Build (aarch64)
Browse files- build/torch26-cxx11-cu126-aarch64-linux/paged_attention/__init__.py +21 -0
- build/torch26-cxx11-cu126-aarch64-linux/paged_attention/_custom_ops.py +173 -0
- build/torch26-cxx11-cu126-aarch64-linux/paged_attention/_ops.py +9 -0
- build/torch26-cxx11-cu126-aarch64-linux/paged_attention/_paged_attention_dde9676.abi3.so +3 -0
- build/torch26-cxx11-cu126-aarch64-linux/paged_attention/platforms.py +62 -0
- build/torch26-cxx98-cu126-aarch64-linux/paged_attention/__init__.py +21 -0
- build/torch26-cxx98-cu126-aarch64-linux/paged_attention/_custom_ops.py +173 -0
- build/torch26-cxx98-cu126-aarch64-linux/paged_attention/_ops.py +9 -0
- build/torch26-cxx98-cu126-aarch64-linux/paged_attention/_paged_attention_dde9676.abi3.so +3 -0
- build/torch26-cxx98-cu126-aarch64-linux/paged_attention/platforms.py +62 -0
- build/torch27-cxx11-cu126-aarch64-linux/paged_attention/__init__.py +21 -0
- build/torch27-cxx11-cu126-aarch64-linux/paged_attention/_custom_ops.py +173 -0
- build/torch27-cxx11-cu126-aarch64-linux/paged_attention/_ops.py +9 -0
- build/torch27-cxx11-cu126-aarch64-linux/paged_attention/_paged_attention_dde9676.abi3.so +3 -0
- build/torch27-cxx11-cu126-aarch64-linux/paged_attention/platforms.py +62 -0
- build/torch27-cxx11-cu128-aarch64-linux/paged_attention/__init__.py +21 -0
- build/torch27-cxx11-cu128-aarch64-linux/paged_attention/_custom_ops.py +173 -0
- build/torch27-cxx11-cu128-aarch64-linux/paged_attention/_ops.py +9 -0
- build/torch27-cxx11-cu128-aarch64-linux/paged_attention/_paged_attention_dde9676.abi3.so +3 -0
- build/torch27-cxx11-cu128-aarch64-linux/paged_attention/platforms.py +62 -0
build/torch26-cxx11-cu126-aarch64-linux/paged_attention/__init__.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ._custom_ops import (
|
2 |
+
convert_fp8,
|
3 |
+
copy_blocks,
|
4 |
+
paged_attention_v1,
|
5 |
+
paged_attention_v2,
|
6 |
+
reshape_and_cache,
|
7 |
+
reshape_and_cache_flash,
|
8 |
+
swap_blocks,
|
9 |
+
)
|
10 |
+
from ._ops import ops
|
11 |
+
|
12 |
+
__all__ = [
|
13 |
+
"convert_fp8",
|
14 |
+
"copy_blocks",
|
15 |
+
"ops",
|
16 |
+
"paged_attention_v1",
|
17 |
+
"paged_attention_v2",
|
18 |
+
"reshape_and_cache",
|
19 |
+
"reshape_and_cache_flash",
|
20 |
+
"swap_blocks",
|
21 |
+
]
|
build/torch26-cxx11-cu126-aarch64-linux/paged_attention/_custom_ops.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from ._ops import ops
|
6 |
+
|
7 |
+
|
8 |
+
# page attention ops
|
9 |
+
def paged_attention_v1(
|
10 |
+
out: torch.Tensor,
|
11 |
+
query: torch.Tensor,
|
12 |
+
key_cache: torch.Tensor,
|
13 |
+
value_cache: torch.Tensor,
|
14 |
+
num_kv_heads: int,
|
15 |
+
scale: float,
|
16 |
+
block_tables: torch.Tensor,
|
17 |
+
seq_lens: torch.Tensor,
|
18 |
+
block_size: int,
|
19 |
+
max_seq_len: int,
|
20 |
+
alibi_slopes: Optional[torch.Tensor],
|
21 |
+
kv_cache_dtype: str,
|
22 |
+
k_scale: float,
|
23 |
+
v_scale: float,
|
24 |
+
tp_rank: int = 0,
|
25 |
+
blocksparse_local_blocks: int = 0,
|
26 |
+
blocksparse_vert_stride: int = 0,
|
27 |
+
blocksparse_block_size: int = 64,
|
28 |
+
blocksparse_head_sliding_step: int = 0,
|
29 |
+
) -> None:
|
30 |
+
ops.paged_attention_v1(
|
31 |
+
out,
|
32 |
+
query,
|
33 |
+
key_cache,
|
34 |
+
value_cache,
|
35 |
+
num_kv_heads,
|
36 |
+
scale,
|
37 |
+
block_tables,
|
38 |
+
seq_lens,
|
39 |
+
block_size,
|
40 |
+
max_seq_len,
|
41 |
+
alibi_slopes,
|
42 |
+
kv_cache_dtype,
|
43 |
+
k_scale,
|
44 |
+
v_scale,
|
45 |
+
tp_rank,
|
46 |
+
blocksparse_local_blocks,
|
47 |
+
blocksparse_vert_stride,
|
48 |
+
blocksparse_block_size,
|
49 |
+
blocksparse_head_sliding_step,
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
def paged_attention_v2(
|
54 |
+
out: torch.Tensor,
|
55 |
+
exp_sum: torch.Tensor,
|
56 |
+
max_logits: torch.Tensor,
|
57 |
+
tmp_out: torch.Tensor,
|
58 |
+
query: torch.Tensor,
|
59 |
+
key_cache: torch.Tensor,
|
60 |
+
value_cache: torch.Tensor,
|
61 |
+
num_kv_heads: int,
|
62 |
+
scale: float,
|
63 |
+
block_tables: torch.Tensor,
|
64 |
+
seq_lens: torch.Tensor,
|
65 |
+
block_size: int,
|
66 |
+
