File size: 13,693 Bytes
77427db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import math
import torch
from einops import rearrange, repeat
from padding import pad_input, unpad_input
def generate_random_padding_mask(max_seqlen, batch_size, device, mode="random", zero_lengths=False):
assert mode in ["full", "random", "third"]
if mode == "full":
lengths = torch.full((batch_size, 1), max_seqlen, device=device, dtype=torch.int32)
elif mode == "random":
lengths = torch.randint(
max(0 if zero_lengths else 1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device
)
elif mode == "third":
lengths = torch.randint(max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device)
if zero_lengths:
# Generate zero-lengths every 5 batches and the last batch.
for i in range(batch_size):
if i % 5 == 0:
lengths[i] = 0
lengths[-1] = 0
padding_mask = (
repeat(torch.arange(max_seqlen, device=device), "s -> b s", b=batch_size) < lengths
)
return padding_mask
def generate_qkv(
q, k, v, query_padding_mask=None, key_padding_mask=None, qv=None, kvpacked=False, qkvpacked=False,
query_unused_mask=None, key_unused_mask=None,
):
"""
Arguments:
q: (batch_size, seqlen_q, nheads, d)
k: (batch_size, seqlen_k, nheads_k, d)
v: (batch_size, seqlen_k, nheads_k, d_v)
query_padding_mask: (batch_size, seqlen), bool
key_padding_mask: (batch_size, seqlen), bool
"""
assert not (kvpacked and qkvpacked)
batch_size, seqlen_q, nheads, d = q.shape
d_v = v.shape[-1]
_, seqlen_k, nheads_k, _ = k.shape
assert k.shape == (batch_size, seqlen_k, nheads_k, d)
assert v.shape == (batch_size, seqlen_k, nheads_k, d_v)
if query_unused_mask is not None or key_unused_mask is not None:
assert not kvpacked
assert not qkvpacked
if query_padding_mask is not None:
q_unpad, indices_q, cu_seqlens_q, max_seqlen_q, seqused_q = unpad_input(
q, query_padding_mask, query_unused_mask
)
output_pad_fn = lambda output_unpad: pad_input(
output_unpad, indices_q, batch_size, seqlen_q
)
qv_unpad = rearrange(qv, "b s ... -> (b s) ...")[indices_q] if qv is not None else None
else:
q_unpad = rearrange(q, "b s h d -> (b s) h d")
cu_seqlens_q = torch.arange(
0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q_unpad.device
)
seqused_q = None
max_seqlen_q = seqlen_q
output_pad_fn = lambda output_unpad: rearrange(
output_unpad, "(b s) h d -> b s h d", b=batch_size
)
qv_unpad = rearrange(qv, "b s ... -> (b s) ...") if qv is not None else None
if key_padding_mask is not None:
k_unpad, indices_k, cu_seqlens_k, max_seqlen_k, seqused_k = unpad_input(
k, key_padding_mask, key_unused_mask
)
v_unpad, *rest = unpad_input(v, key_padding_mask, key_unused_mask)
else:
k_unpad = rearrange(k, "b s h d -> (b s) h d")
v_unpad = rearrange(v, "b s h d -> (b s) h d")
cu_seqlens_k = torch.arange(
0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k_unpad.device
)
seqused_k = None
max_seqlen_k = seqlen_k
if qkvpacked:
assert (query_padding_mask == key_padding_mask).all()
assert nheads == nheads_k
qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
qkv = torch.stack([q, k, v], dim=2)
if query_padding_mask is not None:
dqkv_pad_fn = lambda dqkv_unpad: pad_input(dqkv_unpad, indices_q, batch_size, seqlen_q)
else:
dqkv_pad_fn = lambda dqkv_unpad: rearrange(
dqkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
)
return (
qkv_unpad.detach().requires_grad_(),
cu_seqlens_q,
max_seqlen_q,
qkv.detach().requires_grad_(),
output_pad_fn,
dqkv_pad_fn,
)
elif kvpacked:
kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
kv = torch.stack([k, v], dim=2)
dq_pad_fn = output_pad_fn
if key_padding_mask is not None:
dkv_pad_fn = lambda dkv_unpad: pad_input(dkv_unpad, indices_k, batch_size, seqlen_k)
else:
dkv_pad_fn = lambda dkv_unpad: rearrange(
dkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
)
return (
q_unpad.detach().requires_grad_(),
