kernel
danieldk HF Staff commited on
Commit
48fe103
·
1 Parent(s): 6fff937

Add more build variants

Browse files
Files changed (24) hide show
  1. build/torch26-cxx11-cu124-x86_64-linux/flash_attn3/__init__.py +17 -0
  2. build/torch26-cxx11-cu124-x86_64-linux/flash_attn3/_flash_attn3_2e75662.abi3.so +3 -0
  3. build/torch26-cxx11-cu124-x86_64-linux/flash_attn3/_flash_attn3_557701f.abi3.so +3 -0
  4. build/torch26-cxx11-cu124-x86_64-linux/flash_attn3/_ops.py +9 -0
  5. build/torch26-cxx11-cu124-x86_64-linux/flash_attn3/flash_attn_interface.py +828 -0
  6. build/torch26-cxx11-cu126-x86_64-linux/flash_attn3/__init__.py +17 -0
  7. build/torch26-cxx11-cu126-x86_64-linux/flash_attn3/_flash_attn3_2e75662.abi3.so +3 -0
  8. build/torch26-cxx11-cu126-x86_64-linux/flash_attn3/_flash_attn3_557701f.abi3.so +3 -0
  9. build/torch26-cxx11-cu126-x86_64-linux/flash_attn3/_ops.py +9 -0
  10. build/torch26-cxx11-cu126-x86_64-linux/flash_attn3/flash_attn_interface.py +828 -0
  11. build/torch26-cxx98-cu124-x86_64-linux/flash_attn3/__init__.py +17 -0
  12. build/torch26-cxx98-cu124-x86_64-linux/flash_attn3/_flash_attn3_2e75662.abi3.so +3 -0
  13. build/torch26-cxx98-cu124-x86_64-linux/flash_attn3/_flash_attn3_557701f.abi3.so +3 -0
  14. build/torch26-cxx98-cu124-x86_64-linux/flash_attn3/_ops.py +9 -0
  15. build/torch26-cxx98-cu124-x86_64-linux/flash_attn3/flash_attn_interface.py +828 -0
  16. build/torch26-cxx98-cu126-x86_64-linux/flash_attn3/__init__.py +17 -0
  17. build/torch26-cxx98-cu126-x86_64-linux/flash_attn3/_flash_attn3_2e75662.abi3.so +3 -0
  18. build/torch26-cxx98-cu126-x86_64-linux/flash_attn3/_flash_attn3_557701f.abi3.so +3 -0
  19. build/torch26-cxx98-cu126-x86_64-linux/flash_attn3/_ops.py +9 -0
  20. build/torch26-cxx98-cu126-x86_64-linux/flash_attn3/flash_attn_interface.py +828 -0
  21. build/torch27-cxx11-cu128-x86_64-linux/flash_attn3/__init__.py +17 -0
  22. build/torch27-cxx11-cu128-x86_64-linux/flash_attn3/_flash_attn3_2e75662.abi3.so +3 -0
  23. build/torch27-cxx11-cu128-x86_64-linux/flash_attn3/_ops.py +9 -0
  24. build/torch27-cxx11-cu128-x86_64-linux/flash_attn3/flash_attn_interface.py +828 -0
build/torch26-cxx11-cu124-x86_64-linux/flash_attn3/__init__.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .flash_attn_interface import (
2
+ flash_attn_combine,
3
+ flash_attn_func,
4
+ flash_attn_qkvpacked_func,
5
+ flash_attn_varlen_func,
6
+ flash_attn_with_kvcache,
7
+ get_scheduler_metadata,
8
+ )
9
+
10
+ __all__ = [
11
+ "flash_attn_combine",
12
+ "flash_attn_func",
13
+ "flash_attn_qkvpacked_func",
14
+ "flash_attn_varlen_func",
15
+ "flash_attn_with_kvcache",
16
+ "get_scheduler_metadata",
17
+ ]
build/torch26-cxx11-cu124-x86_64-linux/flash_attn3/_flash_attn3_2e75662.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21b44e8e5e447a8b8ee051d347f0e32a3446a750f79d0bd1755e553f2119aa3b
3
+ size 838459656
build/torch26-cxx11-cu124-x86_64-linux/flash_attn3/_flash_attn3_557701f.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12d4ff964085fd02252777a2008f5ca47c90ea6a93da590e2fc5065dd5330207
3
+ size 838459656
build/torch26-cxx11-cu124-x86_64-linux/flash_attn3/_ops.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from . import _flash_attn3_557701f
3
+ ops = torch.ops._flash_attn3_557701f
4
+
5
+ def add_op_namespace_prefix(op_name: str):
6
+ """
7
+ Prefix op by namespace.
8
+ """
9
+ return f"_flash_attn3_557701f::{op_name}"
build/torch26-cxx11-cu124-x86_64-linux/flash_attn3/flash_attn_interface.py ADDED
@@ -0,0 +1,828 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023, Tri Dao.
2
+
3
+ from typing import Optional, Union
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+
8
+ from ._ops import ops as flash_attn_3_cuda
9
+
10
+ def maybe_contiguous(x):
11
+ return x.contiguous() if x is not None and x.stride(-1) != 1 else x
12
+
13
+
14
+ def _flash_attn_forward(
15
+ q,
16
+ k,
17
+ v,
18
+ k_new,
19
+ v_new,
20
+ qv,
21
+ out,
22
+ cu_seqlens_q,
23
+ cu_seqlens_k,
24
+ cu_seqlens_k_new,
25
+ seqused_q,
26
+ seqused_k,
27
+ max_seqlen_q,
28
+ max_seqlen_k,
29
+ page_table,
30
+ kv_batch_idx,
31
+ leftpad_k,
32
+ rotary_cos,
33
+ rotary_sin,
34
+ seqlens_rotary,
35
+ q_descale,
36
+ k_descale,
37
+ v_descale,
38
+ softmax_scale,
39
+ causal,
40
+ window_size=(-1, -1),
41
+ attention_chunk=0,
42
+ softcap=0.0,
43
+ rotary_interleaved=True,
44
+ scheduler_metadata=None,
45
+ num_splits=1,
46
+ pack_gqa=None,
47
+ sm_margin=0):
48
+ q, k, k_new, v_new = [maybe_contiguous(x) for x in (q, k, k_new, v_new)]
49
+ v = v.contiguous() if v.stride(-1) != 1 and v.stride(-3) != 1 else v
50
+ cu_seqlens_q, cu_seqlens_k, cu_seqlens_k_new = [
51
+ maybe_contiguous(x) for x in (cu_seqlens_q, cu_seqlens_k, cu_seqlens_k_new)
52
+ ]
53
+ seqused_q, seqused_k = [maybe_contiguous(x) for x in (seqused_q, seqused_k)]
54
+ page_table, kv_batch_idx, leftpad_k = [
55
+ maybe_contiguous(x) for x in (page_table, kv_batch_idx, leftpad_k)
56
+ ]
57
+ rotary_cos, rotary_sin = [maybe_contiguous(x) for x in (rotary_cos, rotary_sin)]
58
+ seqlens_rotary = maybe_contiguous(seqlens_rotary)
59
+ out, softmax_lse, *rest = flash_attn_3_cuda.fwd(
60
+ q,
61
+ k,
62
+ v,
63
+ k_new,
64
+ v_new,
65
+ qv,
66
+ out,
67
+ cu_seqlens_q,
68
+ cu_seqlens_k,
69
+ cu_seqlens_k_new,
70
+ seqused_q,
71
+ seqused_k,
72
+ max_seqlen_q,
73
+ max_seqlen_k,
74
+ page_table,
75
+ kv_batch_idx,
76
+ leftpad_k,
77
+ rotary_cos,
78
+ rotary_sin,
79
+ seqlens_rotary,
80
+ q_descale,
81
+ k_descale,
82
+ v_descale,
83
+ softmax_scale,
84
+ causal,
85
+ window_size[0],
86
+ window_size[1],
87
+ attention_chunk,
88
+ softcap,
89
+ rotary_interleaved,
90
+ scheduler_metadata,
91
+ num_splits,
92
+ pack_gqa,
93
+ sm_margin,
94
+ )
95
+ return out, softmax_lse, *rest
96
+
97
+
98
+ def _flash_attn_backward(
99
+ dout,
100
+ q,
101
+ k,
102
+ v,
103
+ out,
104
+ softmax_lse,
105
+ cu_seqlens_q,
106
+ cu_seqlens_k,
107
+ sequed_q,
108
+ sequed_k,
109
+ max_seqlen_q,
110
+ max_seqlen_k,
111
+ dq,
112
+ dk,
113
+ dv,
114
+ softmax_scale,
115
+ causal,
116
+ window_size=(-1, -1),
117
+ softcap=0.0,
118
+ deterministic=False,
119
+ sm_margin=0,
120
+ ):
121
+ # dq, dk, dv are allocated by us so they should already be contiguous
122
+ dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
123
+ dq, dk, dv, softmax_d, *rest = flash_attn_3_cuda.bwd(
124
+ dout,
125
+ q,
126
+ k,
127
+ v,
128
+ out,
129
+ softmax_lse,
130
+ dq,
131
+ dk,
132
+ dv,
133
+ cu_seqlens_q,
134
+ cu_seqlens_k,
135
+ sequed_q,
136
+ sequed_k,
137
+ max_seqlen_q,
138
+ max_seqlen_k,
139
+ softmax_scale,
140
+ causal,
141
+ window_size[0],
142
+ window_size[1],
143
+ softcap,
144
+ deterministic,
145
+ sm_margin,
146
+ )
147
+ return dq, dk, dv, softmax_d
148
+
149
+
150
+ class FlashAttnQKVPackedFunc(torch.autograd.Function):
151
+ @staticmethod
152
+ def forward(
153
+ ctx,
154
+ qkv,
155
+ softmax_scale,
156
+ causal,
157
+ q_descale=None, k_descale=None, v_descale=None,
158
+ window_size=(-1, -1),
159
+ attention_chunk=0,
160
+ softcap=0.0,
161
+ deterministic=False,
162
+ num_heads_q=None,
163
+ sm_margin=0,
164
+ ):
165
+ if softmax_scale is None:
166
+ softmax_scale = qkv.shape[-1] ** (-0.5)
167
+ if qkv.dim() == 5:
168
+ assert qkv.shape[-3] == 3
169
+ q, k, v = qkv.unbind(dim=-3)
170
+ else:
171
+ assert qkv.dim() == 4
172
+ assert num_heads_q is not None
173
+ num_heads_k = (qkv.shape[2] - num_heads_q) // 2
174
+ assert num_heads_k * 2 + num_heads_q == qkv.shape[2]
175
+ q, k, v = qkv.split([num_heads_q, num_heads_k, num_heads_k], dim=-2)
176
+ out, softmax_lse, *rest = _flash_attn_forward(
177
+ q,
178
+ k,
179
+ v,
180
+ None, None, # k_new, v_new
181
+ None, # qv
182
+ None, # out
183
+ None, None, None, # cu_seqlens_q/k/k_new
184
+ None, None, # seqused_q/k
185
+ None, None, # max_seqlen_q/k
186
+ None, None, None, # page_table, kv_batch_idx, leftpad_k,
187
+ None, None, None, # rotary_cos/sin, seqlens_rotary
188
+ q_descale, k_descale, v_descale,
189
+ softmax_scale,
190
+ causal=causal,
191
+ window_size=window_size,
192
+ attention_chunk=attention_chunk,
193
+ softcap=softcap,
194
+ sm_margin=sm_margin,
195
+ )
196
+ # ctx.save_for_backward(q, k, v, out_padded, softmax_lse)
197
+ ctx.save_for_backward(q, k, v, out, softmax_lse)
198
+ ctx.softmax_scale = softmax_scale
199
+ ctx.causal = causal
200
+ ctx.window_size = window_size
201
+ ctx.attention_chunk = attention_chunk
202
+ ctx.softcap = softcap
203
+ ctx.deterministic = deterministic
204
+ ctx.ndim = qkv.dim()
205
+ ctx.sm_margin = sm_margin
206
+ # return out, softmax_lse
207
+ return out
208
+
209
+ @staticmethod
210
+ def backward(ctx, dout, *args):
211
+ q, k, v, out, softmax_lse = ctx.saved_tensors
212
+ assert ctx.attention_chunk == 0, "FA3 backward does not support attention_chunk"
213
+ if ctx.ndim == 5:
214
+ qkv_shape = q.shape[:-2] + (3, *q.shape[-2:])
215
+ dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device)
216
+ dq, dk, dv = dqkv.unbind(dim=-3)
217
+ else:
218
+ num_heads_q = q.shape[2]
219
+ num_heads_k = k.shape[2]
220
+ qkv_shape = q.shape[:-2] + (num_heads_q + num_heads_k * 2, *q.shape[-1:])
221
+ dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device)
222
+ dq, dk, dv = dqkv.split([num_heads_q, num_heads_k, num_heads_k], dim=-2)
223
+ _flash_attn_backward(
224
+ dout,
225
+ q,
226
+ k,
227
+ v,
228
+ out,
229
+ softmax_lse,
230
+ None, None, # cu_seqlens_q, cu_seqlens_k,
231
+ None, None, # sequed_q, sequed_k,
232
+ None, None, # max_seqlen_q, max_seqlen_k,
233
+ dq,
234
+ dk,
235
+ dv,
236
+ ctx.softmax_scale,
237
+ ctx.causal,
238
+ ctx.window_size,
239
+ ctx.softcap,
240
+ ctx.deterministic,
241
+ ctx.sm_margin,
242
+ )
243
+ dqkv = dqkv[..., : dout.shape[-1]] # We could have padded the head dimension
244
+ return dqkv, None, None, None, None, None, None, None, None, None, None, None
245
+
246
+
247
+ class FlashAttnFunc(torch.autograd.Function):
248
+
249
+ @staticmethod
250
+ def forward(
251
+ ctx,
252
+ q,
253
+ k,
254
+ v,
255
+ softmax_scale,
256
+ causal,
257
+ qv=None,
258
+ q_descale=None, k_descale=None, v_descale=None,
259
+ window_size=(-1, -1),
260
+ attention_chunk=0,
261
+ softcap=0.0,
262
+ num_splits=1,
263
+ pack_gqa=None,
264
+ deterministic=False,
265
+ sm_margin=0,
266
+ ):
267
+ if softmax_scale is None:
268
+ softmax_scale = (q.shape[-1] + (qv.shape[-1] if qv is not None else 0)) ** (-0.5)
269
+ # out, q, k, v, out_padded, softmax_lse = _flash_attn_forward(
270
+ out, softmax_lse, *rest = _flash_attn_forward(
271
+ q,
272
+ k,
273
+ v,
274
+ None, None, # k_new, v_new
275
+ qv, # qv
276
+ None, # out
277
+ None, None, None, # cu_seqlens_q/k/k_new
278
+ None, None, # seqused_q/k
279
+ None, None, # max_seqlen_q/k
280
+ None, None, None, # page_table, kv_batch_idx, leftpad_k,
281
+ None, None, None, # rotary_cos/sin, seqlens_rotary
282
+ q_descale, k_descale, v_descale,
283
+ softmax_scale,
284
+ causal=causal,
285
+ window_size=window_size,
286
+ attention_chunk=attention_chunk,
287
+ softcap=softcap,
288
+ num_splits=num_splits,
289
+ pack_gqa=pack_gqa,
290
+ sm_margin=sm_margin,
291
+ )
292
+ # ctx.save_for_backward(q, k, v, out_padded, softmax_lse)
293
+ ctx.save_for_backward(q, k, v, out, softmax_lse)
294
+ ctx.softmax_scale = softmax_scale
295
+ ctx.causal = causal
296
+ ctx.window_size = window_size
297
+ ctx.attention_chunk = attention_chunk
298
+ ctx.softcap = softcap
299
+ ctx.deterministic = deterministic
300
+ ctx.sm_margin = sm_margin
301
+ return out, softmax_lse
302
+
303
+ @staticmethod
304
+ def backward(ctx, dout, *args):
305
+ q, k, v, out, softmax_lse = ctx.saved_tensors
306
+ assert ctx.attention_chunk == 0, "FA3 backward does not support attention_chunk"
307
+ dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
308
+ _flash_attn_backward(
309
+ dout,
310
+ q,
311
+ k,
312
+ v,
313
+ out,
314
+ softmax_lse,
315
+ None, None, # cu_seqlens_q, cu_seqlens_k,
316
+ None, None, # sequed_q, sequed_k,
317
+ None, None, # max_seqlen_q, max_seqlen_k,
318
+ dq,
319
+ dk,
320
+ dv,
321
+ ctx.softmax_scale,
322
+ ctx.causal,
323
+ ctx.window_size,
324
+ ctx.softcap,
325
+ ctx.deterministic,
326
+ ctx.sm_margin,
327
+ )
328
+ dq = dq[..., : q.shape[-1]] # We could have padded the head dimension
329
+ dk = dk[..., : k.shape[-1]]
330
+ dv = dv[..., : v.shape[-1]]
331
+ return dq, dk, dv, None, None, None, None, None, None, None, None, None, None, None, None, None, None
332
+
333
+
334
+ class FlashAttnVarlenFunc(torch.autograd.Function):
335
+
336
+ @staticmethod
337
+ def forward(
338
+ ctx,
339
+ q,
340
+ k,
341
+ v,
342
+ cu_seqlens_q,
343
+ cu_seqlens_k,
344
+ seqused_q,
345
+ seqused_k,
346
+ max_seqlen_q,
347
+ max_seqlen_k,
348
+ softmax_scale,
349
+ causal,
350
+ qv=None,
351
+ q_descale=None, k_descale=None, v_descale=None,
352
+ window_size=(-1, -1),
353
+ attention_chunk=0,
354
+ softcap=0.0,
355
+ num_splits=1,
356
+ pack_gqa=None,
357
+ deterministic=False,
358
+ sm_margin=0,
359
+ ):
360
+ if softmax_scale is None:
361
+ softmax_scale = (q.shape[-1] + (qv.shape[-1] if qv is not None else 0)) ** (-0.5)
362
+ # out, q, k, v, out_padded, softmax_lse = _flash_attn_varlen_forward(
363
+ out, softmax_lse, *rest = _flash_attn_forward(
364
+ q,
365
+ k,
366
+ v,
367
+ None, None, # k_new, v_new
368
+ qv, # qv
369
+ None, # out
370
+ cu_seqlens_q,
371
+ cu_seqlens_k,
372
+ None, # cu_seqlens_k_new
373
+ seqused_q,
374
+ seqused_k,
375
+ max_seqlen_q,
376
+ max_seqlen_k,
377
+ None, None, None, # page_table, kv_batch_idx, leftpad_k,
378
+ None, None, None, # rotary_cos/sin, seqlens_rotary
379
+ q_descale, k_descale, v_descale,
380
+ softmax_scale,
381
+ causal=causal,
382
+ window_size=window_size,
383
+ attention_chunk=attention_chunk,
384
+ softcap=softcap,
385
+ num_splits=num_splits,
386
+ pack_gqa=pack_gqa,
387
+ sm_margin=sm_margin,
388
+ )
389
+ # ctx.save_for_backward(q, k, v, out_padded, softmax_lse, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k)
390
+ ctx.save_for_backward(q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k)
391
+ ctx.max_seqlen_q = max_seqlen_q
392
+ ctx.max_seqlen_k = max_seqlen_k
393
+ ctx.softmax_scale = softmax_scale
394
+ ctx.causal = causal
395
+ ctx.window_size = window_size
396
+ ctx.attention_chunk = attention_chunk
397
+ ctx.softcap = softcap
398
+ ctx.deterministic = deterministic
399
+ ctx.sm_margin = sm_margin
400
+ return out, softmax_lse
401
+
402
+ @staticmethod
403
+ def backward(ctx, dout, *args):
404
+ q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k = ctx.saved_tensors
405
+ assert ctx.attention_chunk == 0, "FA3 backward does not support attention_chunk"
406
+ dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
407
+ _flash_attn_backward(
408
+ dout,
409
+ q,
410
+ k,
411
+ v,
412
+ out,
413
+ softmax_lse,
414
+ cu_seqlens_q,
415
+ cu_seqlens_k,
416
+ seqused_q,
417
+ seqused_k,
418
+ ctx.max_seqlen_q,
419
+ ctx.max_seqlen_k,
420
+ dq,
421
+ dk,
422
+ dv,
423
+ ctx.softmax_scale,
424
+ ctx.causal,
425
+ ctx.window_size,
426
+ ctx.softcap,
427
+ ctx.deterministic,
428
+ ctx.sm_margin,
429
+ )
430
+ dq = dq[..., : q.shape[-1]] # We could have padded the head dimension
431
+ dk = dk[..., : k.shape[-1]]
432
+ dv = dv[..., : v.shape[-1]]
433
+ return dq, dk, dv, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None
434
+
435
+
436
+ def flash_attn_qkvpacked_func(
437
+ qkv,
438
+ softmax_scale=None,
439
+ causal=False,
440
+ q_descale=None, k_descale=None, v_descale=None,
441
+ window_size=(-1, -1),
442
+ attention_chunk=0,
443
+ softcap=0.0,
444
+ deterministic=False,
445
+ num_heads_q=None,
446
+ sm_margin=0,
447
+ ):
448
+ """dropout_p should be set to 0.0 during evaluation
449
+ If Q, K, V are already stacked into 1 tensor, this function will be faster than
450
+ calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
451
+ of the gradients of Q, K, V.
452
+ For multi-query and grouped-query attention (MQA/GQA), please see
453
+ flash_attn_kvpacked_func and flash_attn_func.
454
+
455
+ If window_size != (-1, -1), implements sliding window local attention. Query at position i
456
+ will only attend to keys between [i - window_size[0], i + window_size[1]] inclusive.
457
+
458
+ Arguments:
459
+ qkv: (batch_size, seqlen, 3, nheads, headdim)
460
+ dropout_p: float. Dropout probability.
461
+ softmax_scale: float. The scaling of QK^T before applying softmax.