max_seq_len: int,
|
67 |
+
alibi_slopes: Optional[torch.Tensor],
|
68 |
+
kv_cache_dtype: str,
|
69 |
+
k_scale: float,
|
70 |
+
v_scale: float,
|
71 |
+
tp_rank: int = 0,
|
72 |
+
blocksparse_local_blocks: int = 0,
|
73 |
+
blocksparse_vert_stride: int = 0,
|
74 |
+
blocksparse_block_size: int = 64,
|
75 |
+
blocksparse_head_sliding_step: int = 0,
|
76 |
+
) -> None:
|
77 |
+
ops.paged_attention_v2(
|
78 |
+
out,
|
79 |
+
exp_sum,
|
80 |
+
max_logits,
|
81 |
+
tmp_out,
|
82 |
+
query,
|
83 |
+
key_cache,
|
84 |
+
value_cache,
|
85 |
+
num_kv_heads,
|
86 |
+
scale,
|
87 |
+
block_tables,
|
88 |
+
seq_lens,
|
89 |
+
block_size,
|
90 |
+
max_seq_len,
|
91 |
+
alibi_slopes,
|
92 |
+
kv_cache_dtype,
|
93 |
+
k_scale,
|
94 |
+
v_scale,
|
95 |
+
tp_rank,
|
96 |
+
blocksparse_local_blocks,
|
97 |
+
blocksparse_vert_stride,
|
98 |
+
blocksparse_block_size,
|
99 |
+
blocksparse_head_sliding_step,
|
100 |
+
)
|
101 |
+
|
102 |
+
|
103 |
+
def reshape_and_cache(
|
104 |
+
key: torch.Tensor,
|
105 |
+
value: torch.Tensor,
|
106 |
+
key_cache: torch.Tensor,
|
107 |
+
value_cache: torch.Tensor,
|
108 |
+
slot_mapping: torch.Tensor,
|
109 |
+
kv_cache_dtype: str,
|
110 |
+
k_scale: float,
|
111 |
+
v_scale: float,
|
112 |
+
) -> None:
|
113 |
+
ops.reshape_and_cache(
|
114 |
+
key,
|
115 |
+
value,
|
116 |
+
key_cache,
|
117 |
+
value_cache,
|
118 |
+
slot_mapping,
|
119 |
+
kv_cache_dtype,
|
120 |
+
k_scale,
|
121 |
+
v_scale,
|
122 |
+
)
|
123 |
+
|
124 |
+
|
125 |
+
def reshape_and_cache_flash(
|
126 |
+
key: torch.Tensor,
|
127 |
+
value: torch.Tensor,
|
128 |
+
key_cache: torch.Tensor,
|
129 |
+
value_cache: torch.Tensor,
|
130 |
+
slot_mapping: torch.Tensor,
|
131 |
+
kv_cache_dtype: str,
|
132 |
+
k_scale: torch.Tensor,
|
133 |
+
v_scale: torch.Tensor,
|
134 |
+
) -> None:
|
135 |
+
ops.reshape_and_cache_flash(
|
136 |
+
key,
|
137 |
+
value,
|
138 |
+
key_cache,
|
139 |
+
value_cache,
|
140 |
+
slot_mapping,
|
141 |
+
kv_cache_dtype,
|
142 |
+
k_scale,
|
143 |
+
v_scale,
|
144 |
+
)
|
145 |
+
|
146 |
+
|
147 |
+
def copy_blocks(
|
148 |
+
key_caches: List[torch.Tensor],
|
149 |
+
value_caches: List[torch.Tensor],
|
150 |
+
block_mapping: torch.Tensor,
|
151 |
+
) -> None:
|
152 |
+
ops.copy_blocks(key_caches, value_caches, block_mapping)
|
153 |
+
|
154 |
+
|
155 |
+
def swap_blocks(
|
156 |
+
src: torch.Tensor, dst: torch.Tensor, block_mapping: torch.Tensor
|
157 |
+
) -> None:
|
158 |
+
ops.swap_blocks(src, dst, block_mapping)
|
159 |
+
|
160 |
+
|
161 |
+
def convert_fp8(
|
162 |
+
output: torch.Tensor, input: torch.Tensor, scale: float = 1.0, kv_dtype: str = "fp8"
|
163 |
+
) -> None:
|
164 |
+
ops.convert_fp8(output, input, scale, kv_dtype)
|
165 |
+
|
166 |
+
|
167 |
+
__all__ = [
|
168 |
+
"convert_fp8",
|
169 |
+
"paged_attention_v1",
|
170 |
+
"paged_attention_v2",
|
171 |
+
"reshape_and_cache",
|
172 |
+
"copy_blocks",
|
173 |
+
]
|
build/torch26-cxx11-cu126-aarch64-linux/paged_attention/_ops.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from . import _paged_attention_dde9676
|
3 |
+
ops = torch.ops._paged_attention_dde9676
|
4 |
+
|
5 |
+
def add_op_namespace_prefix(op_name: str):
|
6 |
+
"""
|
7 |
+
Prefix op by namespace.
|
8 |
+
"""
|
9 |
+
return f"_paged_attention_dde9676::{op_name}"
|
build/torch26-cxx11-cu126-aarch64-linux/paged_attention/_paged_attention_dde9676.abi3.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b58e9a829c6f648f5dae9dfd29db85c3bceef48d6de3cc55861262343205c44b
|
3 |
+
size 75255256
|
build/torch26-cxx11-cu126-aarch64-linux/paged_attention/platforms.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
from abc import ABC, abstractmethod
|
4 |
+
from functools import lru_cache, wraps
|
5 |
+
from typing import Callable, ParamSpec, TypeVar
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
|
10 |
+
IS_ROCM = torch.version.hip is not None
|
11 |
+
|
12 |
+
|
13 |
+
class Platform(ABC):
|
14 |
+
@classmethod
|
15 |
+
def seed_everything(cls, seed: int) -> None:
|
16 |
+
"""
|
17 |
+
Set the seed of each random module.
|
18 |
+
`torch.manual_seed` will set seed on all devices.
