kernel
File size: 3,810 Bytes
eb8ddce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#pragma once

#include <torch/library.h>

/**
 * Unforunately, the type signatures of the flash_attn ops are not compatible 
 * with the PyTorch library bindings. To get around that we use 
 * `make_pytorch_shim` which creates a lambda that exponses the API using 
 * PyTorch compatible types to the types, then converts them to the types 
 * expected by the flash_attn ops. This shims allows us to make minimal changes
 * to `flash_api.cpp` making it easier to synchronize with upstream changes.
 * 
 * The `pytorch_library_compatible_type` struct is used to map from the 
 * flash_attn ops types to a PyTorch library compatible one. The main issues is
 * that the following types are not support by PyTorch libary bindings:
 *  - `int`
 *  - `float`
 *  - `std::optional<T> &`
 *  - `std::optional<const at::Tensor> &`
 * So we convert them to (respectively):
 *  - `int64_t`
 *  - `double`
 *  - `const std::optional<T>&`
 *  - `const std::optional<at::Tensor>&`
 */

template<typename T>
struct pytorch_library_compatible_type { 
    using type = T;
    static T convert_from_type(T arg) { return arg; }
};

template<typename T>
using pytorch_library_compatible_type_t = \
    typename pytorch_library_compatible_type<T>::type;

template<typename T>
T convert_from_pytorch_compatible_type(pytorch_library_compatible_type_t<T> arg) 
    { return pytorch_library_compatible_type<T>::convert_from_type(arg); }

// Map `std::optional<T> &` -> `const std::optional<T>&`
//  (NOTE: this is bit unsafe but non of the ops in flash_attn mutate 
//   the optional container)
template<typename T>
struct pytorch_library_compatible_type<std::optional<T> &> { 
    using type = const std::optional<T>&;
    static std::optional<T>& convert_from_type(const std::optional<T> &arg) { 
        return const_cast<std::optional<T>&>(arg); 
    }
};

// Map `std::optional<T>` -> 
//          `std::optional<pytorch_library_compatible_type_t<T>>`
//  (NOTE: tested for `std::optional<int>` -> `std::optional<int64_t>`)
template<typename T>
struct pytorch_library_compatible_type<std::optional<T>> { 
    using type = std::optional<pytorch_library_compatible_type_t<T>>;
    static std::optional<pytorch_library_compatible_type_t<T>> convert_from_type(std::optional<T> arg) { 
        return arg; 
    }
};

// Map `std::optional<const at::Tensor>&` -> `const std::optional<at::Tensor>&`
template<>
struct pytorch_library_compatible_type<std::optional<const at::Tensor> &> { 
    using type = const std::optional<at::Tensor>&;
    static std::optional<const at::Tensor>& convert_from_type(
        const std::optional<at::Tensor> &arg) {
        return const_cast<std::optional<const at::Tensor>&>(
            reinterpret_cast<const std::optional<const at::Tensor>&>(arg)); 
    }
};

// Map `int` -> `int64_t`
template<> struct pytorch_library_compatible_type<int> { 
    using type = int64_t; 
    static int convert_from_type(int64_t arg) {
        TORCH_CHECK(arg <= std::numeric_limits<int>::max(), 
            "int64_t value is too large to be converted to int");
        TORCH_CHECK(arg >= std::numeric_limits<int>::min(), 
            "int64_t value is too small to be converted to int");
        return arg; 
    }
};

// Map `float` -> `double`
template<> struct pytorch_library_compatible_type<float> { 
    using type = double; 
    static float convert_from_type(double arg) { 
        TORCH_CHECK(std::abs(arg) <= std::numeric_limits<float>::max(), 
            "double value is too large to be converted to float");
        return arg; 
    }
};

//
//  Shim Utils
//

template <typename Ret, typename... Args>
auto make_pytorch_shim(Ret(*fun)(Args... args)){
    return [fun](pytorch_library_compatible_type_t<Args>... args) {
        return fun(convert_from_pytorch_compatible_type<Args>(args)...);
    };
}