462
+ Default to 1 / sqrt(headdim).
463
+ causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
464
+ window_size: (left, right). If not (-1, -1), implements sliding window local attention.
465
+ softcap: float. Anything > 0 activates softcapping attention.
466
+ alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of (-alibi_slope * |i - j|) is added to
467
+ the attention score of query i and key j.
468
+ deterministic: bool. Whether to use the deterministic implementation of the backward pass,
469
+ which is slightly slower and uses more memory. The forward pass is always deterministic.
470
+ return_attn_probs: bool. Whether to return the attention probabilities. This option is for
471
+ testing only. The returned probabilities are not guaranteed to be correct
472
+ (they might not have the right scaling).
473
+ Return:
474
+ out: (batch_size, seqlen, nheads, headdim).
475
+ softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
476
+ logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
477
+ normalization factor).
478
+ S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
479
+ The output of softmax (possibly with different scaling). It also encodes the dropout
480
+ pattern (negative means that location was dropped, nonnegative means it was kept).
481
+ """
482
+ return FlashAttnQKVPackedFunc.apply(
483
+ qkv,
484
+ softmax_scale,
485
+ causal,
486
+ q_descale, k_descale, v_descale,
487
+ window_size,
488
+ attention_chunk,
489
+ softcap,
490
+ deterministic,
491
+ num_heads_q,
492
+ sm_margin,
493
+ )
494
+
495
+
496
+ def flash_attn_func(
497
+ q,
498
+ k,
499
+ v,
500
+ softmax_scale=None,
501
+ causal=False,
502
+ qv=None,
503
+ q_descale=None, k_descale=None, v_descale=None,
504
+ window_size=(-1, -1),
505
+ attention_chunk=0,
506
+ softcap=0.0,
507
+ num_splits=1,
508
+ pack_gqa=None,
509
+ deterministic=False,
510
+ sm_margin=0,
511
+ ):
512
+ """dropout_p should be set to 0.0 during evaluation
513
+ Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
514
+ than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
515
+ For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
516
+ 0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
517
+
518
+ If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
519
+ For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
520
+ 1 1 1 1 0
521
+ 1 1 1 1 1
522
+ If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
523
+ 0 0
524
+ 0 0
525
+ 0 0
526
+ 1 0
527
+ 1 1
528
+ If the row of the mask is all zero, the output will be zero.
529
+
530
+ If window_size != (-1, -1), implements sliding window local attention. Query at position i
531
+ will only attend to keys between
532
+ [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
533
+
534
+ Arguments:
535
+ q: (batch_size, seqlen, nheads, headdim)
536
+ k: (batch_size, seqlen, nheads_k, headdim)
537
+ v: (batch_size, seqlen, nheads_k, headdim)
538
+ dropout_p: float. Dropout probability.
539
+ softmax_scale: float. The scaling of QK^T before applying softmax.
540
+ Default to 1 / sqrt(headdim).
541
+ causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
542
+ window_size: (left, right). If not (-1, -1), implements sliding window local attention.
543
+ alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
544
+ (-alibi_slope * |i + seqlen_k - seqlen_q - j|)
545
+ is added to the attention score of query i and key j.
546
+ deterministic: bool. Whether to use the deterministic implementation of the backward pass,
547
+ which is slightly slower and uses more memory. The forward pass is always deterministic.
548
+ return_attn_probs: bool. Whether to return the attention probabilities. This option is for
549
+ testing only. The returned probabilities are not guaranteed to be correct
550
+ (they might not have the right scaling).
551
+ Return:
552
+ out: (batch_size, seqlen, nheads, headdim).
553
+ softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
554
+ logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
555
+ normalization factor).
556
+ """
557
+ return FlashAttnFunc.apply(
558
+ q,
559
+ k,
560
+ v,
561
+ softmax_scale,
562
+ causal,
563
+ qv,
564
+ q_descale, k_descale, v_descale,
565
+ window_size,
566
+ attention_chunk,
567
+ softcap,
568
+ num_splits,
569
+ pack_gqa,
570
+ deterministic,
571
+ sm_margin,
572
+ )
573
+
574
+
575
+ def flash_attn_varlen_func(
576
+ q,
577
+ k,
578
+ v,
579
+ cu_seqlens_q,
580
+ cu_seqlens_k,
581
+ max_seqlen_q,
582
+ max_seqlen_k,
583
+ seqused_q=None,
584
+ seqused_k=None,
585
+ softmax_scale=None,
586
+ causal=False,
587
+ qv=None,
588
+ q_descale=None, k_descale=None, v_descale=None,
589
+ window_size=(-1, -1),
590
+ attention_chunk=0,
591
+ softcap=0.0,
592
+ num_splits=1,
593
+ pack_gqa=None,
594
+ deterministic=False,
595
+ sm_margin=0,
596
+ ):
597
+ return FlashAttnVarlenFunc.apply(
598
+ q,
599
+ k,
600
+ v,
601
+ cu_seqlens_q,
602
+ cu_seqlens_k,
603
+ seqused_q,
604
+ seqused_k,
605
+ max_seqlen_q,
606
+ max_seqlen_k,
607
+ softmax_scale,
608
+ causal,
609
+ qv,
610
+ q_descale, k_descale, v_descale,
611
+ window_size,
612
+ attention_chunk,
613
+ softcap,
614
+ num_splits,
615
+ pack_gqa,
616
+ deterministic,
617
+ sm_margin,
618
+ )
619
+
620
+
621
+ def flash_attn_combine(out_partial, lse_partial, out=None, out_dtype=None):
622
+ return flash_attn_3_cuda.fwd_combine(out_partial, lse_partial, out, out_dtype)
623
+
624
+
625
+ def flash_attn_with_kvcache(
626
+ q,
627
+ k_cache,
628
+ v_cache,
629
+ k=None,
630
+ v=None,
631
+ qv=None,
632
+ rotary_cos=None,
633
+ rotary_sin=None,
634
+ cache_seqlens: Optional[Union[(int, torch.Tensor)]] = None,
635
+ cache_batch_idx: Optional[torch.Tensor] = None,
636
+ cache_leftpad: Optional[torch.Tensor] = None,
637
+ page_table: Optional[torch.Tensor] = None,
638
+ cu_seqlens_q: Optional[torch.Tensor] = None,
639
+ cu_seqlens_k_new: Optional[torch.Tensor] = None,
640
+ max_seqlen_q: Optional[int] = None,
641
+ rotary_seqlens: Optional[torch.Tensor] = None,
642
+ q_descale: Optional[torch.Tensor] = None,
643
+ k_descale: Optional[torch.Tensor] = None,
644
+ v_descale: Optional[torch.Tensor] = None,
645
+ softmax_scale=None,
646
+ causal=False,
647
+ window_size=(-1, -1), # -1 means infinite context window
648
+ attention_chunk=0,
649
+ softcap=0.0, # 0.0 means deactivated
650
+ rotary_interleaved=True,
651
+ scheduler_metadata=None,
652
+ num_splits=0, # Can be tuned for speed
653
+ pack_gqa=None, # Can be tuned for speed
654
+ sm_margin=0, # Can be tuned if some SMs are used for communication
655
+ return_softmax_lse=False,
656
+ ):
657
+ """
658
+ If k and v are not None, k_cache and v_cache will be updated *inplace* with the new values from
659
+ k and v. This is useful for incremental decoding: you can pass in the cached keys/values from
660
+ the previous step, and update them with the new keys/values from the current step, and do
661
+ attention with the updated cache, all in 1 kernel.
662
+
663
+ If you pass in k / v, you must make sure that the cache is large enough to hold the new values.
664
+ For example, the KV cache could be pre-allocated with the max sequence length, and you can use
665
+ cache_seqlens to keep track of the current sequence lengths of each sequence in the batch.
666
+
667
+ Also apply rotary embedding if rotary_cos and rotary_sin are passed in. The key @k will be
668
+ rotated by rotary_cos and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.
669
+ If causal or local (i.e., window_size != (-1, -1)), the query @q will be rotated by rotary_cos
670
+ and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.
671
+ If not causal and not local, the query @q will be rotated by rotary_cos and rotary_sin at
672
+ indices cache_seqlens only (i.e. we consider all tokens in @q to be at position cache_seqlens).
673
+
674
+ See tests/test_flash_attn.py::test_flash_attn_kvcache for examples of how to use this function.
675
+
676
+ Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
677
+ than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
678
+ For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
679
+ 0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
680
+
681
+ If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
682
+ For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
683
+ 1 1 1 1 0
684
+ 1 1 1 1 1
685
+ If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
686
+ 0 0
687
+ 0 0
688
+ 0 0
689
+ 1 0
690
+ 1 1
691
+ If the row of the mask is all zero, the output will be zero.
692
+
693
+ If window_size != (-1, -1), implements sliding window local attention. Query at position i
694
+ will only attend to keys between
695
+ [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
696
+
697
+ Note: Does not support backward pass.
698
+
699
+ Arguments:
700
+ q: (batch_size, seqlen, nheads, headdim)
701
+ k_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim) if there's no page_table,
702
+ or (num_blocks, page_block_size, nheads_k, headdim) if there's a page_table (i.e. paged KV cache)
703
+ page_block_size must be a multiple of 256.
704
+ v_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim_v) if there's no page_table,
705
+ or (num_blocks, page_block_size, nheads_k, headdim_v) if there's a page_table (i.e. paged KV cache)
706
+ k [optional]: (batch_size, seqlen_new, nheads_k, headdim). If not None, we concatenate
707
+ k with k_cache, starting at the indices specified by cache_seqlens.
708
+ v [optional]: (batch_size, seqlen_new, nheads_k, headdim_v). Similar to k.
709
+ qv [optional]: (batch_size, seqlen, nheads, headdim_v)
710
+ rotary_cos [optional]: (seqlen_ro, rotary_dim / 2). If not None, we apply rotary embedding
711
+ to k and q. Only applicable if k and v are passed in. rotary_dim must be divisible by 16.
712
+ rotary_sin [optional]: (seqlen_ro, rotary_dim / 2). Similar to rotary_cos.
713
+ cache_seqlens: int, or (batch_size,), dtype torch.int32. The sequence lengths of the
714
+ KV cache.
715
+ cache_batch_idx: (batch_size,), dtype torch.int32. The indices used to index into the KV cache.
716
+ If None, we assume that the batch indices are [0, 1, 2, ..., batch_size - 1].
717
+ If the indices are not distinct, and k and v are provided, the values updated in the cache
718
+ might come from any of the duplicate indices.
719
+ cache_leftpad: (batch_size,), dtype torch.int32. The index that the KV cache starts. If None, assume 0.
720
+ page_table [optional]: (batch_size, max_num_blocks_per_seq), dtype torch.int32.
721
+ softmax_scale: float. The scaling of QK^T before applying softmax.
722
+ Default to 1 / sqrt(headdim).
723
+ causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
724
+ window_size: (left, right). If not (-1, -1), implements sliding window local attention.
725
+ softcap: float. Anything > 0 activates softcapping attention.
726
+ rotary_interleaved: bool. Only applicable if rotary_cos and rotary_sin are passed in.
727
+ If True, rotary embedding will combine dimensions 0 & 1, 2 & 3, etc. If False,
728
+ rotary embedding will combine dimensions 0 & rotary_dim / 2, 1 & rotary_dim / 2 + 1
729
+ (i.e. GPT-NeoX style).
730
+ num_splits: int. If > 1, split the key/value into this many chunks along the sequence.
731
+ If num_splits == 1, we don't split the key/value. If num_splits == 0, we use a heuristic
732
+ to automatically determine the number of splits.
733
+ Don't change this unless you know what you are doing.
734
+ return_softmax_lse: bool. Whether to return the logsumexp of the attention scores.
735
+
736
+ Return:
737
+ out: (batch_size, seqlen, nheads, headdim).
738
+ softmax_lse [optional, if return_softmax_lse=True]: (batch_size, nheads, seqlen). The
739
+ logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
740
+ normalization factor).
741
+ """
742
+ assert k_cache.stride(-1) == 1, "k_cache must have contiguous last dimension"
743
+ assert v_cache.stride(-1) == 1, "v_cache must have contiguous last dimension"
744
+ if softmax_scale is None:
745
+ softmax_scale = (q.shape[-1] + (qv.shape[-1] if qv is not None else 0)) ** (-0.5)
746
+ if cache_seqlens is not None and isinstance(cache_seqlens, int):
747
+ cache_seqlens = torch.full(
748
+ (k_cache.shape[0],), cache_seqlens, dtype=torch.int32, device=k_cache.device
749
+ )
750
+ cache_seqlens = maybe_contiguous(cache_seqlens)
751
+ out, softmax_lse, *rest = _flash_attn_forward(
752
+ q,
753
+ k_cache,
754
+ v_cache,
755
+ k,
756
+ v,
757
+ qv,
758
+ None, # out
759
+ cu_seqlens_q,
760
+ None, # cu_seqlens_k
761
+ cu_seqlens_k_new,
762
+ None, # seqused_q
763
+ cache_seqlens,
764
+ max_seqlen_q,
765
+ None, # max_seqlen_k
766
+ page_table,
767
+ cache_batch_idx,
768
+ cache_leftpad,
769
+ rotary_cos,
770
+ rotary_sin,
771
+ rotary_seqlens,
772
+ q_descale, k_descale, v_descale,
773
+ softmax_scale,
774
+ causal=causal,
775
+ window_size=window_size,
776
+ attention_chunk=attention_chunk,
777
+ softcap=softcap,
778
+ rotary_interleaved=rotary_interleaved,
779
+ scheduler_metadata=scheduler_metadata,
780
+ num_splits=num_splits,
781
+ pack_gqa=pack_gqa,
782
+ sm_margin=sm_margin,
783
+ )
784
+ # return (out, softmax_lse) if return_softmax_lse else out
785
+ return (out, softmax_lse, *rest) if return_softmax_lse else out
786
+
787
+
788
+ def get_scheduler_metadata(
789
+ batch_size, max_seqlen_q, max_seqlen_k, num_heads_q, num_heads_kv, headdim,
790
+ cache_seqlens: torch.Tensor,
791
+ qkv_dtype=torch.bfloat16,
792
+ headdim_v=None,
793
+ cu_seqlens_q: Optional[torch.Tensor] = None,
794
+ cu_seqlens_k_new: Optional[torch.Tensor] = None,
795
+ cache_leftpad: Optional[torch.Tensor] = None,
796
+ page_size: Optional[int] = None,
797
+ max_seqlen_k_new=0,
798
+ causal=False,
799
+ window_size=(-1, -1), # -1 means infinite context window
800
+ attention_chunk=0,
801
+ has_softcap=False,
802
+ num_splits=0, # Can be tuned for speed
803
+ pack_gqa=None, # Can be tuned for speed
804
+ sm_margin=0, # Can be tuned if some SMs are used for communication
805
+ ):
806
+ cache_seqlens = maybe_contiguous(cache_seqlens)
807
+ if headdim_v is None:
808
+ headdim_v = headdim
809
+ scheduler_metadata = flash_attn_3_cuda.get_scheduler_metadata(
810
+ batch_size, max_seqlen_q, max_seqlen_k, num_heads_q, num_heads_kv, headdim, headdim_v,
811
+ qkv_dtype,
812
+ cache_seqlens,
813
+ cu_seqlens_q,
814
+ None, # cu_seqlens_k
815
+ cu_seqlens_k_new,
816
+ None, # seqused_q
817
+ cache_leftpad,
818
+ page_size,
819
+ max_seqlen_k_new,
820
+ causal,
821
+ window_size[0], window_size[1],
822
+ attention_chunk,
823
+ has_softcap,
824
+ num_splits,
825
+ pack_gqa,
826
+ sm_margin,
827
+ )
828
+ return scheduler_metadata
build/torch26-cxx11-cu126-x86_64-linux/flash_attn3/__init__.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .flash_attn_interface import (
2
+ flash_attn_combine,
3
+ flash_attn_func,
4
+ flash_attn_qkvpacked_func,
5
+ flash_attn_varlen_func,
6
+ flash_attn_with_kvcache,
7
+ get_scheduler_metadata,
8
+ )
9
+
10
+ __all__ = [
11
+ "flash_attn_combine",
12
+ "flash_attn_func",
13
+ "flash_attn_qkvpacked_func",
14
+ "flash_attn_varlen_func",
15
+ "flash_attn_with_kvcache",
16
+ "get_scheduler_metadata",
17
+ ]
build/torch26-cxx11-cu126-x86_64-linux/flash_attn3/_flash_attn3_2e75662.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21b44e8e5e447a8b8ee051d347f0e32a3446a750f79d0bd1755e553f2119aa3b
3
+ size 838459656
build/torch26-cxx11-cu126-x86_64-linux/flash_attn3/_flash_attn3_557701f.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12d4ff964085fd02252777a2008f5ca47c90ea6a93da590e2fc5065dd5330207
3
+ size 838459656
build/torch26-cxx11-cu126-x86_64-linux/flash_attn3/_ops.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from . import _flash_attn3_557701f
3
+ ops = torch.ops._flash_attn3_557701f
4
+
5
+ def add_op_namespace_prefix(op_name: str):
6
+ """
7
+ Prefix op by namespace.
8
+ """
9
+ return f"_flash_attn3_557701f::{op_name}"
build/torch26-cxx11-cu126-x86_64-linux/flash_attn3/flash_attn_interface.py ADDED
@@ -0,0 +1,828 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023, Tri Dao.