|
19 |
+
|
20 |
+
Loosely based on: https://github.com/Lightning-AI/pytorch-lightning/blob/2.4.0/src/lightning/fabric/utilities/seed.py#L20
|
21 |
+
"""
|
22 |
+
random.seed(seed)
|
23 |
+
np.random.seed(seed)
|
24 |
+
torch.manual_seed(seed)
|
25 |
+
|
26 |
+
@abstractmethod
|
27 |
+
def get_device_name(self, device_id: int = 0) -> str: ...
|
28 |
+
|
29 |
+
@abstractmethod
|
30 |
+
def is_cuda(self) -> bool: ...
|
31 |
+
|
32 |
+
@abstractmethod
|
33 |
+
def is_rocm(self) -> bool: ...
|
34 |
+
|
35 |
+
|
36 |
+
class CudaPlatform(Platform):
|
37 |
+
@classmethod
|
38 |
+
@lru_cache(maxsize=8)
|
39 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
40 |
+
return torch.cuda.get_device_name(0)
|
41 |
+
|
42 |
+
def is_cuda(self) -> bool:
|
43 |
+
return True
|
44 |
+
|
45 |
+
def is_rocm(self) -> bool:
|
46 |
+
return False
|
47 |
+
|
48 |
+
|
49 |
+
class RocmPlatform(Platform):
|
50 |
+
@classmethod
|
51 |
+
@lru_cache(maxsize=8)
|
52 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
53 |
+
return torch.cuda.get_device_name(device_id)
|
54 |
+
|
55 |
+
def is_cuda(self) -> bool:
|
56 |
+
return False
|
57 |
+
|
58 |
+
def is_rocm(self) -> bool:
|
59 |
+
return True
|
60 |
+
|
61 |
+
|
62 |
+
current_platform = RocmPlatform() if IS_ROCM else CudaPlatform()
|
build/torch26-cxx98-cu126-aarch64-linux/paged_attention/__init__.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ._custom_ops import (
|
2 |
+
convert_fp8,
|
3 |
+
copy_blocks,
|
4 |
+
paged_attention_v1,
|
5 |
+
paged_attention_v2,
|
6 |
+
reshape_and_cache,
|
7 |
+
reshape_and_cache_flash,
|
8 |
+
swap_blocks,
|
9 |
+
)
|
10 |
+
from ._ops import ops
|
11 |
+
|
12 |
+
__all__ = [
|
13 |
+
"convert_fp8",
|
14 |
+
"copy_blocks",
|
15 |
+
"ops",
|
16 |
+
"paged_attention_v1",
|
17 |
+
"paged_attention_v2",
|
18 |
+
"reshape_and_cache",
|
19 |
+
"reshape_and_cache_flash",
|
20 |
+
"swap_blocks",
|
21 |
+
]
|
build/torch26-cxx98-cu126-aarch64-linux/paged_attention/_custom_ops.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from ._ops import ops
|
6 |
+
|
7 |
+
|
8 |
+
# page attention ops
|
9 |
+
def paged_attention_v1(
|
10 |
+
out: torch.Tensor,
|
11 |
+
query: torch.Tensor,
|
12 |
+
key_cache: torch.Tensor,
|
13 |
+
value_cache: torch.Tensor,
|
14 |
+
num_kv_heads: int,
|
15 |
+
scale: float,
|
16 |
+
block_tables: torch.Tensor,
|
17 |
+
seq_lens: torch.Tensor,
|
18 |
+
block_size: int,
|
19 |
+
max_seq_len: int,
|
20 |
+
alibi_slopes: Optional[torch.Tensor],
|
21 |
+
kv_cache_dtype: str,
|
22 |
+
k_scale: float,
|
23 |
+
v_scale: float,
|
24 |
+
tp_rank: int = 0,
|
25 |
+
blocksparse_local_blocks: int = 0,
|
26 |
+
blocksparse_vert_stride: int = 0,
|
27 |
+
blocksparse_block_size: int = 64,
|
28 |
+
blocksparse_head_sliding_step: int = 0,
|
29 |
+
) -> None:
|
30 |
+
ops.paged_attention_v1(
|
31 |
+
out,
|
32 |
+
query,
|
33 |
+
key_cache,
|
34 |
+
value_cache,
|
35 |
+
num_kv_heads,
|
36 |
+
scale,
|
37 |
+
block_tables,
|
38 |
+
seq_lens,
|
39 |
+
block_size,
|
40 |
+
max_seq_len,
|
41 |
+
alibi_slopes,
|
42 |
+
kv_cache_dtype,
|
43 |
+
k_scale,
|
44 |
+
v_scale,
|
45 |
+
tp_rank,
|
46 |
+
blocksparse_local_blocks,
|
47 |
+
blocksparse_vert_stride,
|
48 |
+
blocksparse_block_size,
|
49 |
+
blocksparse_head_sliding_step,
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
def paged_attention_v2(
|
54 |
+
out: torch.Tensor,
|
55 |
+
exp_sum: torch.Tensor,
|
56 |
+
max_logits: torch.Tensor,
|
57 |
+
tmp_out: torch.Tensor,
|
58 |
+
query: torch.Tensor,
|
59 |
+
key_cache: torch.Tensor,
|
60 |
+
value_cache: torch.Tensor,
|
61 |
+
num_kv_heads: int,
|
62 |
+
scale: float,
|
63 |
+
block_tables: torch.Tensor,
|
64 |
+
seq_lens: torch.Tensor,
|
65 |
+
block_size: int,
|
66 |
+
max_seq_len: int,
|
67 |
+
alibi_slopes: Optional[torch.Tensor],
|
68 |
+
kv_cache_dtype: str,
|
69 |
+
k_scale: float,
|
70 |
+
v_scale: float,
|
71 |
+
tp_rank: int = 0,
|
72 |
+
blocksparse_local_blocks: int = 0,
|
73 |
+
blocksparse_vert_stride: int = 0,
|
74 |
+
blocksparse_block_size: int = 64,
|
75 |
+
blocksparse_head_sliding_step: int = 0,
|
76 |
+
) -> None:
|
77 |
+
ops.paged_attention_v2(
|
78 |
+
out,
|
79 |
+
exp_sum,