kv_unpad.detach().requires_grad_(),
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
q.detach().requires_grad_(),
kv.detach().requires_grad_(),
output_pad_fn,
dq_pad_fn,
dkv_pad_fn,
)
else:
dq_pad_fn = output_pad_fn
if key_padding_mask is not None:
dk_pad_fn = lambda dk_unpad: pad_input(dk_unpad, indices_k, batch_size, seqlen_k)
else:
dk_pad_fn = lambda dk_unpad: rearrange(dk_unpad, "(b s) h d -> b s h d", b=batch_size)
return (
q_unpad.detach().requires_grad_(),
k_unpad.detach().requires_grad_(),
v_unpad.detach().requires_grad_(),
qv_unpad.detach() if qv is not None else None,
cu_seqlens_q,
cu_seqlens_k,
seqused_q,
seqused_k,
max_seqlen_q,
max_seqlen_k,
q.detach().requires_grad_(),
k.detach().requires_grad_(),
v.detach().requires_grad_(),
qv.detach() if qv is not None else None,
output_pad_fn,
dq_pad_fn,
dk_pad_fn,
)
def construct_local_mask(
seqlen_q,
seqlen_k,
window_size=(-1, -1), # -1 means infinite window size
sink_token_length=0,
query_padding_mask=None,
key_padding_mask=None,
key_leftpad=None,
device=None,
):
row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
if key_leftpad is not None:
key_leftpad = rearrange(key_leftpad, "b -> b 1 1 1")
col_idx = repeat(col_idx, "s -> b 1 1 s", b=key_leftpad.shape[0])
col_idx = torch.where(col_idx >= key_leftpad, col_idx - key_leftpad, 2**32)
sk = (
seqlen_k
if key_padding_mask is None
else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
)
sq = (
seqlen_q
if query_padding_mask is None
else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
)
if window_size[0] < 0:
return col_idx > row_idx + sk - sq + window_size[1]
else:
sk = torch.full_like(col_idx, seqlen_k) if key_padding_mask is None else sk
return torch.logical_or(
col_idx > torch.minimum(row_idx + sk - sq + window_size[1], sk),
torch.logical_and(col_idx < row_idx + sk - sq - window_size[0], col_idx >= sink_token_length),
)
def construct_chunk_mask(
seqlen_q,
seqlen_k,
attention_chunk,
query_padding_mask=None,
key_padding_mask=None,
key_leftpad=None,
device=None,
):
row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
if key_leftpad is not None:
key_leftpad = rearrange(key_leftpad, "b -> b 1 1 1")
col_idx = repeat(col_idx, "s -> b 1 1 s", b=key_leftpad.shape[0])
col_idx = torch.where(col_idx >= key_leftpad, col_idx - key_leftpad, 2**32)
sk = (
seqlen_k
if key_padding_mask is None
else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
)
sq = (
seqlen_q
if query_padding_mask is None
else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
)
sk = torch.full_like(col_idx, seqlen_k) if key_padding_mask is None else sk
# Subtract remainder instead of divide and then multiply to take care of negative values
col_limit_left_chunk = row_idx + sk - sq - (row_idx + sk - sq) % attention_chunk
return torch.logical_or(
col_idx < col_limit_left_chunk, col_idx >= col_limit_left_chunk + attention_chunk
)
def attention_ref(
q,
k,
v,
query_padding_mask=None,
key_padding_mask=None,
key_leftpad=None,
attn_bias=None,
dropout_p=0.0,
dropout_mask=None,
causal=False,
qv=None,
q_descale=None, k_descale=None, v_descale=None,
window_size=(-1, -1), # -1 means infinite window size
attention_chunk=0,
sink_token_length=0,
softcap=0.0,
upcast=True,
reorder_ops=False,
intermediate_dtype=None,
):
"""
Arguments:
q: (batch_size, seqlen_q, nheads, head_dim)
k: (batch_size, seqlen_k, nheads, head_dim)
v: (batch_size, seqlen_k, nheads, head_dim_v)
qv: (batch_size, seqlen_q, nheads, head_dim_v)
query_padding_mask: (batch_size, seqlen_q)
key_padding_mask: (batch_size, seqlen_k)
attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k)
dropout_p: float
dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
causal: whether to apply causal masking
upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
output back to fp16/bf16.