2
+
3
+ from typing import Optional, Union
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+
8
+ from ._ops import ops as flash_attn_3_cuda
9
+
10
+ def maybe_contiguous(x):
11
+ return x.contiguous() if x is not None and x.stride(-1) != 1 else x
12
+
13
+
14
+ def _flash_attn_forward(
15
+ q,
16
+ k,
17
+ v,
18
+ k_new,
19
+ v_new,
20
+ qv,
21
+ out,
22
+ cu_seqlens_q,
23
+ cu_seqlens_k,
24
+ cu_seqlens_k_new,
25
+ seqused_q,
26
+ seqused_k,
27
+ max_seqlen_q,
28
+ max_seqlen_k,
29
+ page_table,
30
+ kv_batch_idx,
31
+ leftpad_k,
32
+ rotary_cos,
33
+ rotary_sin,
34
+ seqlens_rotary,
35
+ q_descale,
36
+ k_descale,
37
+ v_descale,
38
+ softmax_scale,
39
+ causal,
40
+ window_size=(-1, -1),
41
+ attention_chunk=0,
42
+ softcap=0.0,
43
+ rotary_interleaved=True,
44
+ scheduler_metadata=None,
45
+ num_splits=1,
46
+ pack_gqa=None,
47
+ sm_margin=0):
48
+ q, k, k_new, v_new = [maybe_contiguous(x) for x in (q, k, k_new, v_new)]
49
+ v = v.contiguous() if v.stride(-1) != 1 and v.stride(-3) != 1 else v
50
+ cu_seqlens_q, cu_seqlens_k, cu_seqlens_k_new = [
51
+ maybe_contiguous(x) for x in (cu_seqlens_q, cu_seqlens_k, cu_seqlens_k_new)
52
+ ]
53
+ seqused_q, seqused_k = [maybe_contiguous(x) for x in (seqused_q, seqused_k)]
54
+ page_table, kv_batch_idx, leftpad_k = [
55
+ maybe_contiguous(x) for x in (page_table, kv_batch_idx, leftpad_k)
56
+ ]
57
+ rotary_cos, rotary_sin = [maybe_contiguous(x) for x in (rotary_cos, rotary_sin)]
58
+ seqlens_rotary = maybe_contiguous(seqlens_rotary)
59
+ out, softmax_lse, *rest = flash_attn_3_cuda.fwd(
60
+ q,
61
+ k,
62
+ v,
63
+ k_new,
64
+ v_new,
65
+ qv,
66
+ out,
67
+ cu_seqlens_q,
68
+ cu_seqlens_k,
69
+ cu_seqlens_k_new,
70
+ seqused_q,
71
+ seqused_k,
72
+ max_seqlen_q,
73
+ max_seqlen_k,
74
+ page_table,
75
+ kv_batch_idx,
76
+ leftpad_k,
77
+ rotary_cos,
78
+ rotary_sin,
79
+ seqlens_rotary,
80
+ q_descale,
81
+ k_descale,
82
+ v_descale,
83
+ softmax_scale,
84
+ causal,
85
+ window_size[0],
86
+ window_size[1],
87
+ attention_chunk,
88
+ softcap,
89
+ rotary_interleaved,
90
+ scheduler_metadata,
91
+ num_splits,
92
+ pack_gqa,
93
+ sm_margin,
94
+ )
95
+ return out, softmax_lse, *rest
96
+
97
+
98
+ def _flash_attn_backward(
99
+ dout,
100
+ q,
101
+ k,
102
+ v,
103
+ out,
104
+ softmax_lse,
105
+ cu_seqlens_q,
106
+ cu_seqlens_k,
107
+ sequed_q,
108
+ sequed_k,
109
+ max_seqlen_q,
110
+ max_seqlen_k,
111
+ dq,
112
+ dk,
113
+ dv,
114
+ softmax_scale,
115
+ causal,
116
+ window_size=(-1, -1),
117
+ softcap=0.0,
118
+ deterministic=False,
119
+ sm_margin=0,
120
+ ):
121
+ # dq, dk, dv are allocated by us so they should already be contiguous
122
+ dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
123
+ dq, dk, dv, softmax_d, *rest = flash_attn_3_cuda.bwd(
124
+ dout,
125
+ q,
126
+ k,
127
+ v,
128
+ out,
129
+ softmax_lse,
130
+ dq,
131
+ dk,
132
+ dv,
133
+ cu_seqlens_q,
134
+ cu_seqlens_k,
135
+ sequed_q,
136
+ sequed_k,
137
+ max_seqlen_q,
138
+ max_seqlen_k,
139
+ softmax_scale,
140
+ causal,
141
+ window_size[0],
142
+ window_size[1],
143
+ softcap,
144
+ deterministic,
145
+ sm_margin,
146
+ )
147
+ return dq, dk, dv, softmax_d
148
+
149
+
150
+ class FlashAttnQKVPackedFunc(torch.autograd.Function):
151
+ @staticmethod
152
+ def forward(
153
+ ctx,
154
+ qkv,
155
+ softmax_scale,
156
+ causal,
157
+ q_descale=None, k_descale=None, v_descale=None,
158
+ window_size=(-1, -1),
159
+ attention_chunk=0,
160
+ softcap=0.0,
161
+ deterministic=False,
162
+ num_heads_q=None,
163
+ sm_margin=0,
164
+ ):
165
+ if softmax_scale is None:
166
+ softmax_scale = qkv.shape[-1] ** (-0.5)
167
+ if qkv.dim() == 5:
168
+ assert qkv.shape[-3] == 3
169
+ q, k, v = qkv.unbind(dim=-3)
170
+ else:
171
+ assert qkv.dim() == 4
172
+ assert num_heads_q is not None
173
+ num_heads_k = (qkv.shape[2] - num_heads_q) // 2
174
+ assert num_heads_k * 2 + num_heads_q == qkv.shape[2]
175
+ q, k, v = qkv.split([num_heads_q, num_heads_k, num_heads_k], dim=-2)
176
+ out, softmax_lse, *rest = _flash_attn_forward(
177
+ q,
178
+ k,
179
+ v,
180
+ None, None, # k_new, v_new
181
+ None, # qv
182
+ None, # out
183
+ None, None, None, # cu_seqlens_q/k/k_new
184
+ None, None, # seqused_q/k
185
+ None, None, # max_seqlen_q/k
186
+ None, None, None, # page_table, kv_batch_idx, leftpad_k,
187
+ None, None, None, # rotary_cos/sin, seqlens_rotary
188
+ q_descale, k_descale, v_descale,
189
+ softmax_scale,
190
+ causal=causal,
191
+ window_size=window_size,
192
+ attention_chunk=attention_chunk,
193
+ softcap=softcap,
194
+ sm_margin=sm_margin,
195
+ )
196
+ # ctx.save_for_backward(q, k, v, out_padded, softmax_lse)
197
+ ctx.save_for_backward(q, k, v, out, softmax_lse)
198
+ ctx.softmax_scale = softmax_scale
199
+ ctx.causal = causal
200
+ ctx.window_size = window_size
201
+ ctx.attention_chunk = attention_chunk
202
+ ctx.softcap = softcap
203
+ ctx.deterministic = deterministic
204
+ ctx.ndim = qkv.dim()
205
+ ctx.sm_margin = sm_margin
206
+ # return out, softmax_lse
207
+ return out
208
+
209
+ @staticmethod
210
+ def backward(ctx, dout, *args):
211
+ q, k, v, out, softmax_lse = ctx.saved_tensors
212
+ assert ctx.attention_chunk == 0, "FA3 backward does not support attention_chunk"
213
+ if ctx.ndim == 5:
214
+ qkv_shape = q.shape[:-2] + (3, *q.shape[-2:])
215
+ dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device)
216
+ dq, dk, dv = dqkv.unbind(dim=-3)
217
+ else:
218
+ num_heads_q = q.shape[2]
219
+ num_heads_k = k.shape[2]
220
+ qkv_shape = q.shape[:-2] + (num_heads_q + num_heads_k * 2, *q.shape[-1:])
221
+ dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device)
222
+ dq, dk, dv = dqkv.split([num_heads_q, num_heads_k, num_heads_k], dim=-2)
223
+ _flash_attn_backward(
224
+ dout,
225
+ q,
226
+ k,
227
+ v,
228
+ out,
229
+ softmax_lse,
230
+ None, None, # cu_seqlens_q, cu_seqlens_k,
231
+ None, None, # sequed_q, sequed_k,
232
+ None, None, # max_seqlen_q, max_seqlen_k,
233
+ dq,
234
+ dk,
235
+ dv,
236
+ ctx.softmax_scale,
237
+ ctx.causal,
238
+ ctx.window_size,
239
+ ctx.softcap,
240
+ ctx.deterministic,
241
+ ctx.sm_margin,
242
+ )
243
+ dqkv = dqkv[..., : dout.shape[-1]] # We could have padded the head dimension
244
+ return dqkv, None, None, None, None, None, None, None, None, None, None, None
245
+
246
+
247
+ class FlashAttnFunc(torch.autograd.Function):
248
+
249
+ @staticmethod
250
+ def forward(
251
+ ctx,
252
+ q,
253
+ k,
254
+ v,
255
+ softmax_scale,
256
+ causal,
257
+ qv=None,
258
+ q_descale=None, k_descale=None, v_descale=None,
259
+ window_size=(-1, -1),
260
+ attention_chunk=0,
261
+ softcap=0.0,
262
+ num_splits=1,
263
+ pack_gqa=None,
264
+ deterministic=False,
265
+ sm_margin=0,
266
+ ):
267
+ if softmax_scale is None:
268
+ softmax_scale = (q.shape[-1] + (qv.shape[-1] if qv is not None else 0)) ** (-0.5)
269
+ # out, q, k, v, out_padded, softmax_lse = _flash_attn_forward(
270
+ out, softmax_lse, *rest = _flash_attn_forward(
271
+ q,
272
+ k,
273
+ v,
274
+ None, None, # k_new, v_new
275
+ qv, # qv
276
+ None, # out
277
+ None, None, None, # cu_seqlens_q/k/k_new
278
+ None, None, # seqused_q/k
279
+ None, None, # max_seqlen_q/k
280
+ None, None, None, # page_table, kv_batch_idx, leftpad_k,
281
+ None, None, None, # rotary_cos/sin, seqlens_rotary
282
+ q_descale, k_descale, v_descale,
283
+ softmax_scale,
284
+ causal=causal,
285
+ window_size=window_size,
286
+ attention_chunk=attention_chunk,
287
+ softcap=softcap,
288
+ num_splits=num_splits,
289
+ pack_gqa=pack_gqa,
290
+ sm_margin=sm_margin,
291
+ )
292
+ # ctx.save_for_backward(q, k, v, out_padded, softmax_lse)
293
+ ctx.save_for_backward(q, k, v, out, softmax_lse)
294
+ ctx.softmax_scale = softmax_scale
295
+ ctx.causal = causal
296
+ ctx.window_size = window_size
297
+ ctx.attention_chunk = attention_chunk
298
+ ctx.softcap = softcap
299
+ ctx.deterministic = deterministic
300
+ ctx.sm_margin = sm_margin
301
+ return out, softmax_lse
302
+
303
+ @staticmethod
304
+ def backward(ctx, dout, *args):
305
+ q, k, v, out, softmax_lse = ctx.saved_tensors
306
+ assert ctx.attention_chunk == 0, "FA3 backward does not support attention_chunk"
307
+ dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
308
+ _flash_attn_backward(
309
+ dout,
310
+ q,
311
+ k,
312
+ v,
313
+ out,
314
+ softmax_lse,
315
+ None, None, # cu_seqlens_q, cu_seqlens_k,
316
+ None, None, # sequed_q, sequed_k,
317
+ None, None, # max_seqlen_q, max_seqlen_k,
318
+ dq,
319
+ dk,
320
+ dv,
321
+ ctx.softmax_scale,
322
+ ctx.causal,
323
+ ctx.window_size,
324
+ ctx.softcap,
325
+ ctx.deterministic,
326
+ ctx.sm_margin,
327
+ )
328
+ dq = dq[..., : q.shape[-1]] # We could have padded the head dimension
329
+ dk = dk[..., : k.shape[-1]]
330
+ dv = dv[..., : v.shape[-1]]
331
+ return dq, dk, dv, None, None, None, None, None, None, None, None, None, None, None, None, None, None
332
+
333
+
334
+ class FlashAttnVarlenFunc(torch.autograd.Function):
335
+
336
+ @staticmethod
337
+ def forward(
338
+ ctx,
339
+ q,
340
+ k,
341
+ v,
342
+ cu_seqlens_q,
343
+ cu_seqlens_k,
344
+ seqused_q,
345
+ seqused_k,
346
+ max_seqlen_q,
347
+ max_seqlen_k,
348
+ softmax_scale,
349
+ causal,
350
+ qv=None,
351
+ q_descale=None, k_descale=None, v_descale=None,
352
+ window_size=(-1, -1),
353
+ attention_chunk=0,
354
+ softcap=0.0,
355
+ num_splits=1,
356
+ pack_gqa=None,
357
+ deterministic=False,
358
+ sm_margin=0,
359
+ ):
360
+ if softmax_scale is None:
361
+ softmax_scale = (q.shape[-1] + (qv.shape[-1] if qv is not None else 0)) ** (-0.5)
362
+ # out, q, k, v, out_padded, softmax_lse = _flash_attn_varlen_forward(
363
+ out, softmax_lse, *rest = _flash_attn_forward(
364
+ q,
365
+ k,
366
+ v,
367
+ None, None, # k_new, v_new
368
+ qv, # qv
369
+ None, # out
370
+ cu_seqlens_q,
371
+ cu_seqlens_k,
372
+ None, # cu_seqlens_k_new
373
+ seqused_q,
374
+ seqused_k,
375
+ max_seqlen_q,
376
+ max_seqlen_k,
377
+ None, None, None, # page_table, kv_batch_idx, leftpad_k,
378
+ None, None, None, # rotary_cos/sin, seqlens_rotary
379
+ q_descale, k_descale, v_descale,
380
+ softmax_scale,
381
+ causal=causal,
382
+ window_size=window_size,
383
+ attention_chunk=attention_chunk,
384
+ softcap=softcap,
385
+ num_splits=num_splits,
386
+ pack_gqa=pack_gqa,
387
+ sm_margin=sm_margin,
388
+ )
389
+ # ctx.save_for_backward(q, k, v, out_padded, softmax_lse, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k)
390
+ ctx.save_for_backward(q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k)
391
+ ctx.max_seqlen_q = max_seqlen_q
392
+ ctx.max_seqlen_k = max_seqlen_k
393
+ ctx.softmax_scale = softmax_scale
394
+ ctx.causal = causal
395
+ ctx.window_size = window_size
396
+ ctx.attention_chunk = attention_chunk
397
+ ctx.softcap = softcap
398
+ ctx.deterministic = deterministic
399
+ ctx.sm_margin = sm_margin
400
+ return out, softmax_lse
401
+
402
+ @staticmethod
403
+ def backward(ctx, dout, *args):
404
+ q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k = ctx.saved_tensors
405
+ assert ctx.attention_chunk == 0, "FA3 backward does not support attention_chunk"
406
+ dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
407
+ _flash_attn_backward(
408
+ dout,
409
+ q,
410
+ k,
411
+ v,
412
+ out,
413
+ softmax_lse,
414
+ cu_seqlens_q,
415
+ cu_seqlens_k,
416
+ seqused_q,
417
+ seqused_k,
418
+ ctx.max_seqlen_q,
419
+ ctx.max_seqlen_k,
420
+ dq,
421
+ dk,
422
+ dv,
423
+ ctx.softmax_scale,
424
+ ctx.causal,
425
+ ctx.window_size,
426
+ ctx.softcap,
427
+ ctx.deterministic,
428
+ ctx.sm_margin,
429
+ )
430
+ dq = dq[..., : q.shape[-1]] # We could have padded the head dimension
431
+ dk = dk[..., : k.shape[-1]]
432
+ dv = dv[..., : v.shape[-1]]
433
+ return dq, dk, dv, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None
434
+
435
+
436
+ def flash_attn_qkvpacked_func(
437
+ qkv,
438
+ softmax_scale=None,
439
+ causal=False,
440
+ q_descale=None, k_descale=None, v_descale=None,
441
+ window_size=(-1, -1),
442
+ attention_chunk=0,
443
+ softcap=0.0,
444
+ deterministic=False,
445
+ num_heads_q=None,
446
+ sm_margin=0,
447
+ ):
448
+ """dropout_p should be set to 0.0 during evaluation
449
+ If Q, K, V are already stacked into 1 tensor, this function will be faster than
450
+ calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
451
+ of the gradients of Q, K, V.
452
+ For multi-query and grouped-query attention (MQA/GQA), please see
453
+ flash_attn_kvpacked_func and flash_attn_func.
454
+
455
+ If window_size != (-1, -1), implements sliding window local attention. Query at position i
456
+ will only attend to keys between [i - window_size[0], i + window_size[1]] inclusive.
457
+
458
+ Arguments:
459
+ qkv: (batch_size, seqlen, 3, nheads, headdim)
460
+ dropout_p: float. Dropout probability.
461
+ softmax_scale: float. The scaling of QK^T before applying softmax.
462
+ Default to 1 / sqrt(headdim).
463
+ causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
464
+ window_size: (left, right). If not (-1, -1), implements sliding window local attention.
465
+ softcap: float. Anything > 0 activates softcapping attention.
466
+ alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of (-alibi_slope * |i - j|) is added to
467
+ the attention score of query i and key j.
468
+ deterministic: bool. Whether to use the deterministic implementation of the backward pass,
469
+ which is slightly slower and uses more memory. The forward pass is always deterministic.
470
+ return_attn_probs: bool. Whether to return the attention probabilities. This option is for
471
+ testing only. The returned probabilities are not guaranteed to be correct
472
+ (they might not have the right scaling).
473
+ Return:
474
+ out: (batch_size, seqlen, nheads, headdim).
475
+ softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
476
+ logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
477
+ normalization factor).
478
+ S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
479
+ The output of softmax (possibly with different scaling). It also encodes the dropout
480
+ pattern (negative means that location was dropped, nonnegative means it was kept).
481
+ """
482
+ return FlashAttnQKVPackedFunc.apply(
483
+ qkv,
484
+ softmax_scale,
485
+ causal,
486
+ q_descale, k_descale, v_descale,
487
+ window_size,
488
+ attention_chunk,
489
+ softcap,
490
+ deterministic,
491
+ num_heads_q,
492
+ sm_margin,
493
+ )
494
+
495
+
496
+ def flash_attn_func(
497
+ q,
498
+ k,
499
+ v,
500
+ softmax_scale=None,
501
+ causal=False,
502
+ qv=None,
503
+ q_descale=None, k_descale=None, v_descale=None,
504
+ window_size=(-1, -1),
505
+ attention_chunk=0,
506
+ softcap=0.0,
507
+ num_splits=1,
508
+ pack_gqa=None,
509
+ deterministic=False,
510
+ sm_margin=0,
511
+ ):
512
+ """dropout_p should be set to 0.0 during evaluation
513
+ Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
514
+ than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
515
+ For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
516
+ 0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
517
+
518
+ If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
519
+ For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
520
+ 1 1 1 1 0
521
+ 1 1 1 1 1
522
+ If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
523
+ 0 0
524
+ 0 0
525
+ 0 0
526
+ 1 0
527
+ 1 1
528
+ If the row of the mask is all zero, the output will be zero.
529
+
530
+ If window_size != (-1, -1), implements sliding window local attention. Query at position i
531
+ will only attend to keys between
532
+ [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
533
+
534
+ Arguments:
535
+ q: (batch_size, seqlen, nheads, headdim)
536
+ k: (batch_size, seqlen, nheads_k, headdim)
537
+ v: (batch_size, seqlen, nheads_k, headdim)
538
+ dropout_p: float. Dropout probability.
539
+ softmax_scale: float. The scaling of QK^T before applying softmax.
540
+ Default to 1 / sqrt(headdim).
541
+ causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
542
+ window_size: (left, right). If not (-1, -1), implements sliding window local attention.
543
+ alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
544
+ (-alibi_slope * |i + seqlen_k - seqlen_q - j|)
545
+ is added to the attention score of query i and key j.
546
+ deterministic: bool. Whether to use the deterministic implementation of the backward pass,
547
+ which is slightly slower and uses more memory. The forward pass is always deterministic.
548
+ return_attn_probs: bool. Whether to return the attention probabilities. This option is for
549
+ testing only. The returned probabilities are not guaranteed to be correct
550
+ (they might not have the right scaling).
551
+ Return:
552
+ out: (batch_size, seqlen, nheads, headdim).
553
+ softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
554
+ logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
555
+ normalization factor).
556
+ """
557
+ return FlashAttnFunc.apply(
558
+ q,
559
+ k,
560
+ v,
561
+ softmax_scale,
562
+ causal,
563
+ qv,
564
+ q_descale, k_descale, v_descale,
565
+ window_size,
566
+ attention_chunk,
567
+ softcap,
568
+ num_splits,
569
+ pack_gqa,
570
+ deterministic,
571
+ sm_margin,
572
+ )
573
+
574
+
575
+ def flash_attn_varlen_func(
576
+ q,
577
+ k,
578
+ v,
579
+ cu_seqlens_q,
580
+ cu_seqlens_k,
581
+ max_seqlen_q,
582
+ max_seqlen_k,
583
+ seqused_q=None,
584
+ seqused_k=None,
585
+ softmax_scale=None,
586
+ causal=False,
587
+ qv=None,
588
+ q_descale=None, k_descale=None, v_descale=None,
589
+ window_size=(-1, -1),
590
+ attention_chunk=0,
591
+ softcap=0.0,
592
+ num_splits=1,
593
+ pack_gqa=None,
594
+ deterministic=False,
595
+ sm_margin=0,
596
+ ):
597
+ return FlashAttnVarlenFunc.apply(
598
+ q,
599
+ k,
600
+ v,
601
+ cu_seqlens_q,
602
+ cu_seqlens_k,
603
+ seqused_q,
604
+ seqused_k,
605
+ max_seqlen_q,
606
+ max_seqlen_k,
607
+ softmax_scale,
608
+ causal,
609
+ qv,
610
+ q_descale, k_descale, v_descale,
611
+ window_size,
612
+ attention_chunk,
613
+ softcap,
614
+ num_splits,
615
+ pack_gqa,
616
+ deterministic,
617
+ sm_margin,
618
+ )
619
+
620
+
621
+ def flash_attn_combine(out_partial, lse_partial, out=None, out_dtype=None):
622
+ return flash_attn_3_cuda.fwd_combine(out_partial, lse_partial, out, out_dtype)
623
+
624
+
625
+ def flash_attn_with_kvcache(
626
+ q,
627
+ k_cache,
628
+ v_cache,
629
+ k=None,
630
+ v=None,
631
+ qv=None,
632
+ rotary_cos=None,
633
+ rotary_sin=None,
634
+ cache_seqlens: Optional[Union[(int, torch.Tensor)]] = None,
635
+ cache_batch_idx: Optional[torch.Tensor] = None,
636
+ cache_leftpad: Optional[torch.Tensor] = None,
637
+ page_table: Optional[torch.Tensor] = None,
638
+ cu_seqlens_q: Optional[torch.Tensor] = None,
639
+ cu_seqlens_k_new: Optional[torch.Tensor] = None,
640
+ max_seqlen_q: Optional[int] = None,
641
+ rotary_seqlens: Optional[torch.Tensor] = None,
642
+ q_descale: Optional[torch.Tensor] = None,
643
+ k_descale: Optional[torch.Tensor] = None,
644
+ v_descale: Optional[torch.Tensor] = None,
645
+ softmax_scale=None,
646
+ causal=False,
647
+ window_size=(-1, -1), # -1 means infinite context window
648
+ attention_chunk=0,
649
+ softcap=0.0, # 0.0 means deactivated
650
+ rotary_interleaved=True,
651
+ scheduler_metadata=None,
652
+ num_splits=0, # Can be tuned for speed
653
+ pack_gqa=None, # Can be tuned for speed
654
+ sm_margin=0, # Can be tuned if some SMs are used for communication
655
+ return_softmax_lse=False,
656
+ ):
657
+ """
658
+ If k and v are not None, k_cache and v_cache will be updated *inplace* with the new values from
659
+ k and v. This is useful for incremental decoding: you can pass in the cached keys/values from
660
+ the previous step, and update them with the new keys/values from the current step, and do
661
+ attention with the updated cache, all in 1 kernel.
662
+
663
+ If you pass in k / v, you must make sure that the cache is large enough to hold the new values.
664
+ For example, the KV cache could be pre-allocated with the max sequence length, and you can use
665
+ cache_seqlens to keep track of the current sequence lengths of each sequence in the batch.
666
+
667
+ Also apply rotary embedding if rotary_cos and rotary_sin are passed in. The key @k will be
668
+ rotated by rotary_cos and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.
669
+ If causal or local (i.e., window_size != (-1, -1)), the query @q will be rotated by rotary_cos
670
+ and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.
671
+ If not causal and not local, the query @q will be rotated by rotary_cos and rotary_sin at
672
+ indices cache_seqlens only (i.e. we consider all tokens in @q to be at position cache_seqlens).
673
+
674
+ See tests/test_flash_attn.py::test_flash_attn_kvcache for examples of how to use this function.
675
+
676
+ Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
677
+ than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
678
+ For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
679
+ 0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
680
+
681
+ If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
682
+ For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
683
+ 1 1 1 1 0
684
+ 1 1 1 1 1
685
+ If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
686
+ 0 0
687
+ 0 0
688
+ 0 0
689
+ 1 0
690
+ 1 1
691
+ If the row of the mask is all zero, the output will be zero.
692
+
693
+ If window_size != (-1, -1), implements sliding window local attention. Query at position i
694
+ will only attend to keys between
695
+ [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
696
+
697
+ Note: Does not support backward pass.
698
+
699
+ Arguments:
700
+ q: (batch_size, seqlen, nheads, headdim)
701
+ k_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim) if there's no page_table,
702
+ or (num_blocks, page_block_size, nheads_k, headdim) if there's a page_table (i.e. paged KV cache)
703
+ page_block_size must be a multiple of 256.
704
+ v_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim_v) if there's no page_table,
705
+ or (num_blocks, page_block_size, nheads_k, headdim_v) if there's a page_table (i.e. paged KV cache)
706
+ k [optional]: (batch_size, seqlen_new, nheads_k, headdim). If not None, we concatenate
707
+ k with k_cache, starting at the indices specified by cache_seqlens.