|
80 |
+
max_logits,
|
81 |
+
tmp_out,
|
82 |
+
query,
|
83 |
+
key_cache,
|
84 |
+
value_cache,
|
85 |
+
num_kv_heads,
|
86 |
+
scale,
|
87 |
+
block_tables,
|
88 |
+
seq_lens,
|
89 |
+
block_size,
|
90 |
+
max_seq_len,
|
91 |
+
alibi_slopes,
|
92 |
+
kv_cache_dtype,
|
93 |
+
k_scale,
|
94 |
+
v_scale,
|
95 |
+
tp_rank,
|
96 |
+
blocksparse_local_blocks,
|
97 |
+
blocksparse_vert_stride,
|
98 |
+
blocksparse_block_size,
|
99 |
+
blocksparse_head_sliding_step,
|
100 |
+
)
|
101 |
+
|
102 |
+
|
103 |
+
def reshape_and_cache(
|
104 |
+
key: torch.Tensor,
|
105 |
+
value: torch.Tensor,
|
106 |
+
key_cache: torch.Tensor,
|
107 |
+
value_cache: torch.Tensor,
|
108 |
+
slot_mapping: torch.Tensor,
|
109 |
+
kv_cache_dtype: str,
|
110 |
+
k_scale: float,
|
111 |
+
v_scale: float,
|
112 |
+
) -> None:
|
113 |
+
ops.reshape_and_cache(
|
114 |
+
key,
|
115 |
+
value,
|
116 |
+
key_cache,
|
117 |
+
value_cache,
|
118 |
+
slot_mapping,
|
119 |
+
kv_cache_dtype,
|
120 |
+
k_scale,
|
121 |
+
v_scale,
|
122 |
+
)
|
123 |
+
|
124 |
+
|
125 |
+
def reshape_and_cache_flash(
|
126 |
+
key: torch.Tensor,
|
127 |
+
value: torch.Tensor,
|
128 |
+
key_cache: torch.Tensor,
|
129 |
+
value_cache: torch.Tensor,
|
130 |
+
slot_mapping: torch.Tensor,
|
131 |
+
kv_cache_dtype: str,
|
132 |
+
k_scale: torch.Tensor,
|
133 |
+
v_scale: torch.Tensor,
|
134 |
+
) -> None:
|
135 |
+
ops.reshape_and_cache_flash(
|
136 |
+
key,
|
137 |
+
value,
|
138 |
+
key_cache,
|
139 |
+
value_cache,
|
140 |
+
slot_mapping,
|
141 |
+
kv_cache_dtype,
|
142 |
+
k_scale,
|
143 |
+
v_scale,
|
144 |
+
)
|
145 |
+
|
146 |
+
|
147 |
+
def copy_blocks(
|
148 |
+
key_caches: List[torch.Tensor],
|
149 |
+
value_caches: List[torch.Tensor],
|
150 |
+
block_mapping: torch.Tensor,
|
151 |
+
) -> None:
|
152 |
+
ops.copy_blocks(key_caches, value_caches, block_mapping)
|
153 |
+
|
154 |
+
|
155 |
+
def swap_blocks(
|
156 |
+
src: torch.Tensor, dst: torch.Tensor, block_mapping: torch.Tensor
|
157 |
+
) -> None:
|
158 |
+
ops.swap_blocks(src, dst, block_mapping)
|
159 |
+
|
160 |
+
|
161 |
+
def convert_fp8(
|
162 |
+
output: torch.Tensor, input: torch.Tensor, scale: float = 1.0, kv_dtype: str = "fp8"
|
163 |
+
) -> None:
|
164 |
+
ops.convert_fp8(output, input, scale, kv_dtype)
|
165 |
+
|
166 |
+
|
167 |
+
__all__ = [
|
168 |
+
"convert_fp8",
|
169 |
+
"paged_attention_v1",
|
170 |
+
"paged_attention_v2",
|
171 |
+
"reshape_and_cache",
|
172 |
+
"copy_blocks",
|
173 |
+
]
|
build/torch26-cxx98-cu126-aarch64-linux/paged_attention/_ops.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from . import _paged_attention_dde9676
|
3 |
+
ops = torch.ops._paged_attention_dde9676
|
4 |
+
|
5 |
+
def add_op_namespace_prefix(op_name: str):
|
6 |
+
"""
|
7 |
+
Prefix op by namespace.
|
8 |
+
"""
|
9 |
+
return f"_paged_attention_dde9676::{op_name}"
|
build/torch26-cxx98-cu126-aarch64-linux/paged_attention/_paged_attention_dde9676.abi3.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b5291420043170980483291edb8630c9ee4330cad0e8c80483348e9f674cec0
|
3 |
+
size 75248048
|
build/torch26-cxx98-cu126-aarch64-linux/paged_attention/platforms.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
from abc import ABC, abstractmethod
|
4 |
+
from functools import lru_cache, wraps
|
5 |
+
from typing import Callable, ParamSpec, TypeVar
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
|
10 |
+
IS_ROCM = torch.version.hip is not None
|
11 |
+
|
12 |
+
|
13 |
+
class Platform(ABC):
|
14 |
+
@classmethod
|
15 |
+
def seed_everything(cls, seed: int) -> None:
|
16 |
+
"""
|
17 |
+
Set the seed of each random module.
|
18 |
+
`torch.manual_seed` will set seed on all devices.
|
19 |
+
|
20 |
+
Loosely based on: https://github.com/Lightning-AI/pytorch-lightning/blob/2.4.0/src/lightning/fabric/utilities/seed.py#L20
|
21 |
+
"""
|
22 |
+
random.seed(seed)
|
23 |
+
np.random.seed(seed)
|
24 |
+
torch.manual_seed(seed)
|
25 |
+
|
26 |
+
@abstractmethod
|
27 |
+
def get_device_name(self, device_id: int = 0) -> str: ...
|
28 |
+
|
29 |
+
@abstractmethod
|
30 |
+
def is_cuda(self) -> bool: ...
|
31 |
+
|
32 |
+
@abstractmethod
|
33 |
+
def is_rocm(self) -> bool: ...