reorder_ops: whether to change the order of operations (scaling k instead of scaling k, etc.)
without changing the math. This is to estimate the numerical error from operation
reordering.
Output:
output: (batch_size, seqlen_q, nheads, head_dim_v)
attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
"""
if causal:
window_size = (window_size[0], 0)
dtype_og = q.dtype
if upcast:
q, k, v = q.float(), k.float(), v.float()
qv = qv.float() if qv is not None else None
if q_descale is not None:
q_descale = repeat(q_descale, "b h -> b 1 (h g) 1", g=q.shape[2] // k.shape[2])
q = (q.float() * q_descale).to(q.dtype)
qv = (qv.float() * q_descale).to(qv.dtype) if qv is not None else None
if k_descale is not None:
k = (k.float() * rearrange(k_descale, "b h -> b 1 h 1")).to(dtype=k.dtype)
if v_descale is not None:
v = (v.float() * rearrange(v_descale, "b h -> b 1 h 1")).to(dtype=v.dtype)
seqlen_q, seqlen_k = q.shape[1], k.shape[1]
k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
d = q.shape[-1]
dv = v.shape[-1]
softmax_scale = 1.0 / math.sqrt(d if qv is None else d + dv)
if not reorder_ops:
scores = torch.einsum("bthd,bshd->bhts", q * softmax_scale, k)
else:
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
if qv is not None:
scores = scores + torch.einsum("bthd,bshd->bhts", qv * softmax_scale, v)
if softcap > 0:
scores = torch.tanh(scores / softcap) * softcap
if key_padding_mask is not None:
scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
local_mask = None
if window_size[0] >= 0 or window_size[1] >= 0:
local_mask = construct_local_mask(
seqlen_q,
seqlen_k,
window_size,
sink_token_length,
query_padding_mask,
key_padding_mask,
key_leftpad=key_leftpad,
device=q.device,
)
if attention_chunk > 0:
chunk_mask = construct_chunk_mask(
seqlen_q,
seqlen_k,
attention_chunk,
query_padding_mask,
key_padding_mask,
key_leftpad=key_leftpad,
device=q.device,
)
local_mask = torch.logical_or(local_mask, chunk_mask) if local_mask is not None else chunk_mask
if local_mask is not None:
scores.masked_fill_(local_mask, float("-inf"))
if attn_bias is not None:
scores = scores + attn_bias
attention = torch.softmax(scores, dim=-1).to(v.dtype)
# We want to mask here so that the attention matrix doesn't have any NaNs
# Otherwise we'll get NaN in dV
if query_padding_mask is not None:
attention = attention.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
# Without this we might get NaN in dv
if key_padding_mask is not None:
attention = attention.masked_fill(rearrange(~key_padding_mask, "b s -> b 1 1 s"), 0.0)
# Some rows might be completely masked out so we fill them with zero instead of NaN
if local_mask is not None:
attention = attention.masked_fill(torch.all(local_mask, dim=-1, keepdim=True), 0.0)
dropout_scaling = 1.0 / (1 - dropout_p)
# attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling
# output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
if dropout_mask is not None:
attention_drop = attention.masked_fill(~dropout_mask, 0.0)
else:
attention_drop = attention
if intermediate_dtype is not None:
attention_drop = attention_drop.to(intermediate_dtype).to(attention_drop.dtype)
output = torch.einsum("bhts,bshd->bthd", attention_drop, v * dropout_scaling)
if query_padding_mask is not None:
output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)
|