708
+ v [optional]: (batch_size, seqlen_new, nheads_k, headdim_v). Similar to k.
709
+ qv [optional]: (batch_size, seqlen, nheads, headdim_v)
710
+ rotary_cos [optional]: (seqlen_ro, rotary_dim / 2). If not None, we apply rotary embedding
711
+ to k and q. Only applicable if k and v are passed in. rotary_dim must be divisible by 16.
712
+ rotary_sin [optional]: (seqlen_ro, rotary_dim / 2). Similar to rotary_cos.
713
+ cache_seqlens: int, or (batch_size,), dtype torch.int32. The sequence lengths of the
714
+ KV cache.
715
+ cache_batch_idx: (batch_size,), dtype torch.int32. The indices used to index into the KV cache.
716
+ If None, we assume that the batch indices are [0, 1, 2, ..., batch_size - 1].
717
+ If the indices are not distinct, and k and v are provided, the values updated in the cache
718
+ might come from any of the duplicate indices.
719
+ cache_leftpad: (batch_size,), dtype torch.int32. The index that the KV cache starts. If None, assume 0.
720
+ page_table [optional]: (batch_size, max_num_blocks_per_seq), dtype torch.int32.
721
+ softmax_scale: float. The scaling of QK^T before applying softmax.
722
+ Default to 1 / sqrt(headdim).
723
+ causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
724
+ window_size: (left, right). If not (-1, -1), implements sliding window local attention.
725
+ softcap: float. Anything > 0 activates softcapping attention.
726
+ rotary_interleaved: bool. Only applicable if rotary_cos and rotary_sin are passed in.
727
+ If True, rotary embedding will combine dimensions 0 & 1, 2 & 3, etc. If False,
728
+ rotary embedding will combine dimensions 0 & rotary_dim / 2, 1 & rotary_dim / 2 + 1
729
+ (i.e. GPT-NeoX style).
730
+ num_splits: int. If > 1, split the key/value into this many chunks along the sequence.
731
+ If num_splits == 1, we don't split the key/value. If num_splits == 0, we use a heuristic
732
+ to automatically determine the number of splits.
733
+ Don't change this unless you know what you are doing.
734
+ return_softmax_lse: bool. Whether to return the logsumexp of the attention scores.
735
+
736
+ Return:
737
+ out: (batch_size, seqlen, nheads, headdim).
738
+ softmax_lse [optional, if return_softmax_lse=True]: (batch_size, nheads, seqlen). The
739
+ logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
740
+ normalization factor).
741
+ """
742
+ assert k_cache.stride(-1) == 1, "k_cache must have contiguous last dimension"
743
+ assert v_cache.stride(-1) == 1, "v_cache must have contiguous last dimension"
744
+ if softmax_scale is None:
745
+ softmax_scale = (q.shape[-1] + (qv.shape[-1] if qv is not None else 0)) ** (-0.5)
746
+ if cache_seqlens is not None and isinstance(cache_seqlens, int):
747
+ cache_seqlens = torch.full(
748
+ (k_cache.shape[0],), cache_seqlens, dtype=torch.int32, device=k_cache.device
749
+ )
750
+ cache_seqlens = maybe_contiguous(cache_seqlens)
751
+ out, softmax_lse, *rest = _flash_attn_forward(
752
+ q,
753
+ k_cache,
754
+ v_cache,
755
+ k,
756
+ v,
757
+ qv,
758
+ None, # out
759
+ cu_seqlens_q,
760
+ None, # cu_seqlens_k
761
+ cu_seqlens_k_new,
762
+ None, # seqused_q
763
+ cache_seqlens,
764
+ max_seqlen_q,
765
+ None, # max_seqlen_k
766
+ page_table,
767
+ cache_batch_idx,
768
+ cache_leftpad,
769
+ rotary_cos,
770
+ rotary_sin,
771
+ rotary_seqlens,
772
+ q_descale, k_descale, v_descale,
773
+ softmax_scale,
774
+ causal=causal,
775
+ window_size=window_size,
776
+ attention_chunk=attention_chunk,
777
+ softcap=softcap,
778
+ rotary_interleaved=rotary_interleaved,
779
+ scheduler_metadata=scheduler_metadata,
780
+ num_splits=num_splits,
781
+ pack_gqa=pack_gqa,
782
+ sm_margin=sm_margin,
783
+ )
784
+ # return (out, softmax_lse) if return_softmax_lse else out
785
+ return (out, softmax_lse, *rest) if return_softmax_lse else out
786
+
787
+
788
+ def get_scheduler_metadata(
789
+ batch_size, max_seqlen_q, max_seqlen_k, num_heads_q, num_heads_kv, headdim,
790
+ cache_seqlens: torch.Tensor,
791
+ qkv_dtype=torch.bfloat16,
792
+ headdim_v=None,
793
+ cu_seqlens_q: Optional[torch.Tensor] = None,
794
+ cu_seqlens_k_new: Optional[torch.Tensor] = None,
795
+ cache_leftpad: Optional[torch.Tensor] = None,
796
+ page_size: Optional[int] = None,
797
+ max_seqlen_k_new=0,
798
+ causal=False,
799
+ window_size=(-1, -1), # -1 means infinite context window
800
+ attention_chunk=0,
801
+ has_softcap=False,
802
+ num_splits=0, # Can be tuned for speed
803
+ pack_gqa=None, # Can be tuned for speed
804
+ sm_margin=0, # Can be tuned if some SMs are used for communication
805
+ ):
806
+ cache_seqlens = maybe_contiguous(cache_seqlens)
807
+ if headdim_v is None:
808
+ headdim_v = headdim
809
+ scheduler_metadata = flash_attn_3_cuda.get_scheduler_metadata(
810
+ batch_size, max_seqlen_q, max_seqlen_k, num_heads_q, num_heads_kv, headdim, headdim_v,
811
+ qkv_dtype,
812
+ cache_seqlens,
813
+ cu_seqlens_q,
814
+ None, # cu_seqlens_k
815
+ cu_seqlens_k_new,
816
+ None, # seqused_q
817
+ cache_leftpad,
818
+ page_size,
819
+ max_seqlen_k_new,
820
+ causal,
821
+ window_size[0], window_size[1],
822
+ attention_chunk,
823
+ has_softcap,
824
+ num_splits,
825
+ pack_gqa,
826
+ sm_margin,
827
+ )
828
+ return scheduler_metadata
build/torch26-cxx98-cu124-x86_64-linux/flash_attn3/__init__.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .flash_attn_interface import (
2
+ flash_attn_combine,
3
+ flash_attn_func,
4
+ flash_attn_qkvpacked_func,
5
+ flash_attn_varlen_func,
6
+ flash_attn_with_kvcache,
7
+ get_scheduler_metadata,
8
+ )
9
+
10
+ __all__ = [
11
+ "flash_attn_combine",
12
+ "flash_attn_func",
13
+ "flash_attn_qkvpacked_func",
14
+ "flash_attn_varlen_func",
15
+ "flash_attn_with_kvcache",
16
+ "get_scheduler_metadata",
17
+ ]
build/torch26-cxx98-cu124-x86_64-linux/flash_attn3/_flash_attn3_2e75662.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9627e08ec8778d2a409a2a0477572edb3e03eaca2b45e7b4810ee0a9126d6547
3
+ size 838456048
build/torch26-cxx98-cu124-x86_64-linux/flash_attn3/_flash_attn3_557701f.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07fe025ba95671f6ff957991f74c66063bfb10ab6737641c88f88116c9f83718
3
+ size 838456048
build/torch26-cxx98-cu124-x86_64-linux/flash_attn3/_ops.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from . import _flash_attn3_557701f
3
+ ops = torch.ops._flash_attn3_557701f
4
+
5
+ def add_op_namespace_prefix(op_name: str):
6
+ """
7
+ Prefix op by namespace.
8
+ """
9
+ return f"_flash_attn3_557701f::{op_name}"
build/torch26-cxx98-cu124-x86_64-linux/flash_attn3/flash_attn_interface.py ADDED
@@ -0,0 +1,828 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023, Tri Dao.
2
+
3
+ from typing import Optional, Union
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+
8
+ from ._ops import ops as flash_attn_3_cuda
9
+
10
+ def maybe_contiguous(x):
11
+ return x.contiguous() if x is not None and x.stride(-1) != 1 else x
12
+
13
+
14
+ def _flash_attn_forward(
15
+ q,
16
+ k,
17
+ v,
18
+ k_new,
19
+ v_new,
20
+ qv,
21
+ out,
22
+ cu_seqlens_q,
23
+ cu_seqlens_k,
24
+ cu_seqlens_k_new,
25
+ seqused_q,
26
+ seqused_k,
27
+ max_seqlen_q,
28
+ max_seqlen_k,
29
+ page_table,
30
+ kv_batch_idx,
31
+ leftpad_k,
32
+ rotary_cos,
33
+ rotary_sin,
34
+ seqlens_rotary,
35
+ q_descale,
36
+ k_descale,
37
+ v_descale,
38
+ softmax_scale,
39
+ causal,
40
+ window_size=(-1, -1),
41
+ attention_chunk=0,
42
+ softcap=0.0,
43
+ rotary_interleaved=True,
44
+ scheduler_metadata=None,
45
+ num_splits=1,
46
+ pack_gqa=None,
47
+ sm_margin=0):
48
+ q, k, k_new, v_new = [maybe_contiguous(x) for x in (q, k, k_new, v_new)]
49
+ v = v.contiguous() if v.stride(-1) != 1 and v.stride(-3) != 1 else v
50
+ cu_seqlens_q, cu_seqlens_k, cu_seqlens_k_new = [
51
+ maybe_contiguous(x) for x in (cu_seqlens_q, cu_seqlens_k, cu_seqlens_k_new)
52
+ ]
53
+ seqused_q, seqused_k = [maybe_contiguous(x) for x in (seqused_q, seqused_k)]
54
+ page_table, kv_batch_idx, leftpad_k = [
55
+ maybe_contiguous(x) for x in (page_table, kv_batch_idx, leftpad_k)
56
+ ]
57
+ rotary_cos, rotary_sin = [maybe_contiguous(x) for x in (rotary_cos, rotary_sin)]
58
+ seqlens_rotary = maybe_contiguous(seqlens_rotary)
59
+ out, softmax_lse, *rest = flash_attn_3_cuda.fwd(
60
+ q,
61
+ k,
62
+ v,
63
+ k_new,
64
+ v_new,
65
+ qv,
66
+ out,
67
+ cu_seqlens_q,
68
+ cu_seqlens_k,
69
+ cu_seqlens_k_new,
70
+ seqused_q,
71
+ seqused_k,
72
+ max_seqlen_q,
73
+ max_seqlen_k,
74
+ page_table,
75
+ kv_batch_idx,
76
+ leftpad_k,
77
+ rotary_cos,
78
+ rotary_sin,
79
+ seqlens_rotary,
80
+ q_descale,
81
+ k_descale,
82
+ v_descale,
83
+ softmax_scale,
84
+ causal,
85
+ window_size[0],
86
+ window_size[1],
87
+ attention_chunk,
88
+ softcap,
89
+ rotary_interleaved,
90
+ scheduler_metadata,
91
+ num_splits,
92
+ pack_gqa,
93
+ sm_margin,
94
+ )
95
+ return out, softmax_lse, *rest
96
+
97
+
98
+ def _flash_attn_backward(
99
+ dout,
100
+ q,
101
+ k,
102
+ v,
103
+ out,
104
+ softmax_lse,
105
+ cu_seqlens_q,
106
+ cu_seqlens_k,
107
+ sequed_q,
108
+ sequed_k,
109
+ max_seqlen_q,
110
+ max_seqlen_k,
111
+ dq,
112
+ dk,
113
+ dv,
114
+ softmax_scale,
115
+ causal,
116
+ window_size=(-1, -1),
117
+ softcap=0.0,
118
+ deterministic=False,
119
+ sm_margin=0,
120
+ ):
121
+ # dq, dk, dv are allocated by us so they should already be contiguous
122
+ dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
123
+ dq, dk, dv, softmax_d, *rest = flash_attn_3_cuda.bwd(
124
+ dout,
125
+ q,
126
+ k,
127
+ v,
128
+ out,
129
+ softmax_lse,
130
+ dq,
131
+ dk,
132
+ dv,
133
+ cu_seqlens_q,
134
+ cu_seqlens_k,
135
+ sequed_q,
136
+ sequed_k,
137
+ max_seqlen_q,
138
+ max_seqlen_k,
139
+ softmax_scale,
140
+ causal,
141
+ window_size[0],
142
+ window_size[1],
143
+ softcap,
144
+ deterministic,
145
+ sm_margin,
146
+ )
147
+ return dq, dk, dv, softmax_d
148
+
149
+
150
+ class FlashAttnQKVPackedFunc(torch.autograd.Function):
151
+ @staticmethod
152
+ def forward(
153
+ ctx,
154
+ qkv,
155
+ softmax_scale,
156
+ causal,
157
+ q_descale=None, k_descale=None, v_descale=None,
158
+ window_size=(-1, -1),
159
+ attention_chunk=0,
160
+ softcap=0.0,
161
+ deterministic=False,
162
+ num_heads_q=None,
163
+ sm_margin=0,
164
+ ):
165
+ if softmax_scale is None:
166
+ softmax_scale = qkv.shape[-1] ** (-0.5)
167
+ if qkv.dim() == 5:
168
+ assert qkv.shape[-3] == 3
169
+ q, k, v = qkv.unbind(dim=-3)
170
+ else:
171
+ assert qkv.dim() == 4
172
+ assert num_heads_q is not None
173
+ num_heads_k = (qkv.shape[2] - num_heads_q) // 2
174
+ assert num_heads_k * 2 + num_heads_q == qkv.shape[2]
175
+ q, k, v = qkv.split([num_heads_q, num_heads_k, num_heads_k], dim=-2)
176
+ out, softmax_lse, *rest = _flash_attn_forward(
177
+ q,
178
+ k,
179
+ v,
180
+ None, None, # k_new, v_new
181
+ None, # qv
182
+ None, # out
183
+ None, None, None, # cu_seqlens_q/k/k_new
184
+ None, None, # seqused_q/k
185
+ None, None, # max_seqlen_q/k
186
+ None, None, None, # page_table, kv_batch_idx, leftpad_k,
187
+ None, None, None, # rotary_cos/sin, seqlens_rotary
188
+ q_descale, k_descale, v_descale,
189
+ softmax_scale,
190
+ causal=causal,
191
+ window_size=window_size,
192
+ attention_chunk=attention_chunk,
193
+ softcap=softcap,
194
+ sm_margin=sm_margin,
195
+ )
196
+ # ctx.save_for_backward(q, k, v, out_padded, softmax_lse)
197
+ ctx.save_for_backward(q, k, v, out, softmax_lse)
198
+ ctx.softmax_scale = softmax_scale
199
+ ctx.causal = causal
200
+ ctx.window_size = window_size
201
+ ctx.attention_chunk = attention_chunk
202
+ ctx.softcap = softcap
203
+ ctx.deterministic = deterministic
204
+ ctx.ndim = qkv.dim()
205
+ ctx.sm_margin = sm_margin
206
+ # return out, softmax_lse
207
+ return out
208
+
209
+ @staticmethod
210
+ def backward(ctx, dout, *args):
211
+ q, k, v, out, softmax_lse = ctx.saved_tensors
212
+ assert ctx.attention_chunk == 0, "FA3 backward does not support attention_chunk"
213
+ if ctx.ndim == 5:
214
+ qkv_shape = q.shape[:-2] + (3, *q.shape[-2:])
215
+ dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device)
216
+ dq, dk, dv = dqkv.unbind(dim=-3)
217
+ else:
218
+ num_heads_q = q.shape[2]
219
+ num_heads_k = k.shape[2]
220
+ qkv_shape = q.shape[:-2] + (num_heads_q + num_heads_k * 2, *q.shape[-1:])
221
+ dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device)
222
+ dq, dk, dv = dqkv.split([num_heads_q, num_heads_k, num_heads_k], dim=-2)
223
+ _flash_attn_backward(
224
+ dout,
225
+ q,
226
+ k,
227
+ v,
228
+ out,
229
+ softmax_lse,
230
+ None, None, # cu_seqlens_q, cu_seqlens_k,
231
+ None, None, # sequed_q, sequed_k,
232
+ None, None, # max_seqlen_q, max_seqlen_k,
233
+ dq,
234
+ dk,
235
+ dv,
236
+ ctx.softmax_scale,
237
+ ctx.causal,
238
+ ctx.window_size,
239
+ ctx.softcap,
240
+ ctx.deterministic,
241
+ ctx.sm_margin,
242
+ )
243
+ dqkv = dqkv[..., : dout.shape[-1]] # We could have padded the head dimension
244
+ return dqkv, None, None, None, None, None, None, None, None, None, None, None
245
+
246
+
247
+ class FlashAttnFunc(torch.autograd.Function):
248
+
249
+ @staticmethod
250
+ def forward(
251
+ ctx,
252
+ q,
253
+ k,
254
+ v,
255
+ softmax_scale,
256
+ causal,
257
+ qv=None,
258
+ q_descale=None, k_descale=None, v_descale=None,
259
+ window_size=(-1, -1),
260
+ attention_chunk=0,
261
+ softcap=0.0,
262
+ num_splits=1,
263
+ pack_gqa=None,
264
+ deterministic=False,
265
+ sm_margin=0,
266
+ ):
267
+ if softmax_scale is None:
268
+ softmax_scale = (q.shape[-1] + (qv.shape[-1] if qv is not None else 0)) ** (-0.5)
269
+ # out, q, k, v, out_padded, softmax_lse = _flash_attn_forward(
270
+ out, softmax_lse, *rest = _flash_attn_forward(
271
+ q,
272
+ k,
273
+ v,
274
+ None, None, # k_new, v_new
275
+ qv, # qv
276
+ None, # out
277
+ None, None, None, # cu_seqlens_q/k/k_new
278
+ None, None, # seqused_q/k
279
+ None, None, # max_seqlen_q/k
280
+ None, None, None, # page_table, kv_batch_idx, leftpad_k,
281
+ None, None, None, # rotary_cos/sin, seqlens_rotary
282
+ q_descale, k_descale, v_descale,
283
+ softmax_scale,
284
+ causal=causal,
285
+ window_size=window_size,
286
+ attention_chunk=attention_chunk,
287
+ softcap=softcap,
288
+ num_splits=num_splits,
289
+ pack_gqa=pack_gqa,
290
+ sm_margin=sm_margin,
291
+ )
292
+ # ctx.save_for_backward(q, k, v, out_padded, softmax_lse)
293
+ ctx.save_for_backward(q, k, v, out, softmax_lse)
294
+ ctx.softmax_scale = softmax_scale
295
+ ctx.causal = causal
296
+ ctx.window_size = window_size
297
+ ctx.attention_chunk = attention_chunk
298
+ ctx.softcap = softcap
299
+ ctx.deterministic = deterministic
300
+ ctx.sm_margin = sm_margin
301
+ return out, softmax_lse
302
+
303
+ @staticmethod
304
+ def backward(ctx, dout, *args):
305
+ q, k, v, out, softmax_lse = ctx.saved_tensors
306
+ assert ctx.attention_chunk == 0, "FA3 backward does not support attention_chunk"
307
+ dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
308
+ _flash_attn_backward(
309
+ dout,
310
+ q,
311
+ k,
312
+ v,
313
+ out,
314
+ softmax_lse,
315
+ None, None, # cu_seqlens_q, cu_seqlens_k,
316
+ None, None, # sequed_q, sequed_k,
317
+ None, None, # max_seqlen_q, max_seqlen_k,
318
+ dq,
319
+ dk,
320
+ dv,
321
+ ctx.softmax_scale,
322
+ ctx.causal,
323
+ ctx.window_size,
324
+ ctx.softcap,
325
+ ctx.deterministic,
326
+ ctx.sm_margin,
327
+ )
328
+ dq = dq[..., : q.shape[-1]] # We could have padded the head dimension
329
+ dk = dk[..., : k.shape[-1]]
330
+ dv = dv[..., : v.shape[-1]]
331
+ return dq, dk, dv, None, None, None, None, None, None, None, None, None, None, None, None, None, None
332
+
333
+
334
+ class FlashAttnVarlenFunc(torch.autograd.Function):
335
+
336
+ @staticmethod
337
+ def forward(
338
+ ctx,
339
+ q,
340
+ k,
341
+ v,
342
+ cu_seqlens_q,
343
+ cu_seqlens_k,
344
+ seqused_q,
345
+ seqused_k,
346
+ max_seqlen_q,
347
+ max_seqlen_k,
348
+ softmax_scale,
349
+ causal,
350
+ qv=None,
351
+ q_descale=None, k_descale=None, v_descale=None,
352
+ window_size=(-1, -1),
353
+ attention_chunk=0,
354
+ softcap=0.0,
355
+ num_splits=1,
356
+ pack_gqa=None,
357
+ deterministic=False,
358
+ sm_margin=0,
359
+ ):
360
+ if softmax_scale is None:
361
+ softmax_scale = (q.shape[-1] + (qv.shape[-1] if qv is not None else 0)) ** (-0.5)
362
+ # out, q, k, v, out_padded, softmax_lse = _flash_attn_varlen_forward(
363
+ out, softmax_lse, *rest = _flash_attn_forward(
364
+ q,
365
+ k,
366
+ v,
367
+ None, None, # k_new, v_new
368
+ qv, # qv
369
+ None, # out
370
+ cu_seqlens_q,
371
+ cu_seqlens_k,
372
+ None, # cu_seqlens_k_new
373
+ seqused_q,
374
+ seqused_k,
375
+ max_seqlen_q,
376
+ max_seqlen_k,
377
+ None, None, None, # page_table, kv_batch_idx, leftpad_k,
378
+ None, None, None, # rotary_cos/sin, seqlens_rotary
379
+ q_descale, k_descale, v_descale,
380
+ softmax_scale,
381
+ causal=causal,
382
+ window_size=window_size,
383
+ attention_chunk=attention_chunk,
384
+ softcap=softcap,
385
+ num_splits=num_splits,
386
+ pack_gqa=pack_gqa,
387
+ sm_margin=sm_margin,
388
+ )
389
+ # ctx.save_for_backward(q, k, v, out_padded, softmax_lse, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k)
390
+ ctx.save_for_backward(q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k)
391
+ ctx.max_seqlen_q = max_seqlen_q
392
+ ctx.max_seqlen_k = max_seqlen_k
393
+ ctx.softmax_scale = softmax_scale
394
+ ctx.causal = causal
395
+ ctx.window_size = window_size
396
+ ctx.attention_chunk = attention_chunk
397
+ ctx.softcap = softcap
398
+ ctx.deterministic = deterministic
399
+ ctx.sm_margin = sm_margin
400
+ return out, softmax_lse
401
+
402
+ @staticmethod
403
+ def backward(ctx, dout, *args):
404
+ q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k = ctx.saved_tensors
405
+ assert ctx.attention_chunk == 0, "FA3 backward does not support attention_chunk"
406
+ dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
407
+ _flash_attn_backward(
408
+ dout,
409
+ q,
410
+ k,
411
+ v,
412
+ out,
413
+ softmax_lse,
414
+ cu_seqlens_q,
415
+ cu_seqlens_k,
416
+ seqused_q,
417
+ seqused_k,
418
+ ctx.max_seqlen_q,
419
+ ctx.max_seqlen_k,
420
+ dq,
421
+ dk,
422
+ dv,
423
+ ctx.softmax_scale,
424
+ ctx.causal,
425
+ ctx.window_size,
426
+ ctx.softcap,
427
+ ctx.deterministic,
428
+ ctx.sm_margin,
429
+ )
430
+ dq = dq[..., : q.shape[-1]] # We could have padded the head dimension
431
+ dk = dk[..., : k.shape[-1]]
432
+ dv = dv[..., : v.shape[-1]]
433
+ return dq, dk, dv, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None
434
+
435
+
436
+ def flash_attn_qkvpacked_func(
437
+ qkv,
438
+ softmax_scale=None,
439
+ causal=False,
440
+ q_descale=None, k_descale=None, v_descale=None,
441
+ window_size=(-1, -1),
442
+ attention_chunk=0,
443
+ softcap=0.0,
444
+ deterministic=False,
445
+ num_heads_q=None,
446
+ sm_margin=0,
447
+ ):
448
+ """dropout_p should be set to 0.0 during evaluation
449
+ If Q, K, V are already stacked into 1 tensor, this function will be faster than
450
+ calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
451
+ of the gradients of Q, K, V.