|
34 |
+
|
35 |
+
|
36 |
+
class CudaPlatform(Platform):
|
37 |
+
@classmethod
|
38 |
+
@lru_cache(maxsize=8)
|
39 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
40 |
+
return torch.cuda.get_device_name(0)
|
41 |
+
|
42 |
+
def is_cuda(self) -> bool:
|
43 |
+
return True
|
44 |
+
|
45 |
+
def is_rocm(self) -> bool:
|
46 |
+
return False
|
47 |
+
|
48 |
+
|
49 |
+
class RocmPlatform(Platform):
|
50 |
+
@classmethod
|
51 |
+
@lru_cache(maxsize=8)
|
52 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
53 |
+
return torch.cuda.get_device_name(device_id)
|
54 |
+
|
55 |
+
def is_cuda(self) -> bool:
|
56 |
+
return False
|
57 |
+
|
58 |
+
def is_rocm(self) -> bool:
|
59 |
+
return True
|
60 |
+
|
61 |
+
|
62 |
+
current_platform = RocmPlatform() if IS_ROCM else CudaPlatform()
|
build/torch27-cxx11-cu126-aarch64-linux/paged_attention/__init__.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ._custom_ops import (
|
2 |
+
convert_fp8,
|
3 |
+
copy_blocks,
|
4 |
+
paged_attention_v1,
|
5 |
+
paged_attention_v2,
|
6 |
+
reshape_and_cache,
|
7 |
+
reshape_and_cache_flash,
|
8 |
+
swap_blocks,
|
9 |
+
)
|
10 |
+
from ._ops import ops
|
11 |
+
|
12 |
+
__all__ = [
|
13 |
+
"convert_fp8",
|
14 |
+
"copy_blocks",
|
15 |
+
"ops",
|
16 |
+
"paged_attention_v1",
|
17 |
+
"paged_attention_v2",
|
18 |
+
"reshape_and_cache",
|
19 |
+
"reshape_and_cache_flash",
|
20 |
+
"swap_blocks",
|
21 |
+
]
|
build/torch27-cxx11-cu126-aarch64-linux/paged_attention/_custom_ops.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from ._ops import ops
|
6 |
+
|
7 |
+
|
8 |
+
# page attention ops
|
9 |
+
def paged_attention_v1(
|
10 |
+
out: torch.Tensor,
|
11 |
+
query: torch.Tensor,
|
12 |
+
key_cache: torch.Tensor,
|
13 |
+
value_cache: torch.Tensor,
|
14 |
+
num_kv_heads: int,
|
15 |
+
scale: float,
|
16 |
+
block_tables: torch.Tensor,
|
17 |
+
seq_lens: torch.Tensor,
|
18 |
+
block_size: int,
|
19 |
+
max_seq_len: int,
|
20 |
+
alibi_slopes: Optional[torch.Tensor],
|
21 |
+
kv_cache_dtype: str,
|
22 |
+
k_scale: float,
|
23 |
+
v_scale: float,
|
24 |
+
tp_rank: int = 0,
|
25 |
+
blocksparse_local_blocks: int = 0,
|
26 |
+
blocksparse_vert_stride: int = 0,
|
27 |
+
blocksparse_block_size: int = 64,
|
28 |
+
blocksparse_head_sliding_step: int = 0,
|
29 |
+
) -> None:
|
30 |
+
ops.paged_attention_v1(
|
31 |
+
out,
|
32 |
+
query,
|
33 |
+
key_cache,
|
34 |
+
value_cache,
|
35 |
+
num_kv_heads,
|
36 |
+
scale,
|
37 |
+
block_tables,
|
38 |
+
seq_lens,
|
39 |
+
block_size,
|
40 |
+
max_seq_len,
|
41 |
+
alibi_slopes,
|
42 |
+
kv_cache_dtype,
|
43 |
+
k_scale,
|
44 |
+
v_scale,
|
45 |
+
tp_rank,
|
46 |
+
blocksparse_local_blocks,
|
47 |
+
blocksparse_vert_stride,
|
48 |
+
blocksparse_block_size,
|
49 |
+
blocksparse_head_sliding_step,
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
def paged_attention_v2(
|
54 |
+
out: torch.Tensor,
|
55 |
+
exp_sum: torch.Tensor,
|
56 |
+
max_logits: torch.Tensor,
|
57 |
+
tmp_out: torch.Tensor,
|
58 |
+
query: torch.Tensor,
|
59 |
+
key_cache: torch.Tensor,
|
60 |
+
value_cache: torch.Tensor,
|
61 |
+
num_kv_heads: int,
|
62 |
+
scale: float,
|
63 |
+
block_tables: torch.Tensor,
|
64 |
+
seq_lens: torch.Tensor,
|
65 |
+
block_size: int,
|
66 |
+
max_seq_len: int,
|
67 |
+
alibi_slopes: Optional[torch.Tensor],
|
68 |
+
kv_cache_dtype: str,
|
69 |
+
k_scale: float,
|
70 |
+
v_scale: float,
|
71 |
+
tp_rank: int = 0,
|
72 |
+
blocksparse_local_blocks: int = 0,
|
73 |
+
blocksparse_vert_stride: int = 0,
|
74 |
+
blocksparse_block_size: int = 64,
|
75 |
+
blocksparse_head_sliding_step: int = 0,
|
76 |
+
) -> None:
|
77 |
+
ops.paged_attention_v2(
|
78 |
+
out,
|
79 |
+
exp_sum,
|
80 |
+
max_logits,
|
81 |
+
tmp_out,
|
82 |
+
query,
|
83 |
+
key_cache,
|
84 |
+
value_cache,
|
85 |
+
num_kv_heads,
|
86 |
+
scale,
|
87 |
+
block_tables,
|
88 |
+
seq_lens,
|
89 |
+
block_size,
|
90 |
+
max_seq_len,
|
91 |
+
alibi_slopes,
