, atol=1e-1)
                mult = 4 if dtype == torch.float8_e4m3fn else 2
                assert (out - out_ref).abs().max().item() <= mult * (out_pt - out_ref).abs().max().item() + 1e-5
                mult_mean = 3 if dtype == torch.float8_e4m3fn else 1.5
                assert (out - out_ref).abs().mean().item() <= mult_mean * (out_pt - out_ref).abs().mean().item()


def _generate_block_kvcache(seqlen_k, page_size, batch_size, nheads_k, d, dv, device, dtype, dtype_ref):
    num_blocks = math.ceil(seqlen_k / page_size) * batch_size * 3
    k_cache_paged = torch.randn(
        num_blocks, page_size, nheads_k, d, device=device, dtype=dtype_ref
    ).to(dtype).to(dtype_ref)
    v_cache_paged = torch.randn(
        num_blocks, page_size, nheads_k, dv, device=device, dtype=dtype_ref
    ).to(dtype).to(dtype_ref)
    page_table = rearrange(
        torch.randperm(num_blocks, dtype=torch.int32, device=device),
        "(b nblocks) -> b nblocks",
        b=batch_size,
    )
    k_cache = rearrange(
        k_cache_paged[page_table.flatten()],
        "(b nblocks) block_size ... -> b (nblocks block_size) ...",
        b=batch_size,
    )[:, :seqlen_k]
    v_cache = rearrange(
        v_cache_paged[page_table.flatten()],
        "(b nblocks) block_size ... -> b (nblocks block_size) ...",
        b=batch_size,
    )[:, :seqlen_k]
    return k_cache, v_cache, page_table, k_cache_paged, v_cache_paged, num_blocks


@pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize('causal', [False])
@pytest.mark.parametrize('d', [128])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (64, 8192),
    ],
)
def test_flash_attn_cluster(seqlen_q, seqlen_k, d, causal, dtype):
    device = "cuda"
    torch.random.manual_seed(0)
    batch_size = 2
    nheads = 16
    nheads_kv = 4
    # There was a bug where this would cause "unspecified launch failure" due to Cluster
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype)
    k = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype)
    v = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype)
    for _ in range(100):
        flash_attn3.flash_attn_func(q, k, v, causal=causal)


# @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
@pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize('causal', [False])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128])
# @pytest.mark.parametrize('d', [32, 56, 64, 80, 96, 128])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [80])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (239, 1),
        (3, 799),
        (799, 3),
        (1024, 128),
        (97, 97),
        (128, 128),
        (200, 200),
        (256, 256),
        (257, 257),
        (384, 384),
        (512, 512),
        (768, 768),
        (1024, 1024),
        (2048, 2048),
    ],
)
def test_flash_attn_race_condition(seqlen_q, seqlen_k, d, causal, dtype):
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    # Simulate under memory load
    dummy = torch.empty(70 * 1024 ** 3, dtype=torch.uint8, device=device)
    batch_size = 60  # Sometimes we need large batch size for the race conditions to trigger
    nheads = 4
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    torch.random.manual_seed(42)
    out0, lse0 = flash_attn3.flash_attn_func(q, k, v, causal=causal)
    g = torch.randn_like(out0)
    dq0, dk0, dv0 = torch.autograd.grad(out0, (q, k, v), g)
    # Numerical error if we just do any arithmetic on dq
    dq_atol = 2 * ((dq0 + 0.3 - 0.3) - dq0).abs().max().item()

    for i in range(1000):
        torch.random.manual_seed(42)
        out, lse = flash_attn3.flash_attn_func(q, k, v, causal=causal)
        assert torch.equal(out, out0)
        assert torch.equal(lse, lse0)

        dq, dk, dv = torch.autograd.grad(out, (q, k, v), g)
        dq_equal = torch.allclose(dq, dq0, atol=dq_atol)
        if not dq_equal:
            print(f"Iter {i}, {dq_atol = }, dQ max diff: {(dq - dq0).abs().max().item()}")
            # breakpoint()
        assert torch.equal(dv, dv0)
        assert torch.equal(dk, dk0)
        assert dq_equal


def attention_combine_ref(out_partial, lse_partial):
    """
    out_partial: (num_splits, batch_size, seqlen, nheads, d)
    lse_partial: (num_splits, batch_size, nheads, seqlen)
    """
    lse = torch.logsumexp(lse_partial, dim=0)
    scale = torch.exp(lse_partial - lse)
    scale = torch.where(torch.isinf(scale) | torch.isnan(scale), torch.zeros_like(scale), scale)
    out = (scale.unsqueeze(-1) * out_partial).sum(0)
    return out, lse


@pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16])
# @pytest.mark.parametrize("dtype", [torch.float32])
# @pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
@pytest.mark.parametrize("d", [64, 96, 128, 192, 256, 512])
# @pytest.mark.parametrize("d", [128])
@pytest.mark.parametrize("seqlen", [1, 2, 3, 32, 64, 256, 113, 108, 640, 1024])
# @pytest.mark.parametrize("seqlen", [12, 32, 64, 256, 112, 108, 640, 1024, 2048, 8192])
# @pytest.mark.parametrize("seqlen", [15])
@pytest.mark.parametrize("num_splits", [1, 2, 3, 5, 17, 32, 55, 97, 133])
# @pytest.mark.parametrize("num_splits", [1, 2, 3, 5, 11])
# @pytest.mark.parametrize("num_splits", [128])
def test_flash_attn_combine(num_splits, seqlen, d, dtype):
    if DISABLE_SPLIT:
        pytest.skip()
    device = "cuda"
    # set seed
    torch.random.manual_seed(1)
    batch_size = 5
    nheads = 16
    # batch_size = 1
    # nheads = 1
    out_partial = torch.randn(num_splits * 2, batch_size, nheads, seqlen, d, device=device, dtype=torch.float32).transpose(2, 3)[:num_splits]  # To test non-contiguous tensor
    lse_partial = torch.randn(num_splits, batch_size, nheads * 2, seqlen, device=device, dtype=torch.float32).transpose(-1, -2)[:, :, :, :nheads]  # To test non-contiguous tensor
    # To test short-circuiting based on num_splits
    lse_partial[num_splits // 2:, :batch_size // 3] = -float("inf")
    out, lse = flash_attn3.flash_attn_combine(out_partial, lse_partial, out_dtype=dtype)
    out_ref, lse_ref = attention_combine_ref(out_partial, lse_partial)
    out_pt = out_ref.to(dtype)

    print(f"LSE max diff: {(lse - lse_ref).abs().max().item()}")
    print(f"LSE mean diff: {(lse - lse_ref).abs().mean().item()}")
    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
    # breakpoint()

    assert torch.allclose(lse, lse_ref, atol=1e-5, rtol=1e-5)
    multiple = 2
    assert ((out - out_ref).abs().max().item() <= multiple * (out_pt - out_ref).abs().max().item()) or torch.allclose(out, out_pt, atol=1e-5, rtol=1e-5)

    # from flash_attn.utils.benchmark import pytorch_profiler
    # # pytorch_profiler(torch.sum, lse_partial)
    # pytorch_profiler(flash_attn_combine, out_partial, lse_partial)
    # pytorch_profiler(torch.sum, out_partial)

def test_flash3_bw_compatibility() -> None:
    # Let's try to always stay backward compatible! This will make life easier
    # for downstream libaries, users, and exported models.
    # 1/ Instead of removing arguments, error out if their value is no longer supported
    # 2/ When adding arguments, add them at the end with a default value
    assert ops.fwd.default._schema.is_backward_compatible_with(parse_schema(
        add_op_namespace_prefix("fwd(Tensor q, Tensor k, Tensor v, Tensor(k_new!)? k_new=None, "
        "Tensor(v_new!)? v_new=None, Tensor? q_v=None, Tensor(out!)? out=None, "
        "Tensor? cu_seqlens_q=None, Tensor? cu_seqlens_k=None, "
        "Tensor? cu_seqlens_k_new=None, Tensor? seqused_q=None, Tensor? seqused_k=None, "
        "int? max_seqlen_q=None, int? max_seqlen_k=None, Tensor? page_table=None, "
        "Tensor? kv_batch_idx=None, Tensor? leftpad_k=None, Tensor? rotary_cos=None, Tensor? rotary_sin=None, "
        "Tensor? seqlens_rotary=None, Tensor? q_descale=None, Tensor? k_descale=None, Tensor? v_descale=None, "
        "float? softmax_scale=None, bool is_causal=False, int window_size_left=-1, int window_size_right=-1, "
        "int attention_chunk=0, float softcap=0., bool is_rotary_interleaved=False, "
        "Tensor? scheduler_metadata=None, int num_splits=0, bool? pack_gqa=None, int sm_margin=0) "
        "-> (Tensor(out!), Tensor, Tensor, Tensor)"
    )))
    assert ops.bwd.default._schema.is_backward_compatible_with(parse_schema(
        add_op_namespace_prefix("bwd(Tensor dout, Tensor q, Tensor k, Tensor v, Tensor out, Tensor softmax_lse, "
        "Tensor(dq!)? dq=None, Tensor(dk!)? dk=None, Tensor(dv!)? dv=None, Tensor? cu_seqlens_q=None, "
        "Tensor? cu_seqlens_k=None, Tensor? seqused_q=None, Tensor? seqused_k=None, int? max_seqlen_q=None, "
        "int? max_seqlen_k=None, float? softmax_scale=None, bool is_causal=False, int window_size_left=-1, "
        "int window_size_right=-1, float softcap=0., bool deterministic=False, int sm_margin=0) "
        "-> (Tensor(dq!), Tensor(dk!), Tensor(dv!), Tensor, Tensor, Tensor, Tensor, Tensor)"
    )))
    assert ops.fwd_combine.default._schema.is_backward_compatible_with(parse_schema(
        add_op_namespace_prefix("fwd_combine(Tensor out_partial, Tensor lse_partial, Tensor(out!)? out=None, "
        "ScalarType? out_dtype=None) -> (Tensor(out!), Tensor)"
    )))
    assert ops.get_scheduler_metadata.default._schema.is_backward_compatible_with(parse_schema(
        add_op_namespace_prefix("get_scheduler_metadata(int batch_size, int max_seqlen_q, int max_seqlen_k, "
        "int num_heads, int num_heads_k, int headdim, int headdim_v, ScalarType qkv_dtype, Tensor seqused_k, "
        "Tensor? cu_seqlens_q=None, Tensor? cu_seqlens_k=None, Tensor? cu_seqlens_k_new=None, "
        "Tensor? seqused_q=None, Tensor? leftpad_k=None, int? page_size=None, int max_seqlen_k_new=0, "
        "bool is_causal=False, int window_size_left=-1, int window_size_right=-1, "
        "int attention_chunk=0, bool has_softcap=False, int num_splits=0, bool? pack_gqa=None, "
        "int sm_margin=0) -> Tensor"
    )))