452
+ For multi-query and grouped-query attention (MQA/GQA), please see
453
+ flash_attn_kvpacked_func and flash_attn_func.
454
+
455
+ If window_size != (-1, -1), implements sliding window local attention. Query at position i
456
+ will only attend to keys between [i - window_size[0], i + window_size[1]] inclusive.
457
+
458
+ Arguments:
459
+ qkv: (batch_size, seqlen, 3, nheads, headdim)
460
+ dropout_p: float. Dropout probability.
461
+ softmax_scale: float. The scaling of QK^T before applying softmax.
462
+ Default to 1 / sqrt(headdim).
463
+ causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
464
+ window_size: (left, right). If not (-1, -1), implements sliding window local attention.
465
+ softcap: float. Anything > 0 activates softcapping attention.
466
+ alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of (-alibi_slope * |i - j|) is added to
467
+ the attention score of query i and key j.
468
+ deterministic: bool. Whether to use the deterministic implementation of the backward pass,
469
+ which is slightly slower and uses more memory. The forward pass is always deterministic.
470
+ return_attn_probs: bool. Whether to return the attention probabilities. This option is for
471
+ testing only. The returned probabilities are not guaranteed to be correct
472
+ (they might not have the right scaling).
473
+ Return:
474
+ out: (batch_size, seqlen, nheads, headdim).
475
+ softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
476
+ logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
477
+ normalization factor).
478
+ S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
479
+ The output of softmax (possibly with different scaling). It also encodes the dropout
480
+ pattern (negative means that location was dropped, nonnegative means it was kept).
481
+ """
482
+ return FlashAttnQKVPackedFunc.apply(
483
+ qkv,
484
+ softmax_scale,
485
+ causal,
486
+ q_descale, k_descale, v_descale,
487
+ window_size,
488
+ attention_chunk,
489
+ softcap,
490
+ deterministic,
491
+ num_heads_q,
492
+ sm_margin,
493
+ )
494
+
495
+
496
+ def flash_attn_func(
497
+ q,
498
+ k,
499
+ v,
500
+ softmax_scale=None,
501
+ causal=False,
502
+ qv=None,
503
+ q_descale=None, k_descale=None, v_descale=None,
504
+ window_size=(-1, -1),
505
+ attention_chunk=0,
506
+ softcap=0.0,
507
+ num_splits=1,
508
+ pack_gqa=None,
509
+ deterministic=False,
510
+ sm_margin=0,
511
+ ):
512
+ """dropout_p should be set to 0.0 during evaluation
513
+ Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
514
+ than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
515
+ For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
516
+ 0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
517
+
518
+ If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
519
+ For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
520
+ 1 1 1 1 0
521
+ 1 1 1 1 1
522
+ If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
523
+ 0 0
524
+ 0 0
525
+ 0 0
526
+ 1 0
527
+ 1 1
528
+ If the row of the mask is all zero, the output will be zero.
529
+
530
+ If window_size != (-1, -1), implements sliding window local attention. Query at position i
531
+ will only attend to keys between
532
+ [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
533
+
534
+ Arguments:
535
+ q: (batch_size, seqlen, nheads, headdim)
536
+ k: (batch_size, seqlen, nheads_k, headdim)
537
+ v: (batch_size, seqlen, nheads_k, headdim)
538
+ dropout_p: float. Dropout probability.
539
+ softmax_scale: float. The scaling of QK^T before applying softmax.
540
+ Default to 1 / sqrt(headdim).
541
+ causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
542
+ window_size: (left, right). If not (-1, -1), implements sliding window local attention.
543
+ alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
544
+ (-alibi_slope * |i + seqlen_k - seqlen_q - j|)
545
+ is added to the attention score of query i and key j.
546
+ deterministic: bool. Whether to use the deterministic implementation of the backward pass,
547
+ which is slightly slower and uses more memory. The forward pass is always deterministic.
548
+ return_attn_probs: bool. Whether to return the attention probabilities. This option is for
549
+ testing only. The returned probabilities are not guaranteed to be correct
550
+ (they might not have the right scaling).
551
+ Return:
552
+ out: (batch_size, seqlen, nheads, headdim).
553
+ softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
554
+ logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
555
+ normalization factor).
556
+ """
557
+ return FlashAttnFunc.apply(
558
+ q,
559
+ k,
560
+ v,
561
+ softmax_scale,
562
+ causal,
563
+ qv,
564
+ q_descale, k_descale, v_descale,
565
+ window_size,
566
+ attention_chunk,
567
+ softcap,
568
+ num_splits,
569
+ pack_gqa,
570
+ deterministic,
571
+ sm_margin,
572
+ )
573
+
574
+
575
+ def flash_attn_varlen_func(
576
+ q,
577
+ k,
578
+ v,
579
+ cu_seqlens_q,
580
+ cu_seqlens_k,
581
+ max_seqlen_q,
582
+ max_seqlen_k,
583
+ seqused_q=None,
584
+ seqused_k=None,
585
+ softmax_scale=None,
586
+ causal=False,
587
+ qv=None,
588
+ q_descale=None, k_descale=None, v_descale=None,
589
+ window_size=(-1, -1),
590
+ attention_chunk=0,
591
+ softcap=0.0,
592
+ num_splits=1,
593
+ pack_gqa=None,
594
+ deterministic=False,
595
+ sm_margin=0,
596
+ ):
597
+ return FlashAttnVarlenFunc.apply(
598
+ q,
599
+ k,
600
+ v,
601
+ cu_seqlens_q,
602
+ cu_seqlens_k,
603
+ seqused_q,
604
+ seqused_k,
605
+ max_seqlen_q,
606
+ max_seqlen_k,
607
+ softmax_scale,
608
+ causal,
609
+ qv,
610
+ q_descale, k_descale, v_descale,
611
+ window_size,
612
+ attention_chunk,
613
+ softcap,
614
+ num_splits,
615
+ pack_gqa,
616
+ deterministic,
617
+ sm_margin,
618
+ )
619
+
620
+
621
+ def flash_attn_combine(out_partial, lse_partial, out=None, out_dtype=None):
622
+ return flash_attn_3_cuda.fwd_combine(out_partial, lse_partial, out, out_dtype)
623
+
624
+
625
+ def flash_attn_with_kvcache(
626
+ q,
627
+ k_cache,
628
+ v_cache,
629
+ k=None,
630
+ v=None,
631
+ qv=None,
632
+ rotary_cos=None,
633
+ rotary_sin=None,
634
+ cache_seqlens: Optional[Union[(int, torch.Tensor)]] = None,
635
+ cache_batch_idx: Optional[torch.Tensor] = None,
636
+ cache_leftpad: Optional[torch.Tensor] = None,
637
+ page_table: Optional[torch.Tensor] = None,
638
+ cu_seqlens_q: Optional[torch.Tensor] = None,
639
+ cu_seqlens_k_new: Optional[torch.Tensor] = None,
640
+ max_seqlen_q: Optional[int] = None,
641
+ rotary_seqlens: Optional[torch.Tensor] = None,
642
+ q_descale: Optional[torch.Tensor] = None,
643
+ k_descale: Optional[torch.Tensor] = None,
644
+ v_descale: Optional[torch.Tensor] = None,
645
+ softmax_scale=None,
646
+ causal=False,
647
+ window_size=(-1, -1), # -1 means infinite context window
648
+ attention_chunk=0,
649
+ softcap=0.0, # 0.0 means deactivated
650
+ rotary_interleaved=True,
651
+ scheduler_metadata=None,
652
+ num_splits=0, # Can be tuned for speed
653
+ pack_gqa=None, # Can be tuned for speed
654
+ sm_margin=0, # Can be tuned if some SMs are used for communication
655
+ return_softmax_lse=False,
656
+ ):
657
+ """
658
+ If k and v are not None, k_cache and v_cache will be updated *inplace* with the new values from
659
+ k and v. This is useful for incremental decoding: you can pass in the cached keys/values from
660
+ the previous step, and update them with the new keys/values from the current step, and do
661
+ attention with the updated cache, all in 1 kernel.
662
+
663
+ If you pass in k / v, you must make sure that the cache is large enough to hold the new values.
664
+ For example, the KV cache could be pre-allocated with the max sequence length, and you can use
665
+ cache_seqlens to keep track of the current sequence lengths of each sequence in the batch.
666
+
667
+ Also apply rotary embedding if rotary_cos and rotary_sin are passed in. The key @k will be
668
+ rotated by rotary_cos and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.
669
+ If causal or local (i.e., window_size != (-1, -1)), the query @q will be rotated by rotary_cos
670
+ and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.
671
+ If not causal and not local, the query @q will be rotated by rotary_cos and rotary_sin at
672
+ indices cache_seqlens only (i.e. we consider all tokens in @q to be at position cache_seqlens).
673
+
674
+ See tests/test_flash_attn.py::test_flash_attn_kvcache for examples of how to use this function.
675
+
676
+ Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
677
+ than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
678
+ For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
679
+ 0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
680
+
681
+ If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
682
+ For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
683
+ 1 1 1 1 0
684
+ 1 1 1 1 1
685
+ If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
686
+ 0 0
687
+ 0 0
688
+ 0 0
689
+ 1 0
690
+ 1 1
691
+ If the row of the mask is all zero, the output will be zero.
692
+
693
+ If window_size != (-1, -1), implements sliding window local attention. Query at position i
694
+ will only attend to keys between
695
+ [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
696
+
697
+ Note: Does not support backward pass.
698
+
699
+ Arguments:
700
+ q: (batch_size, seqlen, nheads, headdim)
701
+ k_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim) if there's no page_table,
702
+ or (num_blocks, page_block_size, nheads_k, headdim) if there's a page_table (i.e. paged KV cache)
703
+ page_block_size must be a multiple of 256.
704
+ v_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim_v) if there's no page_table,
705
+ or (num_blocks, page_block_size, nheads_k, headdim_v) if there's a page_table (i.e. paged KV cache)
706
+ k [optional]: (batch_size, seqlen_new, nheads_k, headdim). If not None, we concatenate
707
+ k with k_cache, starting at the indices specified by cache_seqlens.
708
+ v [optional]: (batch_size, seqlen_new, nheads_k, headdim_v). Similar to k.
709
+ qv [optional]: (batch_size, seqlen, nheads, headdim_v)
710
+ rotary_cos [optional]: (seqlen_ro, rotary_dim / 2). If not None, we apply rotary embedding
711
+ to k and q. Only applicable if k and v are passed in. rotary_dim must be divisible by 16.
712
+ rotary_sin [optional]: (seqlen_ro, rotary_dim / 2). Similar to rotary_cos.
713
+ cache_seqlens: int, or (batch_size,), dtype torch.int32. The sequence lengths of the
714
+ KV cache.
715
+ cache_batch_idx: (batch_size,), dtype torch.int32. The indices used to index into the KV cache.
716
+ If None, we assume that the batch indices are [0, 1, 2, ..., batch_size - 1].
717
+ If the indices are not distinct, and k and v are provided, the values updated in the cache
718
+ might come from any of the duplicate indices.
719
+ cache_leftpad: (batch_size,), dtype torch.int32. The index that the KV cache starts. If None, assume 0.
720
+ page_table [optional]: (batch_size, max_num_blocks_per_seq), dtype torch.int32.
721
+ softmax_scale: float. The scaling of QK^T before applying softmax.
722
+ Default to 1 / sqrt(headdim).
723
+ causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
724
+ window_size: (left, right). If not (-1, -1), implements sliding window local attention.
725
+ softcap: float. Anything > 0 activates softcapping attention.
726
+ rotary_interleaved: bool. Only applicable if rotary_cos and rotary_sin are passed in.
727
+ If True, rotary embedding will combine dimensions 0 & 1, 2 & 3, etc. If False,
728
+ rotary embedding will combine dimensions 0 & rotary_dim / 2, 1 & rotary_dim / 2 + 1
729
+ (i.e. GPT-NeoX style).
730
+ num_splits: int. If > 1, split the key/value into this many chunks along the sequence.
731
+ If num_splits == 1, we don't split the key/value. If num_splits == 0, we use a heuristic
732
+ to automatically determine the number of splits.
733
+ Don't change this unless you know what you are doing.
734
+ return_softmax_lse: bool. Whether to return the logsumexp of the attention scores.
735
+
736
+ Return:
737
+ out: (batch_size, seqlen, nheads, headdim).
738
+ softmax_lse [optional, if return_softmax_lse=True]: (batch_size, nheads, seqlen). The
739
+ logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
740
+ normalization factor).
741
+ """
742
+ assert k_cache.stride(-1) == 1, "k_cache must have contiguous last dimension"
743
+ assert v_cache.stride(-1) == 1, "v_cache must have contiguous last dimension"
744
+ if softmax_scale is None:
745
+ softmax_scale = (q.shape[-1] + (qv.shape[-1] if qv is not None else 0)) ** (-0.5)
746
+ if cache_seqlens is not None and isinstance(cache_seqlens, int):
747
+ cache_seqlens = torch.full(
748
+ (k_cache.shape[0],), cache_seqlens, dtype=torch.int32, device=k_cache.device
749
+ )
750
+ cache_seqlens = maybe_contiguous(cache_seqlens)
751
+ out, softmax_lse, *rest = _flash_attn_forward(
752
+ q,
753
+ k_cache,
754
+ v_cache,
755
+ k,
756
+ v,
757
+ qv,
758
+ None, # out
759
+ cu_seqlens_q,
760
+ None, # cu_seqlens_k
761
+ cu_seqlens_k_new,
762
+ None, # seqused_q
763
+ cache_seqlens,
764
+ max_seqlen_q,
765
+ None, # max_seqlen_k
766
+ page_table,
767
+ cache_batch_idx,
768
+ cache_leftpad,
769
+ rotary_cos,
770
+ rotary_sin,
771
+ rotary_seqlens,
772
+ q_descale, k_descale, v_descale,
773
+ softmax_scale,
774
+ causal=causal,
775
+ window_size=window_size,
776
+ attention_chunk=attention_chunk,
777
+ softcap=softcap,
778
+ rotary_interleaved=rotary_interleaved,
779
+ scheduler_metadata=scheduler_metadata,
780
+ num_splits=num_splits,
781
+ pack_gqa=pack_gqa,
782
+ sm_margin=sm_margin,
783
+ )
784
+ # return (out, softmax_lse) if return_softmax_lse else out
785
+ return (out, softmax_lse, *rest) if return_softmax_lse else out
786
+
787
+
788
+ def get_scheduler_metadata(
789
+ batch_size, max_seqlen_q, max_seqlen_k, num_heads_q, num_heads_kv, headdim,
790
+ cache_seqlens: torch.Tensor,
791
+ qkv_dtype=torch.bfloat16,
792
+ headdim_v=None,
793
+ cu_seqlens_q: Optional[torch.Tensor] = None,
794
+ cu_seqlens_k_new: Optional[torch.Tensor] = None,
795
+ cache_leftpad: Optional[torch.Tensor] = None,
796
+ page_size: Optional[int] = None,
797
+ max_seqlen_k_new=0,
798
+ causal=False,
799
+ window_size=(-1, -1), # -1 means infinite context window
800
+ attention_chunk=0,
801
+ has_softcap=False,
802
+ num_splits=0, # Can be tuned for speed
803
+ pack_gqa=None, # Can be tuned for speed
804
+ sm_margin=0, # Can be tuned if some SMs are used for communication
805
+ ):
806
+ cache_seqlens = maybe_contiguous(cache_seqlens)
807
+ if headdim_v is None:
808
+ headdim_v = headdim
809
+ scheduler_metadata = flash_attn_3_cuda.get_scheduler_metadata(
810
+ batch_size, max_seqlen_q, max_seqlen_k, num_heads_q, num_heads_kv, headdim, headdim_v,
811
+ qkv_dtype,
812
+ cache_seqlens,
813
+ cu_seqlens_q,
814
+ None, # cu_seqlens_k
815
+ cu_seqlens_k_new,
816
+ None, # seqused_q
817
+ cache_leftpad,
818
+ page_size,
819
+ max_seqlen_k_new,
820
+ causal,
821
+ window_size[0], window_size[1],
822
+ attention_chunk,
823
+ has_softcap,
824
+ num_splits,
825
+ pack_gqa,
826
+ sm_margin,
827
+ )
828
+ return scheduler_metadata
build/torch26-cxx98-cu126-x86_64-linux/flash_attn3/__init__.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .flash_attn_interface import (
2
+ flash_attn_combine,
3
+ flash_attn_func,
4
+ flash_attn_qkvpacked_func,
5
+ flash_attn_varlen_func,
6
+ flash_attn_with_kvcache,
7
+ get_scheduler_metadata,
8
+ )
9
+
10
+ __all__ = [
11
+ "flash_attn_combine",
12
+ "flash_attn_func",
13
+ "flash_attn_qkvpacked_func",
14
+ "flash_attn_varlen_func",
15
+ "flash_attn_with_kvcache",
16
+ "get_scheduler_metadata",
17
+ ]
build/torch26-cxx98-cu126-x86_64-linux/flash_attn3/_flash_attn3_2e75662.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9627e08ec8778d2a409a2a0477572edb3e03eaca2b45e7b4810ee0a9126d6547
3
+ size 838456048
build/torch26-cxx98-cu126-x86_64-linux/flash_attn3/_flash_attn3_557701f.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07fe025ba95671f6ff957991f74c66063bfb10ab6737641c88f88116c9f83718
3
+ size 838456048
build/torch26-cxx98-cu126-x86_64-linux/flash_attn3/_ops.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from . import _flash_attn3_557701f
3
+ ops = torch.ops._flash_attn3_557701f
4
+
5
+ def add_op_namespace_prefix(op_name: str):
6
+ """
7
+ Prefix op by namespace.
8
+ """
9
+ return f"_flash_attn3_557701f::{op_name}"
build/torch26-cxx98-cu126-x86_64-linux/flash_attn3/flash_attn_interface.py ADDED
@@ -0,0 +1,828 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023, Tri Dao.