|
92 |
+
kv_cache_dtype,
|
93 |
+
k_scale,
|
94 |
+
v_scale,
|
95 |
+
tp_rank,
|
96 |
+
blocksparse_local_blocks,
|
97 |
+
blocksparse_vert_stride,
|
98 |
+
blocksparse_block_size,
|
99 |
+
blocksparse_head_sliding_step,
|
100 |
+
)
|
101 |
+
|
102 |
+
|
103 |
+
def reshape_and_cache(
|
104 |
+
key: torch.Tensor,
|
105 |
+
value: torch.Tensor,
|
106 |
+
key_cache: torch.Tensor,
|
107 |
+
value_cache: torch.Tensor,
|
108 |
+
slot_mapping: torch.Tensor,
|
109 |
+
kv_cache_dtype: str,
|
110 |
+
k_scale: float,
|
111 |
+
v_scale: float,
|
112 |
+
) -> None:
|
113 |
+
ops.reshape_and_cache(
|
114 |
+
key,
|
115 |
+
value,
|
116 |
+
key_cache,
|
117 |
+
value_cache,
|
118 |
+
slot_mapping,
|
119 |
+
kv_cache_dtype,
|
120 |
+
k_scale,
|
121 |
+
v_scale,
|
122 |
+
)
|
123 |
+
|
124 |
+
|
125 |
+
def reshape_and_cache_flash(
|
126 |
+
key: torch.Tensor,
|
127 |
+
value: torch.Tensor,
|
128 |
+
key_cache: torch.Tensor,
|
129 |
+
value_cache: torch.Tensor,
|
130 |
+
slot_mapping: torch.Tensor,
|
131 |
+
kv_cache_dtype: str,
|
132 |
+
k_scale: torch.Tensor,
|
133 |
+
v_scale: torch.Tensor,
|
134 |
+
) -> None:
|
135 |
+
ops.reshape_and_cache_flash(
|
136 |
+
key,
|
137 |
+
value,
|
138 |
+
key_cache,
|
139 |
+
value_cache,
|
140 |
+
slot_mapping,
|
141 |
+
kv_cache_dtype,
|
142 |
+
k_scale,
|
143 |
+
v_scale,
|
144 |
+
)
|
145 |
+
|
146 |
+
|
147 |
+
def copy_blocks(
|
148 |
+
key_caches: List[torch.Tensor],
|
149 |
+
value_caches: List[torch.Tensor],
|
150 |
+
block_mapping: torch.Tensor,
|
151 |
+
) -> None:
|
152 |
+
ops.copy_blocks(key_caches, value_caches, block_mapping)
|
153 |
+
|
154 |
+
|
155 |
+
def swap_blocks(
|
156 |
+
src: torch.Tensor, dst: torch.Tensor, block_mapping: torch.Tensor
|
157 |
+
) -> None:
|
158 |
+
ops.swap_blocks(src, dst, block_mapping)
|
159 |
+
|
160 |
+
|
161 |
+
def convert_fp8(
|
162 |
+
output: torch.Tensor, input: torch.Tensor, scale: float = 1.0, kv_dtype: str = "fp8"
|
163 |
+
) -> None:
|
164 |
+
ops.convert_fp8(output, input, scale, kv_dtype)
|
165 |
+
|
166 |
+
|
167 |
+
__all__ = [
|
168 |
+
"convert_fp8",
|
169 |
+
"paged_attention_v1",
|
170 |
+
"paged_attention_v2",
|
171 |
+
"reshape_and_cache",
|
172 |
+
"copy_blocks",
|
173 |
+
]
|
build/torch27-cxx11-cu126-aarch64-linux/paged_attention/_ops.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from . import _paged_attention_dde9676
|
3 |
+
ops = torch.ops._paged_attention_dde9676
|
4 |
+
|
5 |
+
def add_op_namespace_prefix(op_name: str):
|
6 |
+
"""
|
7 |
+
Prefix op by namespace.
|
8 |
+
"""
|
9 |
+
return f"_paged_attention_dde9676::{op_name}"
|
build/torch27-cxx11-cu126-aarch64-linux/paged_attention/_paged_attention_dde9676.abi3.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6376f5fd010f324f63912ff624b9802a086ba71c391dea5019b8de7a1e8de7d8
|
3 |
+
size 75255456
|
build/torch27-cxx11-cu126-aarch64-linux/paged_attention/platforms.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
from abc import ABC, abstractmethod
|
4 |
+
from functools import lru_cache, wraps
|
5 |
+
from typing import Callable, ParamSpec, TypeVar
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
|
10 |
+
IS_ROCM = torch.version.hip is not None
|
11 |
+
|
12 |
+
|
13 |
+
class Platform(ABC):
|
14 |
+
@classmethod
|
15 |
+
def seed_everything(cls, seed: int) -> None:
|
16 |
+
"""
|
17 |
+
Set the seed of each random module.
|
18 |
+
`torch.manual_seed` will set seed on all devices.
|
19 |
+
|
20 |
+
Loosely based on: https://github.com/Lightning-AI/pytorch-lightning/blob/2.4.0/src/lightning/fabric/utilities/seed.py#L20
|
21 |
+
"""
|
22 |
+
random.seed(seed)
|
23 |
+
np.random.seed(seed)
|
24 |
+
torch.manual_seed(seed)
|
25 |
+
|
26 |
+
@abstractmethod
|
27 |
+
def get_device_name(self, device_id: int = 0) -> str: ...
|
28 |
+
|
29 |
+
@abstractmethod
|
30 |
+
def is_cuda(self) -> bool: ...
|
31 |
+
|
32 |
+
@abstractmethod
|
33 |
+
def is_rocm(self) -> bool: ...