2
+
3
+ from typing import Optional, Union
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+
8
+ from ._ops import ops as flash_attn_3_cuda
9
+
10
+ def maybe_contiguous(x):
11
+ return x.contiguous() if x is not None and x.stride(-1) != 1 else x
12
+
13
+
14
+ def _flash_attn_forward(
15
+ q,
16
+ k,
17
+ v,
18
+ k_new,
19
+ v_new,
20
+ qv,
21
+ out,
22
+ cu_seqlens_q,
23
+ cu_seqlens_k,
24
+ cu_seqlens_k_new,
25
+ seqused_q,
26
+ seqused_k,
27
+ max_seqlen_q,
28
+ max_seqlen_k,
29
+ page_table,
30
+ kv_batch_idx,
31
+ leftpad_k,
32
+ rotary_cos,
33
+ rotary_sin,
34
+ seqlens_rotary,
35
+ q_descale,
36
+ k_descale,
37
+ v_descale,
38
+ softmax_scale,
39
+ causal,
40
+ window_size=(-1, -1),
41
+ attention_chunk=0,
42
+ softcap=0.0,
43
+ rotary_interleaved=True,
44
+ scheduler_metadata=None,
45
+ num_splits=1,
46
+ pack_gqa=None,
47
+ sm_margin=0):
48
+ q, k, k_new, v_new = [maybe_contiguous(x) for x in (q, k, k_new, v_new)]
49
+ v = v.contiguous() if v.stride(-1) != 1 and v.stride(-3) != 1 else v
50
+ cu_seqlens_q, cu_seqlens_k, cu_seqlens_k_new = [
51
+ maybe_contiguous(x) for x in (cu_seqlens_q, cu_seqlens_k, cu_seqlens_k_new)
52
+ ]
53
+ seqused_q, seqused_k = [maybe_contiguous(x) for x in (seqused_q, seqused_k)]
54
+ page_table, kv_batch_idx, leftpad_k = [
55
+ maybe_contiguous(x) for x in (page_table, kv_batch_idx, leftpad_k)
56
+ ]
57
+ rotary_cos, rotary_sin = [maybe_contiguous(x) for x in (rotary_cos, rotary_sin)]
58
+ seqlens_rotary = maybe_contiguous(seqlens_rotary)
59
+ out, softmax_lse, *rest = flash_attn_3_cuda.fwd(
60
+ q,
61
+ k,
62
+ v,
63
+ k_new,
64
+ v_new,
65
+ qv,
66
+ out,
67
+ cu_seqlens_q,
68
+ cu_seqlens_k,
69
+ cu_seqlens_k_new,
70
+ seqused_q,
71
+ seqused_k,
72
+ max_seqlen_q,
73
+ max_seqlen_k,
74
+ page_table,
75
+ kv_batch_idx,
76
+ leftpad_k,
77
+ rotary_cos,
78
+ rotary_sin,
79
+ seqlens_rotary,
80
+ q_descale,
81
+ k_descale,
82
+ v_descale,
83
+ softmax_scale,
84
+ causal,
85
+ window_size[0],
86
+ window_size[1],
87
+ attention_chunk,
88
+ softcap,
89
+ rotary_interleaved,
90
+ scheduler_metadata,
91
+ num_splits,
92
+ pack_gqa,
93
+ sm_margin,
94
+ )
95
+ return out, softmax_lse, *rest
96
+
97
+
98
+ def _flash_attn_backward(
99
+ dout,
100
+ q,
101
+ k,
102
+ v,
103
+ out,
104
+ softmax_lse,
105
+ cu_seqlens_q,
106
+ cu_seqlens_k,
107
+ sequed_q,
108
+ sequed_k,
109
+ max_seqlen_q,
110
+ max_seqlen_k,
111
+ dq,
112
+ dk,
113
+ dv,
114
+ softmax_scale,
115
+ causal,
116
+ window_size=(-1, -1),
117
+ softcap=0.0,
118
+ deterministic=False,
119
+ sm_margin=0,
120
+ ):
121
+ # dq, dk, dv are allocated by us so they should already be contiguous
122
+ dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
123
+ dq, dk, dv, softmax_d, *rest = flash_attn_3_cuda.bwd(
124
+ dout,
125
+ q,
126
+ k,
127
+ v,
128
+ out,
129
+ softmax_lse,
130
+ dq,
131
+ dk,
132
+ dv,
133
+ cu_seqlens_q,
134
+ cu_seqlens_k,
135
+ sequed_q,
136
+ sequed_k,
137
+ max_seqlen_q,
138
+ max_seqlen_k,
139
+ softmax_scale,
140
+ causal,
141
+ window_size[0],
142
+ window_size[1],
143
+ softcap,
144
+ deterministic,
145
+ sm_margin,
146
+ )
147
+ return dq, dk, dv, softmax_d
148
+
149
+
150
+ class FlashAttnQKVPackedFunc(torch.autograd.Function):
151
+ @staticmethod
152
+ def forward(
153
+ ctx,
154
+ qkv,
155
+ softmax_scale,
156
+ causal,
157
+ q_descale=None, k_descale=None, v_descale=None,
158
+ window_size=(-1, -1),
159
+ attention_chunk=0,
160
+ softcap=0.0,
161
+ deterministic=False,
162
+ num_heads_q=None,
163
+ sm_margin=0,
164
+ ):
165
+ if softmax_scale is None:
166
+ softmax_scale = qkv.shape[-1] ** (-0.5)
167
+ if qkv.dim() == 5:
168
+ assert qkv.shape[-3] == 3
169
+ q, k, v = qkv.unbind(dim=-3)
170
+ else:
171
+ assert qkv.dim() == 4
172
+ assert num_heads_q is not None
173
+ num_heads_k = (qkv.shape[2] - num_heads_q) // 2
174
+ assert num_heads_k * 2 + num_heads_q == qkv.shape[2]
175
+ q, k, v = qkv.split([num_heads_q, num_heads_k, num_heads_k], dim=-2)
176
+ out, softmax_lse, *rest = _flash_attn_forward(
177
+ q,
178
+ k,
179
+ v,
180
+ None, None, # k_new, v_new
181
+ None, # qv
182
+ None, # out
183
+ None, None, None, # cu_seqlens_q/k/k_new
184
+ None, None, # seqused_q/k
185
+ None, None, # max_seqlen_q/k
186
+ None, None, None, # page_table, kv_batch_idx, leftpad_k,
187
+ None, None, None, # rotary_cos/sin, seqlens_rotary
188
+ q_descale, k_descale, v_descale,
189
+ softmax_scale,
190
+ causal=causal,
191
+ window_size=window_size,
192
+ attention_chunk=attention_chunk,
193
+ softcap=softcap,
194
+ sm_margin=sm_margin,
195
+ )
196
+ # ctx.save_for_backward(q, k, v, out_padded, softmax_lse)
197
+ ctx.save_for_backward(q, k, v, out, softmax_lse)
198
+ ctx.softmax_scale = softmax_scale
199
+ ctx.causal = causal
200
+ ctx.window_size = window_size
201
+ ctx.attention_chunk = attention_chunk
202
+ ctx.softcap = softcap
203
+ ctx.deterministic = deterministic
204
+ ctx.ndim = qkv.dim()
205
+ ctx.sm_margin = sm_margin
206
+ # return out, softmax_lse
207
+ return out
208
+
209
+ @staticmethod
210
+ def backward(ctx, dout, *args):
211
+ q, k, v, out, softmax_lse = ctx.saved_tensors
212
+ assert ctx.attention_chunk == 0, "FA3 backward does not support attention_chunk"
213
+ if ctx.ndim == 5:
214
+ qkv_shape = q.shape[:-2] + (3, *q.shape[-2:])
215
+ dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device)
216
+ dq, dk, dv = dqkv.unbind(dim=-3)
217
+ else:
218
+ num_heads_q = q.shape[2]
219
+ num_heads_k = k.shape[2]
220
+ qkv_shape = q.shape[:-2] + (num_heads_q + num_heads_k * 2, *q.shape[-1:])
221
+ dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device)
222
+ dq, dk, dv = dqkv.split([num_heads_q, num_heads_k, num_heads_k], dim=-2)
223
+ _flash_attn_backward(
224
+ dout,
225
+ q,
226
+ k,
227
+ v,
228
+ out,
229
+ softmax_lse,
230
+ None, None, # cu_seqlens_q, cu_seqlens_k,
231
+ None, None, # sequed_q, sequed_k,
232
+ None, None, # max_seqlen_q, max_seqlen_k,
233
+ dq,
234
+ dk,
235
+ dv,
236
+ ctx.softmax_scale,
237
+ ctx.causal,
238
+ ctx.window_size,
239
+ ctx.softcap,
240
+ ctx.deterministic,
241
+ ctx.sm_margin,
242
+ )
243
+ dqkv = dqkv[..., : dout.shape[-1]] # We could have padded the head dimension
244
+ return dqkv, None, None, None, None, None, None, None, None, None, None, None
245
+
246
+
247
+ class FlashAttnFunc(torch.autograd.Function):
248
+
249
+ @staticmethod
250
+ def forward(
251
+ ctx,
252
+ q,
253
+ k,
254
+ v,
255
+ softmax_scale,
256
+ causal,
257
+ qv=None,
258
+ q_descale=None, k_descale=None, v_descale=None,
259
+ window_size=(-1, -1),
260
+ attention_chunk=0,
261
+ softcap=0.0,
262
+ num_splits=1,
263
+ pack_gqa=None,
264
+ deterministic=False,
265
+ sm_margin=0,
266
+ ):
267
+ if softmax_scale is None:
268
+ softmax_scale = (q.shape[-1] + (qv.shape[-1] if qv is not None else 0)) ** (-0.5)
269
+ # out, q, k, v, out_padded, softmax_lse = _flash_attn_forward(
270
+ out, softmax_lse, *rest = _flash_attn_forward(
271
+ q,
272
+ k,
273
+ v,
274
+ None, None, # k_new, v_new
275
+ qv, # qv
276
+ None, # out
277
+ None, None, None, # cu_seqlens_q/k/k_new
278
+ None, None, # seqused_q/k
279
+ None, None, # max_seqlen_q/k
280
+ None, None, None, # page_table, kv_batch_idx, leftpad_k,
281
+ None, None, None, # rotary_cos/sin, seqlens_rotary
282
+ q_descale, k_descale, v_descale,
283
+ softmax_scale,
284
+ causal=causal,
285
+ window_size=window_size,
286
+ attention_chunk=attention_chunk,
287
+ softcap=softcap,
288
+ num_splits=num_splits,
289
+ pack_gqa=pack_gqa,
290
+ sm_margin=sm_margin,
291
+ )
292
+ # ctx.save_for_backward(q, k, v, out_padded, softmax_lse)
293
+ ctx.save_for_backward(q, k, v, out, softmax_lse)
294
+ ctx.softmax_scale = softmax_scale
295
+ ctx.causal = causal
296
+ ctx.window_size = window_size
297
+ ctx.attention_chunk = attention_chunk
298
+ ctx.softcap = softcap
299
+ ctx.deterministic = deterministic
300
+ ctx.sm_margin = sm_margin
301
+ return out, softmax_lse
302
+
303
+ @staticmethod
304
+ def backward(ctx, dout, *args):
305
+ q, k, v, out, softmax_lse = ctx.saved_tensors
306
+ assert ctx.attention_chunk == 0, "FA3 backward does not support attention_chunk"
307
+ dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
308
+ _flash_attn_backward(
309
+ dout,
310
+ q,
311
+ k,
312
+ v,
313
+ out,
314
+ softmax_lse,
315
+ None, None, # cu_seqlens_q, cu_seqlens_k,
316
+ None, None, # sequed_q, sequed_k,
317
+ None, None, # max_seqlen_q, max_seqlen_k,
318
+ dq,
319
+ dk,
320
+ dv,
321
+ ctx.softmax_scale,
322
+ ctx.causal,
323
+ ctx.window_size,
324
+ ctx.softcap,
325
+ ctx.deterministic,
326
+ ctx.sm_margin,
327
+ )
328
+ dq = dq[..., : q.shape[-1]] # We could have padded the head dimension
329
+ dk = dk[..., : k.shape[-1]]
330
+ dv = dv[..., : v.shape[-1]]
331
+ return dq, dk, dv, None, None, None, None, None, None, None, None, None, None, None, None, None, None
332
+
333
+
334
+ class FlashAttnVarlenFunc(torch.autograd.Function):
335
+
336
+ @staticmethod
337
+ def forward(
338
+ ctx,
339
+ q,
340
+ k,
341
+ v,
342
+ cu_seqlens_q,
343
+ cu_seqlens_k,
344
+ seqused_q,
345
+ seqused_k,
346
+ max_seqlen_q,
347
+ max_seqlen_k,
348
+ softmax_scale,
349
+ causal,
350
+ qv=None,
351
+ q_descale=None, k_descale=None, v_descale=None,
352
+ window_size=(-1, -1),
353
+ attention_chunk=0,
354
+ softcap=0.0,
355
+ num_splits=1,
356
+ pack_gqa=None,
357
+ deterministic=False,
358
+ sm_margin=0,
359
+ ):
360
+ if softmax_scale is None:
361
+ softmax_scale = (q.shape[-1] + (qv.shape[-1] if qv is not None else 0)) ** (-0.5)
362
+ # out, q, k, v, out_padded, softmax_lse = _flash_attn_varlen_forward(
363
+ out, softmax_lse, *rest = _flash_attn_forward(
364
+ q,
365
+ k,
366
+ v,
367
+ None, None, # k_new, v_new
368
+ qv, # qv
369
+ None, # out
370
+ cu_seqlens_q,
371
+ cu_seqlens_k,
372
+ None, # cu_seqlens_k_new
373
+ seqused_q,
374
+ seqused_k,
375
+ max_seqlen_q,
376
+ max_seqlen_k,
377
+ None, None, None, # page_table, kv_batch_idx, leftpad_k,
378
+ None, None, None, # rotary_cos/sin, seqlens_rotary
379
+ q_descale, k_descale, v_descale,
380
+ softmax_scale,
381
+ causal=causal,
382
+ window_size=window_size,
383
+ attention_chunk=attention_chunk,
384
+ softcap=softcap,
385
+ num_splits=num_splits,
386
+ pack_gqa=pack_gqa,
387
+ sm_margin=sm_margin,
388
+ )
389
+ # ctx.save_for_backward(q, k, v, out_padded, softmax_lse, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k)
390
+ ctx.save_for_backward(q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k)
391
+ ctx.max_seqlen_q = max_seqlen_q
392
+ ctx.max_seqlen_k = max_seqlen_k
393
+ ctx.softmax_scale = softmax_scale
394
+ ctx.causal = causal
395
+ ctx.window_size = window_size
396
+ ctx.attention_chunk = attention_chunk
397
+ ctx.softcap = softcap
398
+ ctx.deterministic = deterministic
399
+ ctx.sm_margin = sm_margin
400
+ return out, softmax_lse
401
+
402
+ @staticmethod
403
+ def backward(ctx, dout, *args):
404
+ q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k = ctx.saved_tensors
405
+ assert ctx.attention_chunk == 0, "FA3 backward does not support attention_chunk"
406
+ dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
407
+ _flash_attn_backward(
408
+ dout,
409
+ q,
410
+ k,
411
+ v,
412
+ out,
413
+ softmax_lse,
414
+ cu_seqlens_q,
415
+ cu_seqlens_k,
416
+ seqused_q,
417
+ seqused_k,
418
+ ctx.max_seqlen_q,
419
+ ctx.max_seqlen_k,
420
+ dq,
421
+ dk,
422
+ dv,
423
+ ctx.softmax_scale,
424
+ ctx.causal,
425
+ ctx.window_size,
426
+ ctx.softcap,
427
+ ctx.deterministic,
428
+ ctx.sm_margin,
429
+ )
430
+ dq = dq[..., : q.shape[-1]] # We could have padded the head dimension
431
+ dk = dk[..., : k.shape[-1]]
432
+ dv = dv[..., : v.shape[-1]]
433
+ return dq, dk, dv, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None
434
+
435
+
436
+ def flash_attn_qkvpacked_func(
437
+ qkv,
438
+ softmax_scale=None,
439
+ causal=False,
440
+ q_descale=None, k_descale=None, v_descale=None,
441
+ window_size=(-1, -1),
442
+ attention_chunk=0,
443
+ softcap=0.0,
444
+ deterministic=False,
445
+ num_heads_q=None,
446
+ sm_margin=0,
447
+ ):
448
+ """dropout_p should be set to 0.0 during evaluation
449
+ If Q, K, V are already stacked into 1 tensor, this function will be faster than
450
+ calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
451
+ of the gradients of Q, K, V.
452
+ For multi-query and grouped-query attention (MQA/GQA), please see
453
+ flash_attn_kvpacked_func and flash_attn_func.
454
+
455
+ If window_size != (-1, -1), implements sliding window local attention. Query at position i
456
+ will only attend to keys between [i - window_size[0], i + window_size[1]] inclusive.
457
+
458
+ Arguments:
459
+ qkv: (batch_size, seqlen, 3, nheads, headdim)
460
+ dropout_p: float. Dropout probability.
461
+ softmax_scale: float. The scaling of QK^T before applying softmax.
462
+ Default to 1 / sqrt(headdim).
463
+ causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
464
+ window_size: (left, right). If not (-1, -1), implements sliding window local attention.
465
+ softcap: float. Anything > 0 activates softcapping attention.
466
+ alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of (-alibi_slope * |i - j|) is added to
467
+ the attention score of query i and key j.
468
+ deterministic: bool. Whether to use the deterministic implementation of the backward pass,
469
+ which is slightly slower and uses more memory. The forward pass is always deterministic.
470
+ return_attn_probs: bool. Whether to return the attention probabilities. This option is for
471
+ testing only. The returned probabilities are not guaranteed to be correct
472
+ (they might not have the right scaling).
473
+ Return:
474
+ out: (batch_size, seqlen, nheads, headdim).
475
+ softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
476
+ logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
477
+ normalization factor).
478
+ S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
479
+ The output of softmax (possibly with different scaling). It also encodes the dropout
480
+ pattern (negative means that location was dropped, nonnegative means it was kept).
481
+ """
482
+ return FlashAttnQKVPackedFunc.apply(
483
+ qkv,
484
+ softmax_scale,
485
+ causal,
486
+ q_descale, k_descale, v_descale,
487
+ window_size,
488
+ attention_chunk,
489
+ softcap,
490
+ deterministic,
491
+ num_heads_q,
492
+ sm_margin,
493
+ )
494
+
495
+
496
+ def flash_attn_func(
497
+ q,
498
+ k,
499
+ v,
500
+ softmax_scale=None,
501
+ causal=False,
502
+ qv=None,
503
+ q_descale=None, k_descale=None, v_descale=None,
504
+ window_size=(-1, -1),
505
+ attention_chunk=0,
506
+ softcap=0.0,
507
+ num_splits=1,
508
+ pack_gqa=None,
509
+ deterministic=False,
510
+ sm_margin=0,
511
+ ):
512
+ """dropout_p should be set to 0.0 during evaluation
513
+ Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
514
+ than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
515
+ For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
516
+ 0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
517
+
518
+ If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
519
+ For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
520
+ 1 1 1 1 0
521
+ 1 1 1 1 1
522
+ If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
523
+ 0 0
524
+ 0 0
525
+ 0 0
526
+ 1 0
527
+ 1 1
528
+ If the row of the mask is all zero, the output will be zero.
529
+
530
+ If window_size != (-1, -1), implements sliding window local attention. Query at position i
531
+ will only attend to keys between
532
+ [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
533
+
534
+ Arguments:
535
+ q: (batch_size, seqlen, nheads, headdim)
536
+ k: (batch_size, seqlen, nheads_k, headdim)
537
+ v: (batch_size, seqlen, nheads_k, headdim)
538
+ dropout_p: float. Dropout probability.
539
+ softmax_scale: float. The scaling of QK^T before applying softmax.
540
+ Default to 1 / sqrt(headdim).
541
+ causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
542
+ window_size: (left, right). If not (-1, -1), implements sliding window local attention.
543
+ alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
544
+ (-alibi_slope * |i + seqlen_k - seqlen_q - j|)
545
+ is added to the attention score of query i and key j.
546
+ deterministic: bool. Whether to use the deterministic implementation of the backward pass,
547
+ which is slightly slower and uses more memory. The forward pass is always deterministic.
548
+ return_attn_probs: bool. Whether to return the attention probabilities. This option is for
549
+ testing only. The returned probabilities are not guaranteed to be correct
550
+ (they might not have the right scaling).
551
+ Return:
552
+ out: (batch_size, seqlen, nheads, headdim).
553
+ softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
554
+ logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
555
+ normalization factor).
556
+ """
557
+ return FlashAttnFunc.apply(
558
+ q,
559
+ k,
560
+ v,
561
+ softmax_scale,
562
+ causal,
563
+ qv,
564
+ q_descale, k_descale, v_descale,
565
+ window_size,
566
+ attention_chunk,
567
+ softcap,
568
+ num_splits,
569
+ pack_gqa,
570
+ deterministic,
571
+ sm_margin,
572
+ )
573
+
574
+
575
+ def flash_attn_varlen_func(
576
+ q,
577
+ k,
578
+ v,
579
+ cu_seqlens_q,
580
+ cu_seqlens_k,
581
+ max_seqlen_q,
582
+ max_seqlen_k,
583
+ seqused_q=None,
584
+ seqused_k=None,
585
+ softmax_scale=None,
586
+ causal=False,
587
+ qv=None,
588
+ q_descale=None, k_descale=None, v_descale=None,
589
+ window_size=(-1, -1),
590
+ attention_chunk=0,
591
+ softcap=0.0,
592
+ num_splits=1,
593
+ pack_gqa=None,
594
+ deterministic=False,
595
+ sm_margin=0,
596
+ ):
597
+ return FlashAttnVarlenFunc.apply(
598
+ q,
599
+ k,
600
+ v,
601
+ cu_seqlens_q,
602
+ cu_seqlens_k,
603
+ seqused_q,
604
+ seqused_k,
605
+ max_seqlen_q,
606
+ max_seqlen_k,
607
+ softmax_scale,
608
+ causal,
609
+ qv,
610
+ q_descale, k_descale, v_descale,
611
+ window_size,
612
+ attention_chunk,
613
+ softcap,
614
+ num_splits,
615
+ pack_gqa,
616
+ deterministic,
617
+ sm_margin,
618
+ )
619
+
620
+
621
+ def flash_attn_combine(out_partial, lse_partial, out=None, out_dtype=None):
622
+ return flash_attn_3_cuda.fwd_combine(out_partial, lse_partial, out, out_dtype)
623
+
624
+
625
+ def flash_attn_with_kvcache(
626
+ q,
627
+ k_cache,
628
+ v_cache,
629
+ k=None,
630
+ v=None,
631
+ qv=None,
632
+ rotary_cos=None,
633
+ rotary_sin=None,
634
+ cache_seqlens: Optional[Union[(int, torch.Tensor)]] = None,
635
+ cache_batch_idx: Optional[torch.Tensor] = None,
636
+ cache_leftpad: Optional[torch.Tensor] = None,
637
+ page_table: Optional[torch.Tensor] = None,
638
+ cu_seqlens_q: Optional[torch.Tensor] = None,
639
+ cu_seqlens_k_new: Optional[torch.Tensor] = None,
640
+ max_seqlen_q: Optional[int] = None,
641
+ rotary_seqlens: Optional[torch.Tensor] = None,
642
+ q_descale: Optional[torch.Tensor] = None,
643
+ k_descale: Optional[torch.Tensor] = None,
644
+ v_descale: Optional[torch.Tensor] = None,
645
+ softmax_scale=None,
646
+ causal=False,
647
+ window_size=(-1, -1), # -1 means infinite context window
648
+ attention_chunk=0,
649
+ softcap=0.0, # 0.0 means deactivated
650
+ rotary_interleaved=True,
651
+ scheduler_metadata=None,
652
+ num_splits=0, # Can be tuned for speed
653
+ pack_gqa=None, # Can be tuned for speed
654
+ sm_margin=0, # Can be tuned if some SMs are used for communication
655
+ return_softmax_lse=False,
656
+ ):
657
+ """
658
+ If k and v are not None, k_cache and v_cache will be updated *inplace* with the new values from
659
+ k and v. This is useful for incremental decoding: you can pass in the cached keys/values from
660
+ the previous step, and update them with the new keys/values from the current step, and do
661
+ attention with the updated cache, all in 1 kernel.
662
+
663
+ If you pass in k / v, you must make sure that the cache is large enough to hold the new values.
664
+ For example, the KV cache could be pre-allocated with the max sequence length, and you can use
665
+ cache_seqlens to keep track of the current sequence lengths of each sequence in the batch.
666
+
667
+ Also apply rotary embedding if rotary_cos and rotary_sin are passed in. The key @k will be
668
+ rotated by rotary_cos and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.
669
+ If causal or local (i.e., window_size != (-1, -1)), the query @q will be rotated by rotary_cos
670
+ and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.
671
+ If not causal and not local, the query @q will be rotated by rotary_cos and rotary_sin at
672
+ indices cache_seqlens only (i.e. we consider all tokens in @q to be at position cache_seqlens).
673
+
674
+ See tests/test_flash_attn.py::test_flash_attn_kvcache for examples of how to use this function.
675
+
676
+ Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
677
+ than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
678
+ For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
679
+ 0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
680
+
681
+ If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
682
+ For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
683
+ 1 1 1 1 0
684
+ 1 1 1 1 1
685
+ If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
686
+ 0 0
687
+ 0 0
688
+ 0 0
689
+ 1 0
690
+ 1 1
691
+ If the row of the mask is all zero, the output will be zero.
692
+
693
+ If window_size != (-1, -1), implements sliding window local attention. Query at position i
694
+ will only attend to keys between
695
+ [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
696
+
697
+ Note: Does not support backward pass.
698
+
699
+ Arguments:
700
+ q: (batch_size, seqlen, nheads, headdim)
701
+ k_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim) if there's no page_table,
702
+ or (num_blocks, page_block_size, nheads_k, headdim) if there's a page_table (i.e. paged KV cache)
703
+ page_block_size must be a multiple of 256.
704
+ v_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim_v) if there's no page_table,
705
+ or (num_blocks, page_block_size, nheads_k, headdim_v) if there's a page_table (i.e. paged KV cache)
706
+ k [optional]: (batch_size, seqlen_new, nheads_k, headdim). If not None, we concatenate
707
+ k with k_cache, starting at the indices specified by cache_seqlens.
708
+ v [optional]: (batch_size, seqlen_new, nheads_k, headdim_v). Similar to k.
709
+ qv [optional]: (batch_size, seqlen, nheads, headdim_v)
710
+ rotary_cos [optional]: (seqlen_ro, rotary_dim / 2). If not None, we apply rotary embedding
711
+ to k and q. Only applicable if k and v are passed in. rotary_dim must be divisible by 16.
712
+ rotary_sin [optional]: (seqlen_ro, rotary_dim / 2). Similar to rotary_cos.
713
+ cache_seqlens: int, or (batch_size,), dtype torch.int32. The sequence lengths of the
714
+ KV cache.
715
+ cache_batch_idx: (batch_size,), dtype torch.int32. The indices used to index into the KV cache.
716
+ If None, we assume that the batch indices are [0, 1, 2, ..., batch_size - 1].
717
+ If the indices are not distinct, and k and v are provided, the values updated in the cache
718
+ might come from any of the duplicate indices.
719
+ cache_leftpad: (batch_size,), dtype torch.int32. The index that the KV cache starts. If None, assume 0.
720
+ page_table [optional]: (batch_size, max_num_blocks_per_seq), dtype torch.int32.
721
+ softmax_scale: float. The scaling of QK^T before applying softmax.
722
+ Default to 1 / sqrt(headdim).
723
+ causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
724
+ window_size: (left, right). If not (-1, -1), implements sliding window local attention.
725
+ softcap: float. Anything > 0 activates softcapping attention.
726
+ rotary_interleaved: bool. Only applicable if rotary_cos and rotary_sin are passed in.
727
+ If True, rotary embedding will combine dimensions 0 & 1, 2 & 3, etc. If False,
728
+ rotary embedding will combine dimensions 0 & rotary_dim / 2, 1 & rotary_dim / 2 + 1
729
+ (i.e. GPT-NeoX style).
730
+ num_splits: int. If > 1, split the key/value into this many chunks along the sequence.
731
+ If num_splits == 1, we don't split the key/value. If num_splits == 0, we use a heuristic
732
+ to automatically determine the number of splits.
733
+ Don't change this unless you know what you are doing.
734
+ return_softmax_lse: bool. Whether to return the logsumexp of the attention scores.
735
+
736
+ Return:
737
+ out: (batch_size, seqlen, nheads, headdim).
738
+ softmax_lse [optional, if return_softmax_lse=True]: (batch_size, nheads, seqlen). The
739
+ logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
740
+ normalization factor).
741
+ """
742
+ assert k_cache.stride(-1) == 1, "k_cache must have contiguous last dimension"
743
+ assert v_cache.stride(-1) == 1, "v_cache must have contiguous last dimension"
744
+ if softmax_scale is None:
745
+ softmax_scale = (q.shape[-1] + (qv.shape[-1] if qv is not None else 0)) ** (-0.5)
746
+ if cache_seqlens is not None and isinstance(cache_seqlens, int):
747
+ cache_seqlens = torch.full(
748
+ (k_cache.shape[0],), cache_seqlens, dtype=torch.int32, device=k_cache.device
749
+ )
750
+ cache_seqlens = maybe_contiguous(cache_seqlens)
751
+ out, softmax_lse, *rest = _flash_attn_forward(
752
+ q,
753
+ k_cache,
754
+ v_cache,
755
+ k,
756
+ v,
757
+ qv,
758
+ None, # out
759
+ cu_seqlens_q,
760
+ None, # cu_seqlens_k
761
+ cu_seqlens_k_new,
762
+ None, # seqused_q
763
+ cache_seqlens,
764
+ max_seqlen_q,
765
+ None, # max_seqlen_k
766
+ page_table,
767
+ cache_batch_idx,
768
+ cache_leftpad,
769
+ rotary_cos,
770
+ rotary_sin,
771
+ rotary_seqlens,
772
+ q_descale, k_descale, v_descale,
773
+ softmax_scale,
774
+ causal=causal,
775
+ window_size=window_size,
776
+ attention_chunk=attention_chunk,
777
+ softcap=softcap,
778
+ rotary_interleaved=rotary_interleaved,
779
+ scheduler_metadata=scheduler_metadata,
780
+ num_splits=num_splits,
781
+ pack_gqa=pack_gqa,
782
+ sm_margin=sm_margin,
783
+ )
784
+ # return (out, softmax_lse) if return_softmax_lse else out
785
+ return (out, softmax_lse, *rest) if return_softmax_lse else out
786
+
787
+
788
+ def get_scheduler_metadata(
789
+ batch_size, max_seqlen_q, max_seqlen_k, num_heads_q, num_heads_kv, headdim,
790
+ cache_seqlens: torch.Tensor,
791
+ qkv_dtype=torch.bfloat16,
792
+ headdim_v=None,
793
+ cu_seqlens_q: Optional[torch.Tensor] = None,
794
+ cu_seqlens_k_new: Optional[torch.Tensor] = None,
795
+ cache_leftpad: Optional[torch.Tensor] = None,
796
+ page_size: Optional[int] = None,
797
+ max_seqlen_k_new=0,
798
+ causal=False,
799
+ window_size=(-1, -1), # -1 means infinite context window
800
+ attention_chunk=0,
801
+ has_softcap=False,
802
+ num_splits=0, # Can be tuned for speed
803
+ pack_gqa=None, # Can be tuned for speed
804
+ sm_margin=0, # Can be tuned if some SMs are used for communication
805
+ ):
806
+ cache_seqlens = maybe_contiguous(cache_seqlens)
807
+ if headdim_v is None:
808
+ headdim_v = headdim
809
+ scheduler_metadata = flash_attn_3_cuda.get_scheduler_metadata(
810
+ batch_size, max_seqlen_q, max_seqlen_k, num_heads_q, num_heads_kv, headdim, headdim_v,
811
+ qkv_dtype,
812
+ cache_seqlens,
813
+ cu_seqlens_q,
814
+ None, # cu_seqlens_k
815
+ cu_seqlens_k_new,
816
+ None, # seqused_q
817
+ cache_leftpad,
818
+ page_size,
819
+ max_seqlen_k_new,
820
+ causal,
821
+ window_size[0], window_size[1],
822
+ attention_chunk,
823
+ has_softcap,
824
+ num_splits,
825
+ pack_gqa,
826
+ sm_margin,
827
+ )
828
+ return scheduler_metadata
build/torch27-cxx11-cu128-x86_64-linux/flash_attn3/__init__.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .flash_attn_interface import (
2
+ flash_attn_combine,
3
+ flash_attn_func,
4
+ flash_attn_qkvpacked_func,
5
+ flash_attn_varlen_func,
6
+ flash_attn_with_kvcache,
7
+ get_scheduler_metadata,
8
+ )
9
+
10
+ __all__ = [
11
+ "flash_attn_combine",
12
+ "flash_attn_func",
13
+ "flash_attn_qkvpacked_func",
14
+ "flash_attn_varlen_func",
15
+ "flash_attn_with_kvcache",
16
+ "get_scheduler_metadata",
17
+ ]
build/torch27-cxx11-cu128-x86_64-linux/flash_attn3/_flash_attn3_2e75662.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0302224ac29ba4773d926d4cb16c01c45a374c6dd61286aae1f423f2bf495ea
3
+ size 838459544
build/torch27-cxx11-cu128-x86_64-linux/flash_attn3/_ops.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from . import _flash_attn3_2e75662
3
+ ops = torch.ops._flash_attn3_2e75662
4
+
5
+ def add_op_namespace_prefix(op_name: str):
6
+ """
7
+ Prefix op by namespace.
8
+ """
9
+ return f"_flash_attn3_2e75662::{op_name}"
build/torch27-cxx11-cu128-x86_64-linux/flash_attn3/flash_attn_interface.py ADDED
@@ -0,0 +1,828 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023, Tri Dao.
2
+
3
+ from typing import Optional, Union
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+
8
+ from ._ops import ops as flash_attn_3_cuda
9
+
10
+ def maybe_contiguous(x):
11
+ return x.contiguous() if x is not None and x.stride(-1) != 1 else x
12
+
13
+
14
+ def _flash_attn_forward(
15
+ q,
16
+ k,
17
+ v,
18
+ k_new,
19
+ v_new,
20
+ qv,
21
+ out,
22
+ cu_seqlens_q,
23
+ cu_seqlens_k,
24
+ cu_seqlens_k_new,
25
+ seqused_q,
26
+ seqused_k,
27
+ max_seqlen_q,
28
+ max_seqlen_k,
29
+ page_table,
30
+ kv_batch_idx,
31
+ leftpad_k,
32
+ rotary_cos,
33
+ rotary_sin,
34
+ seqlens_rotary,
35
+ q_descale,
36
+ k_descale,
37
+ v_descale,
38
+ softmax_scale,
39
+ causal,
40
+ window_size=(-1, -1),
41
+ attention_chunk=0,
42
+ softcap=0.0,
43
+ rotary_interleaved=True,
44
+ scheduler_metadata=None,
45
+ num_splits=1,
46
+ pack_gqa=None,
47
+ sm_margin=0):
48
+ q, k, k_new, v_new = [maybe_contiguous(x) for x in (q, k, k_new, v_new)]
49
+ v = v.contiguous() if v.stride(-1) != 1 and v.stride(-3) != 1 else v
50
+ cu_seqlens_q, cu_seqlens_k, cu_seqlens_k_new = [
51
+ maybe_contiguous(x) for x in (cu_seqlens_q, cu_seqlens_k, cu_seqlens_k_new)
52
+ ]
53
+ seqused_q, seqused_k = [maybe_contiguous(x) for x in (seqused_q, seqused_k)]
54
+ page_table, kv_batch_idx, leftpad_k = [
55
+ maybe_contiguous(x) for x in (page_table, kv_batch_idx, leftpad_k)
56
+ ]
57
+ rotary_cos, rotary_sin = [maybe_contiguous(x) for x in (rotary_cos, rotary_sin)]
58
+ seqlens_rotary = maybe_contiguous(seqlens_rotary)
59
+ out, softmax_lse, *rest = flash_attn_3_cuda.fwd(
60
+ q,
61
+ k,
62
+ v,
63
+ k_new,
64
+ v_new,
65
+ qv,
66
+ out,
67
+ cu_seqlens_q,
68
+ cu_seqlens_k,
69
+ cu_seqlens_k_new,
70
+ seqused_q,
71
+ seqused_k,
72
+ max_seqlen_q,
73
+ max_seqlen_k,
74
+ page_table,
75
+ kv_batch_idx,
76
+ leftpad_k,
77
+ rotary_cos,
78
+ rotary_sin,
79
+ seqlens_rotary,
80
+ q_descale,
81
+ k_descale,
82
+ v_descale,
83
+ softmax_scale,
84
+ causal,
85
+ window_size[0],
86
+ window_size[1],
87
+ attention_chunk,
88
+ softcap,
89
+ rotary_interleaved,
90
+ scheduler_metadata,
91
+ num_splits,
92
+ pack_gqa,
93
+ sm_margin,
94
+ )
95
+ return out, softmax_lse, *rest
96
+
97
+
98
+ def _flash_attn_backward(
99
+ dout,
100
+ q,
101
+ k,
102
+ v,
103
+ out,
104
+ softmax_lse,
105
+ cu_seqlens_q,
106
+ cu_seqlens_k,
107
+ sequed_q,
108
+ sequed_k,
109
+ max_seqlen_q,
110
+ max_seqlen_k,
111
+ dq,
112
+ dk,
113
+ dv,
114
+ softmax_scale,
115
+ causal,
116
+ window_size=(-1, -1),
117
+ softcap=0.0,
118
+ deterministic=False,
119
+ sm_margin=0,
120
+ ):
121
+ # dq, dk, dv are allocated by us so they should already be contiguous
122
+ dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
123
+ dq, dk, dv, softmax_d, *rest = flash_attn_3_cuda.bwd(
124
+ dout,
125
+ q,
126
+ k,
127
+ v,
128
+ out,
129
+ softmax_lse,
130
+ dq,
131
+ dk,
132
+ dv,
133
+ cu_seqlens_q,
134
+ cu_seqlens_k,
135
+ sequed_q,
136
+ sequed_k,
137
+ max_seqlen_q,
138
+ max_seqlen_k,
139
+ softmax_scale,
140
+ causal,
141
+ window_size[0],
142
+ window_size[1],
143
+ softcap,
144
+ deterministic,
145
+ sm_margin,
146
+ )
147
+ return dq, dk, dv, softmax_d
148
+
149
+
150
+ class FlashAttnQKVPackedFunc(torch.autograd.Function):
151
+ @staticmethod
152
+ def forward(
153
+ ctx,
154
+ qkv,
155
+ softmax_scale,
156
+ causal,
157
+ q_descale=None, k_descale=None, v_descale=None,
158
+ window_size=(-1, -1),
159
+ attention_chunk=0,
160
+ softcap=0.0,
161
+ deterministic=False,
162
+ num_heads_q=None,
163
+ sm_margin=0,
164
+ ):
165
+ if softmax_scale is None:
166
+ softmax_scale = qkv.shape[-1] ** (-0.5)
167
+ if qkv.dim() == 5:
168
+ assert qkv.shape[-3] == 3
169
+ q, k, v = qkv.unbind(dim=-3)
170
+ else:
171
+ assert qkv.dim() == 4
172
+ assert num_heads_q is not None
173
+ num_heads_k = (qkv.shape[2] - num_heads_q) // 2
174
+ assert num_heads_k * 2 + num_heads_q == qkv.shape[2]
175
+ q, k, v = qkv.split([num_heads_q, num_heads_k, num_heads_k], dim=-2)
176
+ out, softmax_lse, *rest = _flash_attn_forward(
177
+ q,
178
+ k,
179
+ v,
180
+ None, None, # k_new, v_new
181
+ None, # qv
182
+ None, # out
183
+ None, None, None, # cu_seqlens_q/k/k_new
184
+ None, None, # seqused_q/k
185
+ None, None, # max_seqlen_q/k
186
+ None, None, None, # page_table, kv_batch_idx, leftpad_k,
187
+ None, None, None, # rotary_cos/sin, seqlens_rotary
188
+ q_descale, k_descale, v_descale,
189
+ softmax_scale,
190
+ causal=causal,
191
+ window_size=window_size,
192
+ attention_chunk=attention_chunk,
193
+ softcap=softcap,
194
+ sm_margin=sm_margin,
195
+ )
196
+ # ctx.save_for_backward(q, k, v, out_padded, softmax_lse)
197
+ ctx.save_for_backward(q, k, v, out, softmax_lse)
198
+ ctx.softmax_scale = softmax_scale
199
+ ctx.causal = causal
200
+ ctx.window_size = window_size
201
+ ctx.attention_chunk = attention_chunk
202
+ ctx.softcap = softcap
203
+ ctx.deterministic = deterministic
204
+ ctx.ndim = qkv.dim()
205
+ ctx.sm_margin = sm_margin
206
+ # return out, softmax_lse
207
+ return out
208
+
209
+ @staticmethod
210
+ def backward(ctx, dout, *args):
211
+ q, k, v, out, softmax_lse = ctx.saved_tensors
212
+ assert ctx.attention_chunk == 0, "FA3 backward does not support attention_chunk"
213
+ if ctx.ndim == 5:
214
+ qkv_shape = q.shape[:-2] + (3, *q.shape[-2:])
215
+ dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device)
216
+ dq, dk, dv = dqkv.unbind(dim=-3)
217
+ else:
218
+ num_heads_q = q.shape[2]
219
+ num_heads_k = k.shape[2]
220
+ qkv_shape = q.shape[:-2] + (num_heads_q + num_heads_k * 2, *q.shape[-1:])
221
+ dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device)
222
+ dq, dk, dv = dqkv.split([num_heads_q, num_heads_k, num_heads_k], dim=-2)
223
+ _flash_attn_backward(
224
+ dout,
225
+ q,
226
+ k,
227
+ v,
228
+ out,
229
+ softmax_lse,
230
+ None, None, # cu_seqlens_q, cu_seqlens_k,
231
+ None, None, # sequed_q, sequed_k,
232
+ None, None, # max_seqlen_q, max_seqlen_k,
233
+ dq,
234
+ dk,
235
+ dv,
236
+ ctx.softmax_scale,
237
+ ctx.causal,
238
+ ctx.window_size,
239
+ ctx.softcap,
240
+ ctx.deterministic,
241
+ ctx.sm_margin,
242
+ )
243
+ dqkv = dqkv[..., : dout.shape[-1]] # We could have padded the head dimension
244
+ return dqkv, None, None, None, None, None, None, None, None, None, None, None
245
+
246
+
247
+ class FlashAttnFunc(torch.autograd.Function):
248
+
249
+ @staticmethod
250
+ def forward(
251
+ ctx,
252
+ q,
253
+ k,
254
+ v,
255
+ softmax_scale,
256
+ causal,
257
+ qv=None,
258
+ q_descale=None, k_descale=None, v_descale=None,
259
+ window_size=(-1, -1),
260
+ attention_chunk=0,
261
+ softcap=0.0,
262
+ num_splits=1,
263
+ pack_gqa=None,
264
+ deterministic=False,
265
+ sm_margin=0,
266
+ ):
267
+ if softmax_scale is None:
268
+ softmax_scale = (q.shape[-1] + (qv.shape[-1] if qv is not None else 0)) ** (-0.5)
269
+ # out, q, k, v, out_padded, softmax_lse = _flash_attn_forward(
270
+ out, softmax_lse, *rest = _flash_attn_forward(
271
+ q,
272
+ k,
273
+ v,
274
+ None, None, # k_new, v_new
275
+ qv, # qv
276
+ None, # out
277
+ None, None, None, # cu_seqlens_q/k/k_new
278
+ None, None, # seqused_q/k
279
+ None, None, # max_seqlen_q/k
280
+ None, None, None, # page_table, kv_batch_idx, leftpad_k,
281
+ None, None, None, # rotary_cos/sin, seqlens_rotary
282
+ q_descale, k_descale, v_descale,
283
+ softmax_scale,
284
+ causal=causal,
285
+ window_size=window_size,
286
+ attention_chunk=attention_chunk,
287
+ softcap=softcap,
288
+ num_splits=num_splits,
289
+ pack_gqa=pack_gqa,
290
+ sm_margin=sm_margin,
291
+ )
292
+ # ctx.save_for_backward(q, k, v, out_padded, softmax_lse)
293
+ ctx.save_for_backward(q, k, v, out, softmax_lse)
294
+ ctx.softmax_scale = softmax_scale
295
+ ctx.causal = causal
296
+ ctx.window_size = window_size
297
+ ctx.attention_chunk = attention_chunk
298
+ ctx.softcap = softcap
299
+ ctx.deterministic = deterministic
300
+ ctx.sm_margin = sm_margin
301
+ return out, softmax_lse
302
+
303
+ @staticmethod
304
+ def backward(ctx, dout, *args):
305
+ q, k, v, out, softmax_lse = ctx.saved_tensors
306
+ assert ctx.attention_chunk == 0, "FA3 backward does not support attention_chunk"
307
+ dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
308
+ _flash_attn_backward(
309
+ dout,
310
+ q,
311
+ k,
312
+ v,
313
+ out,
314
+ softmax_lse,
315
+ None, None, # cu_seqlens_q, cu_seqlens_k,
316
+ None, None, # sequed_q, sequed_k,
317
+ None, None, # max_seqlen_q, max_seqlen_k,
318
+ dq,
319
+ dk,
320
+ dv,
321
+ ctx.softmax_scale,
322
+ ctx.causal,
323
+ ctx.window_size,
324
+ ctx.softcap,
325
+ ctx.deterministic,
326
+ ctx.sm_margin,
327
+ )
328
+ dq = dq[..., : q.shape[-1]] # We could have padded the head dimension
329
+ dk = dk[..., : k.shape[-1]]
330
+ dv = dv[..., : v.shape[-1]]
331
+ return dq, dk, dv, None, None, None, None, None, None, None, None, None, None, None, None, None, None
332
+
333
+
334
+ class FlashAttnVarlenFunc(torch.autograd.Function):
335
+
336
+ @staticmethod
337
+ def forward(
338
+ ctx,
339
+ q,
340
+ k,
341
+ v,
342
+ cu_seqlens_q,
343
+ cu_seqlens_k,
344
+ seqused_q,
345
+ seqused_k,
346
+ max_seqlen_q,
347
+ max_seqlen_k,
348
+ softmax_scale,
349
+ causal,
350
+ qv=None,
351
+ q_descale=None, k_descale=None, v_descale=None,
352
+ window_size=(-1, -1),
353
+ attention_chunk=0,
354
+ softcap=0.0,
355
+ num_splits=1,
356
+ pack_gqa=None,
357
+ deterministic=False,
358
+ sm_margin=0,
359
+ ):
360
+ if softmax_scale is None:
361
+ softmax_scale = (q.shape[-1] + (qv.shape[-1] if qv is not None else 0)) ** (-0.5)
362
+ # out, q, k, v, out_padded, softmax_lse = _flash_attn_varlen_forward(
363
+ out, softmax_lse, *rest = _flash_attn_forward(
364
+ q,
365
+ k,
366
+ v,
367
+ None, None, # k_new, v_new
368
+ qv, # qv
369
+ None, # out
370
+ cu_seqlens_q,
371
+ cu_seqlens_k,
372
+ None, # cu_seqlens_k_new
373
+ seqused_q,
374
+ seqused_k,
375
+ max_seqlen_q,
376
+ max_seqlen_k,
377
+ None, None, None, # page_table, kv_batch_idx, leftpad_k,
378
+ None, None, None, # rotary_cos/sin, seqlens_rotary
379
+ q_descale, k_descale, v_descale,
380
+ softmax_scale,
381
+ causal=causal,
382
+ window_size=window_size,
383
+ attention_chunk=attention_chunk,
384
+ softcap=softcap,
385
+ num_splits=num_splits,
386
+ pack_gqa=pack_gqa,
387
+ sm_margin=sm_margin,
388
+ )
389
+ # ctx.save_for_backward(q, k, v, out_padded, softmax_lse, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k)
390
+ ctx.save_for_backward(q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k)
391
+ ctx.max_seqlen_q = max_seqlen_q
392
+ ctx.max_seqlen_k = max_seqlen_k
393
+ ctx.softmax_scale = softmax_scale
394
+ ctx.causal = causal
395
+ ctx.window_size = window_size
396
+ ctx.attention_chunk = attention_chunk
397
+ ctx.softcap = softcap
398
+ ctx.deterministic = deterministic
399
+ ctx.sm_margin = sm_margin
400
+ return out, softmax_lse
401
+
402
+ @staticmethod
403
+ def backward(ctx, dout, *args):
404
+ q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k = ctx.saved_tensors
405
+ assert ctx.attention_chunk == 0, "FA3 backward does not support attention_chunk"
406
+ dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
407
+ _flash_attn_backward(
408
+ dout,
409
+ q,
410
+ k,
411
+ v,
412
+ out,
413
+ softmax_lse,
414
+ cu_seqlens_q,
415
+ cu_seqlens_k,
416
+ seqused_q,
417
+ seqused_k,
418
+ ctx.max_seqlen_q,
419
+ ctx.max_seqlen_k,
420
+ dq,
421
+ dk,
422
+ dv,
423
+ ctx.softmax_scale,
424
+ ctx.causal,
425
+ ctx.window_size,
426
+ ctx.softcap,
427
+ ctx.deterministic,
428
+ ctx.sm_margin,
429
+ )
430
+ dq = dq[..., : q.shape[-1]] # We could have padded the head dimension
431
+ dk = dk[..., : k.shape[-1]]
432
+ dv = dv[..., : v.shape[-1]]
433
+ return dq, dk, dv, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None
434
+
435
+
436
+ def flash_attn_qkvpacked_func(
437
+ qkv,
438
+ softmax_scale=None,
439
+ causal=False,
440
+ q_descale=None, k_descale=None, v_descale=None,
441
+ window_size=(-1, -1),
442
+ attention_chunk=0,
443
+ softcap=0.0,
444
+ deterministic=False,
445
+ num_heads_q=None,
446
+ sm_margin=0,
447
+ ):
448
+ """dropout_p should be set to 0.0 during evaluation
449
+ If Q, K, V are already stacked into 1 tensor, this function will be faster than
450
+ calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
451
+ of the gradients of Q, K, V.