|
34 |
+
|
35 |
+
|
36 |
+
class CudaPlatform(Platform):
|
37 |
+
@classmethod
|
38 |
+
@lru_cache(maxsize=8)
|
39 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
40 |
+
return torch.cuda.get_device_name(0)
|
41 |
+
|
42 |
+
def is_cuda(self) -> bool:
|
43 |
+
return True
|
44 |
+
|
45 |
+
def is_rocm(self) -> bool:
|
46 |
+
return False
|
47 |
+
|
48 |
+
|
49 |
+
class RocmPlatform(Platform):
|
50 |
+
@classmethod
|
51 |
+
@lru_cache(maxsize=8)
|
52 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
53 |
+
return torch.cuda.get_device_name(device_id)
|
54 |
+
|
55 |
+
def is_cuda(self) -> bool:
|
56 |
+
return False
|
57 |
+
|
58 |
+
def is_rocm(self) -> bool:
|
59 |
+
return True
|
60 |
+
|
61 |
+
|
62 |
+
current_platform = RocmPlatform() if IS_ROCM else CudaPlatform()
|
build/torch27-cxx11-cu128-aarch64-linux/paged_attention/__init__.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ._custom_ops import (
|
2 |
+
convert_fp8,
|
3 |
+
copy_blocks,
|
4 |
+
paged_attention_v1,
|
5 |
+
paged_attention_v2,
|
6 |
+
reshape_and_cache,
|
7 |
+
reshape_and_cache_flash,
|
8 |
+
swap_blocks,
|
9 |
+
)
|
10 |
+
from ._ops import ops
|
11 |
+
|
12 |
+
__all__ = [
|
13 |
+
"convert_fp8",
|
14 |
+
"copy_blocks",
|
15 |
+
"ops",
|
16 |
+
"paged_attention_v1",
|
17 |
+
"paged_attention_v2",
|
18 |
+
"reshape_and_cache",
|
19 |
+
"reshape_and_cache_flash",
|
20 |
+
"swap_blocks",
|
21 |
+
]
|
build/torch27-cxx11-cu128-aarch64-linux/paged_attention/_custom_ops.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from ._ops import ops
|
6 |
+
|
7 |
+
|
8 |
+
# page attention ops
|
9 |
+
def paged_attention_v1(
|
10 |
+
out: torch.Tensor,
|
11 |
+
query: torch.Tensor,
|
12 |
+
key_cache: torch.Tensor,
|
13 |
+
value_cache: torch.Tensor,
|
14 |
+
num_kv_heads: int,
|
15 |
+
scale: float,
|
16 |
+
block_tables: torch.Tensor,
|
17 |
+
seq_lens: torch.Tensor,
|
18 |
+
block_size: int,
|
19 |
+
max_seq_len: int,
|
20 |
+
alibi_slopes: Optional[torch.Tensor],
|
21 |
+
kv_cache_dtype: str,
|
22 |
+
k_scale: float,
|
23 |
+
v_scale: float,
|
24 |
+
tp_rank: int = 0,
|
25 |
+
blocksparse_local_blocks: int = 0,
|
26 |
+
blocksparse_vert_stride: int = 0,
|
27 |
+
blocksparse_block_size: int = 64,
|
28 |
+
blocksparse_head_sliding_step: int = 0,
|
29 |
+
) -> None:
|
30 |
+
ops.paged_attention_v1(
|
31 |
+
out,
|
32 |
+
query,
|
33 |
+
key_cache,
|
34 |
+
value_cache,
|
35 |
+
num_kv_heads,
|
36 |
+
scale,
|
37 |
+
block_tables,
|
38 |
+
seq_lens,
|
39 |
+
block_size,
|
40 |
+
max_seq_len,
|
41 |
+
alibi_slopes,
|
42 |
+
kv_cache_dtype,
|
43 |
+
k_scale,
|
44 |
+
v_scale,
|
45 |
+
tp_rank,
|
46 |
+
blocksparse_local_blocks,
|
47 |
+
blocksparse_vert_stride,
|
48 |
+
blocksparse_block_size,
|
49 |
+
blocksparse_head_sliding_step,
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
def paged_attention_v2(
|
54 |
+
out: torch.Tensor,
|
55 |
+
exp_sum: torch.Tensor,
|
56 |
+
max_logits: torch.Tensor,
|
57 |
+
tmp_out: torch.Tensor,
|
58 |
+
query: torch.Tensor,
|
59 |
+
key_cache: torch.Tensor,
|
60 |
+
value_cache: torch.Tensor,
|
61 |
+
num_kv_heads: int,
|
62 |
+
scale: float,
|
63 |
+
block_tables: torch.Tensor,
|
64 |
+
seq_lens: torch.Tensor,
|
65 |
+
block_size: int,
|
66 |
+
max_seq_len: int,
|
67 |
+
alibi_slopes: Optional[torch.Tensor],
|
68 |
+
kv_cache_dtype: str,
|
69 |
+
k_scale: float,
|
70 |
+
v_scale: float,
|
71 |
+
tp_rank: int = 0,
|
72 |
+
blocksparse_local_blocks: int = 0,
|
73 |
+
blocksparse_vert_stride: int = 0,
|
74 |
+
blocksparse_block_size: int = 64,
|
75 |
+
blocksparse_head_sliding_step: int = 0,
|
76 |
+
) -> None:
|
77 |
+
ops.paged_attention_v2(
|
78 |
+
out,
|
79 |
+
exp_sum,
|
80 |
+
max_logits,
|
81 |
+
tmp_out,
|
82 |
+
query,
|
83 |
+
key_cache,
|
84 |
+
value_cache,
|
85 |
+
num_kv_heads,
|
86 |
+
scale,
|
87 |
+
block_tables,
|
88 |
+
seq_lens,
|
89 |
+
block_size,
|
90 |
+
max_seq_len,
|
91 |
+
alibi_slopes,
|
92 |
+
kv_cache_dtype,
|
93 |
+
k_scale,
|
94 |
+
v_scale,
|
95 |
+
tp_rank,
|
96 |
+
blocksparse_local_blocks,
|
97 |
+
blocksparse_vert_stride,
|
98 |
+
blocksparse_block_size,
|
99 |
+
blocksparse_head_sliding_step,
|
100 |
+
)
|
101 |
+
|
102 |
+
|
103 |
+
def reshape_and_cache(
|
104 |
+
key: torch.Tensor,
|
105 |
+
value: torch.Tensor,
|
106 |
+
key_cache: torch.Tensor,
|
107 |
+