452
+ For multi-query and grouped-query attention (MQA/GQA), please see
453
+ flash_attn_kvpacked_func and flash_attn_func.
454
+
455
+ If window_size != (-1, -1), implements sliding window local attention. Query at position i
456
+ will only attend to keys between [i - window_size[0], i + window_size[1]] inclusive.
457
+
458
+ Arguments:
459
+ qkv: (batch_size, seqlen, 3, nheads, headdim)
460
+ dropout_p: float. Dropout probability.
461
+ softmax_scale: float. The scaling of QK^T before applying softmax.
462
+ Default to 1 / sqrt(headdim).
463
+ causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
464
+ window_size: (left, right). If not (-1, -1), implements sliding window local attention.
465
+ softcap: float. Anything > 0 activates softcapping attention.
466
+ alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of (-alibi_slope * |i - j|) is added to
467
+ the attention score of query i and key j.
468
+ deterministic: bool. Whether to use the deterministic implementation of the backward pass,
469
+ which is slightly slower and uses more memory. The forward pass is always deterministic.
470
+ return_attn_probs: bool. Whether to return the attention probabilities. This option is for
471
+ testing only. The returned probabilities are not guaranteed to be correct
472
+ (they might not have the right scaling).
473
+ Return:
474
+ out: (batch_size, seqlen, nheads, headdim).
475
+ softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
476
+ logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
477
+ normalization factor).
478
+ S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
479
+ The output of softmax (possibly with different scaling). It also encodes the dropout
480
+ pattern (negative means that location was dropped, nonnegative means it was kept).
481
+ """
482
+ return FlashAttnQKVPackedFunc.apply(
483
+ qkv,
484
+ softmax_scale,
485
+ causal,
486
+ q_descale, k_descale, v_descale,
487
+ window_size,
488
+ attention_chunk,
489
+ softcap,
490
+ deterministic,
491
+ num_heads_q,
492
+ sm_margin,
493
+ )
494
+
495
+
496
+ def flash_attn_func(
497
+ q,
498
+ k,
499
+ v,
500
+ softmax_scale=None,
501
+ causal=False,
502
+ qv=None,
503
+ q_descale=None, k_descale=None, v_descale=None,
504
+ window_size=(-1, -1),
505
+ attention_chunk=0,
506
+ softcap=0.0,
507
+ num_splits=1,
508
+ pack_gqa=None,
509
+ deterministic=False,
510
+ sm_margin=0,
511
+ ):
512
+ """dropout_p should be set to 0.0 during evaluation
513
+ Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
514
+ than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
515
+ For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
516
+ 0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
517
+
518
+ If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
519
+ For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
520
+ 1 1 1 1 0
521
+ 1 1 1 1 1
522
+ If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
523
+ 0 0
524
+ 0 0
525
+ 0 0
526
+ 1 0
527
+ 1 1
528
+ If the row of the mask is all zero, the output will be zero.
529
+
530
+ If window_size != (-1, -1), implements sliding window local attention. Query at position i
531
+ will only attend to keys between
532
+ [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
533
+
534
+ Arguments:
535
+ q: (batch_size, seqlen, nheads, headdim)
536
+ k: (batch_size, seqlen, nheads_k, headdim)
537
+ v: (batch_size, seqlen, nheads_k, headdim)
538
+ dropout_p: float. Dropout probability.
539
+ softmax_scale: float. The scaling of QK^T before applying softmax.
540
+ Default to 1 / sqrt(headdim).
541
+ causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
542
+ window_size: (left, right). If not (-1, -1), implements sliding window local attention.
543
+ alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
544
+ (-alibi_slope * |i + seqlen_k - seqlen_q - j|)
545
+ is added to the attention score of query i and key j.
546
+ deterministic: bool. Whether to use the deterministic implementation of the backward pass,
547
+ which is slightly slower and uses more memory. The forward pass is always deterministic.
548
+ return_attn_probs: bool. Whether to return the attention probabilities. This option is for
549
+ testing only. The returned probabilities are not guaranteed to be correct
550
+ (they might not have the right scaling).
551
+ Return:
552
+ out: (batch_size, seqlen, nheads, headdim).
553
+ softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
554
+ logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
555
+ normalization factor).
556
+ """
557
+ return FlashAttnFunc.apply(
558
+ q,
559
+ k,
560
+ v,
561
+ softmax_scale,
562
+ causal,
563
+ qv,
564
+ q_descale, k_descale, v_descale,
565
+ window_size,
566
+ attention_chunk,
567
+ softcap,
568
+ num_splits,
569
+ pack_gqa,
570
+ deterministic,
571
+ sm_margin,
572
+ )
573
+
574
+
575
+ def flash_attn_varlen_func(
576
+ q,
577
+ k,
578
+ v,
579
+ cu_seqlens_q,
580
+ cu_seqlens_k,
581
+ max_seqlen_q,
582
+ max_seqlen_k,
583
+ seqused_q=None,
584
+ seqused_k=None,
585
+ softmax_scale=None,
586
+ causal=False,
587
+ qv=None,
588
+ q_descale=None, k_descale=None, v_descale=None,
589
+ window_size=(-1, -1),
590
+ attention_chunk=0,
591
+ softcap=0.0,
592
+ num_splits=1,
593
+ pack_gqa=None,
594
+ deterministic=False,
595
+ sm_margin=0,
596
+ ):
597
+ return FlashAttnVarlenFunc.apply(
598
+ q,
599
+ k,
600
+ v,
601
+ cu_seqlens_q,
602
+ cu_seqlens_k,
603
+ seqused_q,
604
+ seqused_k,
605
+ max_seqlen_q,
606
+ max_seqlen_k,
607
+ softmax_scale,
608
+ causal,
609
+ qv,
610
+ q_descale, k_descale, v_descale,
611
+ window_size,
612
+ attention_chunk,
613
+ softcap,
614
+ num_splits,
615
+ pack_gqa,
616
+ deterministic,
617
+ sm_margin,
618
+ )
619
+
620
+
621
+ def flash_attn_combine(out_partial, lse_partial, out=None, out_dtype=None):
622
+ return flash_attn_3_cuda.fwd_combine(out_partial, lse_partial, out, out_dtype)
623
+
624
+
625
+ def flash_attn_with_kvcache(
626
+ q,
627
+ k_cache,
628
+ v_cache,
629
+ k=None,
630
+ v=None,
631
+ qv=None,
632
+ rotary_cos=None,
633
+ rotary_sin=None,
634
+ cache_seqlens: Optional[Union[(int, torch.Tensor)]] = None,
635
+ cache_batch_idx: Optional[torch.Tensor] = None,
636
+ cache_leftpad: Optional[torch.Tensor] = None,
637
+ page_table: Optional[torch.Tensor] = None,
638
+ cu_seqlens_q: Optional[torch.Tensor] = None,
639
+ cu_seqlens_k_new: Optional[torch.Tensor] = None,
640
+ max_seqlen_q: Optional[int] = None,
641
+ rotary_seqlens: Optional[torch.Tensor] = None,
642
+ q_descale: Optional[torch.Tensor] = None,
643
+ k_descale: Optional[torch.Tensor] = None,
644
+ v_descale: Optional[torch.Tensor] = None,
645
+ softmax_scale=None,
646
+ causal=False,
647
+ window_size=(-1, -1), # -1 means infinite context window
648
+ attention_chunk=0,
649
+ softcap=0.0, # 0.0 means deactivated
650
+ rotary_interleaved=True,
651
+ scheduler_metadata=None,
652
+ num_splits=0, # Can be tuned for speed
653
+ pack_gqa=None, # Can be tuned for speed
654
+ sm_margin=0, # Can be tuned if some SMs are used for communication
655
+ return_softmax_lse=False,
656
+ ):
657
+ """
658
+ If k and v are not None, k_cache and v_cache will be updated *inplace* with the new values from
659
+ k and v. This is useful for incremental decoding: you can pass in the cached keys/values from
660
+ the previous step, and update them with the new keys/values from the current step, and do
661
+ attention with the updated cache, all in 1 kernel.
662
+
663
+ If you pass in k / v, you must make sure that the cache is large enough to hold the new values.
664
+ For example, the KV cache could be pre-allocated with the max sequence length, and you can use
665
+ cache_seqlens to keep track of the current sequence lengths of each sequence in the batch.
666
+
667
+ Also apply rotary embedding if rotary_cos and rotary_sin are passed in. The key @k will be
668
+ rotated by rotary_cos and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.
669
+ If causal or local (i.e., window_size != (-1, -1)), the query @q will be rotated by rotary_cos
670
+ and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.
671
+ If not causal and not local, the query @q will be rotated by rotary_cos and rotary_sin at
672
+ indices cache_seqlens only (i.e. we consider all tokens in @q to be at position cache_seqlens).
673
+
674
+ See tests/test_flash_attn.py::test_flash_attn_kvcache for examples of how to use this function.
675
+
676
+ Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
677
+ than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
678
+ For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
679
+ 0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
680
+
681
+ If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
682
+ For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
683
+ 1 1 1 1 0
684
+ 1 1 1 1 1
685
+ If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
686
+ 0 0
687
+ 0 0
688
+ 0 0
689
+ 1 0
690
+ 1 1
691
+ If the row of the mask is all zero, the output will be zero.
692
+
693
+ If window_size != (-1, -1), implements sliding window local attention. Query at position i
694
+ will only attend to keys between
695
+ [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
696
+
697
+ Note: Does not support backward pass.
698
+
699
+ Arguments:
700
+ q: (batch_size, seqlen, nheads, headdim)
701
+ k_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim) if there's no page_table,
702
+ or (num_blocks, page_block_size, nheads_k, headdim) if there's a page_table (i.e. paged KV cache)
703
+ page_block_size must be a multiple of 256.
704
+ v_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim_v) if there's no page_table,
705
+ or (num_blocks, page_block_size, nheads_k, headdim_v) if there's a page_table (i.e. paged KV cache)
706
+ k [optional]: (batch_size, seqlen_new, nheads_k, headdim). If not None, we concatenate
707
+ k with k_cache, starting at the indices specified by cache_seqlens.
708
+ v [optional]: (batch_size, seqlen_new, nheads_k, headdim_v). Similar to k.
709
+ qv [optional]: (batch_size, seqlen, nheads, headdim_v)
710
+ rotary_cos [optional]: (seqlen_ro, rotary_dim / 2). If not None, we apply rotary embedding
711
+ to k and q. Only applicable if k and v are passed in. rotary_dim must be divisible by 16.
712
+ rotary_sin [optional]: (seqlen_ro, rotary_dim / 2). Similar to rotary_cos.
713
+ cache_seqlens: int, or (batch_size,), dtype torch.int32. The sequence lengths of the
714
+ KV cache.
715
+ cache_batch_idx: (batch_size,), dtype torch.int32. The indices used to index into the KV cache.
716
+ If None, we assume that the batch indices are [0, 1, 2, ..., batch_size - 1].
717
+ If the indices are not distinct, and k and v are provided, the values updated in the cache
718
+ might come from any of the duplicate indices.
719
+ cache_leftpad: (batch_size,), dtype torch.int32. The index that the KV cache starts. If None, assume 0.
720
+ page_table [optional]: (batch_size, max_num_blocks_per_seq), dtype torch.int32.
721
+ softmax_scale: float. The scaling of QK^T before applying softmax.
722
+ Default to 1 / sqrt(headdim).
723
+ causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
724
+ window_size: (left, right). If not (-1, -1), implements sliding window local attention.
725
+ softcap: float. Anything > 0 activates softcapping attention.
726
+ rotary_interleaved: bool. Only applicable if rotary_cos and rotary_sin are passed in.
727
+ If True, rotary embedding will combine dimensions 0 & 1, 2 & 3, etc. If False,
728
+ rotary embedding will combine dimensions 0 & rotary_dim / 2, 1 & rotary_dim / 2 + 1
729
+ (i.e. GPT-NeoX style).
730
+ num_splits: int. If > 1, split the key/value into this many chunks along the sequence.
731
+ If num_splits == 1, we don't split the key/value. If num_splits == 0, we use a heuristic
732
+ to automatically determine the number of splits.
733
+ Don't change this unless you know what you are doing.
734
+ return_softmax_lse: bool. Whether to return the logsumexp of the attention scores.
735
+
736
+ Return:
737
+ out: (batch_size, seqlen, nheads, headdim).
738
+ softmax_lse [optional, if return_softmax_lse=True]: (batch_size, nheads, seqlen). The
739
+ logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
740
+ normalization factor).
741
+ """
742
+ assert k_cache.stride(-1) == 1, "k_cache must have contiguous last dimension"
743
+ assert v_cache.stride(-1) == 1, "v_cache must have contiguous last dimension"
744
+ if softmax_scale is None:
745
+ softmax_scale = (q.shape[-1] + (qv.shape[-1] if qv is not None else 0)) ** (-0.5)
746
+ if cache_seqlens is not None and isinstance(cache_seqlens, int):
747
+ cache_seqlens = torch.full(
748
+ (k_cache.shape[0],), cache_seqlens, dtype=torch.int32, device=k_cache.device
749
+ )
750
+ cache_seqlens = maybe_contiguous(cache_seqlens)
751
+ out, softmax_lse, *rest = _flash_attn_forward(
752
+ q,
753
+ k_cache,
754
+ v_cache,
755
+ k,
756
+ v,
757
+ qv,
758
+ None, # out
759
+ cu_seqlens_q,
760
+ None, # cu_seqlens_k
761
+ cu_seqlens_k_new,
762
+ None, # seqused_q
763
+ cache_seqlens,
764
+ max_seqlen_q,
765
+ None, # max_seqlen_k
766
+ page_table,
767
+ cache_batch_idx,
768
+ cache_leftpad,
769
+ rotary_cos,
770
+ rotary_sin,
771
+ rotary_seqlens,
772
+ q_descale, k_descale, v_descale,
773
+ softmax_scale,
774
+ causal=causal,
775
+ window_size=window_size,
776
+ attention_chunk=attention_chunk,
777
+ softcap=softcap,
778
+ rotary_interleaved=rotary_interleaved,
779
+ scheduler_metadata=scheduler_metadata,
780
+ num_splits=num_splits,
781
+ pack_gqa=pack_gqa,
782
+ sm_margin=sm_margin,
783
+ )
784
+ # return (out, softmax_lse) if return_softmax_lse else out
785
+ return (out, softmax_lse, *rest) if return_softmax_lse else out
786
+
787
+
788
+ def get_scheduler_metadata(
789
+ batch_size, max_seqlen_q, max_seqlen_k, num_heads_q, num_heads_kv, headdim,
790
+ cache_seqlens: torch.Tensor,
791
+ qkv_dtype=torch.bfloat16,
792
+ headdim_v=None,
793
+ cu_seqlens_q: Optional[torch.Tensor] = None,
794
+ cu_seqlens_k_new: Optional[torch.Tensor] = None,
795
+ cache_leftpad: Optional[torch.Tensor] = None,
796
+ page_size: Optional[int] = None,
797
+ max_seqlen_k_new=0,
798
+ causal=False,
799
+ window_size=(-1, -1), # -1 means infinite context window
800
+ attention_chunk=0,
801
+ has_softcap=False,
802
+ num_splits=0, # Can be tuned for speed
803
+ pack_gqa=None, # Can be tuned for speed
804
+ sm_margin=0, # Can be tuned if some SMs are used for communication
805
+ ):
806
+ cache_seqlens = maybe_contiguous(cache_seqlens)
807
+ if headdim_v is None:
808
+ headdim_v = headdim
809
+ scheduler_metadata = flash_attn_3_cuda.get_scheduler_metadata(
810
+ batch_size, max_seqlen_q, max_seqlen_k, num_heads_q, num_heads_kv, headdim, headdim_v,
811
+ qkv_dtype,
812
+ cache_seqlens,
813
+ cu_seqlens_q,
814
+ None, # cu_seqlens_k
815
+ cu_seqlens_k_new,
816
+ None, # seqused_q
817
+ cache_leftpad,
818
+ page_size,
819
+ max_seqlen_k_new,
820
+ causal,
821
+ window_size[0], window_size[1],
822
+ attention_chunk,
823
+ has_softcap,
824
+ num_splits,
825
+ pack_gqa,
826
+ sm_margin,
827
+ )
828
+ return scheduler_metadata