value_cache: torch.Tensor,
|
108 |
+
slot_mapping: torch.Tensor,
|
109 |
+
kv_cache_dtype: str,
|
110 |
+
k_scale: float,
|
111 |
+
v_scale: float,
|
112 |
+
) -> None:
|
113 |
+
ops.reshape_and_cache(
|
114 |
+
key,
|
115 |
+
value,
|
116 |
+
key_cache,
|
117 |
+
value_cache,
|
118 |
+
slot_mapping,
|
119 |
+
kv_cache_dtype,
|
120 |
+
k_scale,
|
121 |
+
v_scale,
|
122 |
+
)
|
123 |
+
|
124 |
+
|
125 |
+
def reshape_and_cache_flash(
|
126 |
+
key: torch.Tensor,
|
127 |
+
value: torch.Tensor,
|
128 |
+
key_cache: torch.Tensor,
|
129 |
+
value_cache: torch.Tensor,
|
130 |
+
slot_mapping: torch.Tensor,
|
131 |
+
kv_cache_dtype: str,
|
132 |
+
k_scale: torch.Tensor,
|
133 |
+
v_scale: torch.Tensor,
|
134 |
+
) -> None:
|
135 |
+
ops.reshape_and_cache_flash(
|
136 |
+
key,
|
137 |
+
value,
|
138 |
+
key_cache,
|
139 |
+
value_cache,
|
140 |
+
slot_mapping,
|
141 |
+
kv_cache_dtype,
|
142 |
+
k_scale,
|
143 |
+
v_scale,
|
144 |
+
)
|
145 |
+
|
146 |
+
|
147 |
+
def copy_blocks(
|
148 |
+
key_caches: List[torch.Tensor],
|
149 |
+
value_caches: List[torch.Tensor],
|
150 |
+
block_mapping: torch.Tensor,
|
151 |
+
) -> None:
|
152 |
+
ops.copy_blocks(key_caches, value_caches, block_mapping)
|
153 |
+
|
154 |
+
|
155 |
+
def swap_blocks(
|
156 |
+
src: torch.Tensor, dst: torch.Tensor, block_mapping: torch.Tensor
|
157 |
+
) -> None:
|
158 |
+
ops.swap_blocks(src, dst, block_mapping)
|
159 |
+
|
160 |
+
|
161 |
+
def convert_fp8(
|
162 |
+
output: torch.Tensor, input: torch.Tensor, scale: float = 1.0, kv_dtype: str = "fp8"
|
163 |
+
) -> None:
|
164 |
+
ops.convert_fp8(output, input, scale, kv_dtype)
|
165 |
+
|
166 |
+
|
167 |
+
__all__ = [
|
168 |
+
"convert_fp8",
|
169 |
+
"paged_attention_v1",
|
170 |
+
"paged_attention_v2",
|
171 |
+
"reshape_and_cache",
|
172 |
+
"copy_blocks",
|
173 |
+
]
|
build/torch27-cxx11-cu128-aarch64-linux/paged_attention/_ops.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from . import _paged_attention_dde9676
|
3 |
+
ops = torch.ops._paged_attention_dde9676
|
4 |
+
|
5 |
+
def add_op_namespace_prefix(op_name: str):
|
6 |
+
"""
|
7 |
+
Prefix op by namespace.
|
8 |
+
"""
|
9 |
+
return f"_paged_attention_dde9676::{op_name}"
|
build/torch27-cxx11-cu128-aarch64-linux/paged_attention/_paged_attention_dde9676.abi3.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86c24c6ed593b28ff7fcd07129e08b21ce9d9de27779c65ab215be0ba7a96312
|
3 |
+
size 83905640
|
build/torch27-cxx11-cu128-aarch64-linux/paged_attention/platforms.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
from abc import ABC, abstractmethod
|
4 |
+
from functools import lru_cache, wraps
|
5 |
+
from typing import Callable, ParamSpec, TypeVar
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
|
10 |
+
IS_ROCM = torch.version.hip is not None
|
11 |
+
|
12 |
+
|
13 |
+
class Platform(ABC):
|
14 |
+
@classmethod
|
15 |
+
def seed_everything(cls, seed: int) -> None:
|
16 |
+
"""
|
17 |
+
Set the seed of each random module.
|
18 |
+
`torch.manual_seed` will set seed on all devices.
|
19 |
+
|
20 |
+
Loosely based on: https://github.com/Lightning-AI/pytorch-lightning/blob/2.4.0/src/lightning/fabric/utilities/seed.py#L20
|
21 |
+
"""
|
22 |
+
random.seed(seed)
|
23 |
+
np.random.seed(seed)
|
24 |
+
torch.manual_seed(seed)
|
25 |
+
|
26 |
+
@abstractmethod
|
27 |
+
def get_device_name(self, device_id: int = 0) -> str: ...
|
28 |
+
|
29 |
+
@abstractmethod
|
30 |
+
def is_cuda(self) -> bool: ...
|
31 |
+
|
32 |
+
@abstractmethod
|
33 |
+
def is_rocm(self) -> bool: ...
|
34 |
+
|
35 |
+
|
36 |
+
class CudaPlatform(Platform):
|
37 |
+
@classmethod
|
38 |
+
@lru_cache(maxsize=8)
|
39 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
40 |
+
return torch.cuda.get_device_name(0)
|
41 |
+
|
42 |
+
def is_cuda(self) -> bool:
|
43 |
+
return True
|
44 |
+
|
45 |
+
def is_rocm(self) -> bool:
|
46 |
+
return False
|
47 |
+
|
48 |
+
|
49 |
+
class RocmPlatform(Platform):
|
50 |
+
@classmethod
|
51 |
+
@lru_cache(maxsize=8)
|
52 |
+
def get_device_name(cls, device_id: int = 0) -> str:
|
53 |
+
return torch.cuda.get_device_name(device_id)
|
54 |
+
|
55 |
+
def is_cuda(self) -> bool:
|
56 |
+
return False
|
57 |
+
|
58 |
+
def is_rocm(self) -> bool:
|
59 |
+
return True
|
60 |
+
|
61 |
+
|
62 |
+
current_platform = RocmPlatform() if IS_ROCM else CudaPlatform()
|