import random
from typing import List, Optional, Tuple

import paged_attention as ops
import pytest
import torch
from paged_attention.platforms import current_platform

from .allclose_default import get_default_atol, get_default_rtol
from .utils import get_max_shared_memory_bytes, opcheck

FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
# This will change depending on the compute capability.
# - 512 as a buffer
MAX_SEQ_LEN = get_max_shared_memory_bytes() // FLOAT32_BYTES - 512
# There may not be enough gpu memory due to large NUM_BLOCKS.
# Reduce NUM_BLOCKS when it happens.
NUM_BLOCKS = 4321  # Arbitrary values for testing
PARTITION_SIZE = 512
# flshattF and tritonflashattF supported: {torch.float16, torch.bfloat16}
DTYPES = (
    [torch.half, torch.bfloat16, torch.float]
    if not current_platform.is_rocm()
    else [torch.half, torch.bfloat16]
)
NUM_GEN_SEQS = [7]  # Arbitrary values for testing
NUM_PREFILL_SEQS = [3]  # Arbitrary values for testing
NUM_HEADS = [(40, 40), (64, 8)]  # Arbitrary values for testing

# This should be sync with get_supported_head_sizes() in
# vllm.attention.ops.paged_attn.PagedAttention
HEAD_SIZES = [32, 64, 80, 96, 112, 120, 128, 192, 256]

BLOCK_SIZES = [16, 32]
USE_ALIBI = [False, True]
if current_platform.is_mps():
    KV_CACHE_DTYPE = ["auto", "fp8"]
else:
    KV_CACHE_DTYPE = ["auto", "fp8"]
SEEDS = [0]
if current_platform.is_mps():
    DEVICES = ["mps:0"]
else:
    DEVICES = [f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)]


def ref_masked_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    scale: float,
    attn_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    attn_weights = scale * torch.einsum("qhd,khd->hqk", query, key).float()
    if attn_mask is not None:
        attn_weights = attn_weights + attn_mask.float()
    attn_weights = torch.softmax(attn_weights, dim=-1).to(value.dtype)
    out = torch.einsum("hqk,khd->qhd", attn_weights, value)
    return out


def ref_single_query_cached_kv_attention(
    output: torch.Tensor,
    query: torch.Tensor,
    num_queries_per_kv: int,
    key_cache: torch.Tensor,
    value_cache: torch.Tensor,
    block_tables: torch.Tensor,
    seq_lens: torch.Tensor,
    scale: float,
    alibi_slopes: Optional[torch.Tensor],
) -> None:
    num_query_heads = query.shape[1]
    num_kv_heads = value_cache.shape[1]
    head_size = value_cache.shape[2]
    block_size = value_cache.shape[3]
    num_seqs = query.shape[0]

    block_tables_lst = block_tables.cpu().tolist()
    seq_lens_lst = seq_lens.cpu().tolist()
    for i in range(num_seqs):
        q = query[i].unsqueeze(0)
        block_table = block_tables_lst[i]
        seq_len = int(seq_lens_lst[i])

        keys_lst: List[torch.Tensor] = []
        values_lst: List[torch.Tensor] = []
        for j in range(seq_len):
            block_number = int(block_table[j // block_size])
            block_offset = j % block_size

            k = key_cache[block_number, :, :, block_offset, :]
            k = k.reshape(num_kv_heads, head_size)
            keys_lst.append(k)

            v = value_cache[block_number, :, :, block_offset]
            values_lst.append(v)
        keys = torch.stack(keys_lst, dim=0)
        values = torch.stack(values_lst, dim=0)
        if num_queries_per_kv > 1:
            # Handle MQA and GQA
            keys = torch.repeat_interleave(keys, num_queries_per_kv, dim=1)
            values = torch.repeat_interleave(values, num_queries_per_kv, dim=1)

        alibi_bias = None
        if alibi_slopes is not None:
            # Create the ALiBi bias used in the paged attention kernel.
            position_ids = torch.arange(seq_len).int()
            alibi_bias = (position_ids - seq_len + 1).float()
            alibi_bias = alibi_slopes.view(-1, 1, 1) * alibi_bias.view(1, 1, -1)

        out = ref_masked_attention(q, keys, values, scale, alibi_bias)
        out = out.view(num_query_heads, head_size)
        output[i].copy_(out, non_blocking=True)


@pytest.mark.parametrize(
    "version", ["v1", "v2"] if not current_platform.is_rocm() else ["v1", "v2", "rocm"]
)
@pytest.mark.parametrize("num_seqs", NUM_GEN_SEQS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("use_alibi", USE_ALIBI)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPE)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", DEVICES)
def test_paged_attention(
    kv_cache_factory,
    version: str,
    num_seqs: int,
    num_heads: Tuple[int, int],
    head_size: int,
    use_alibi: bool,
    block_size: int,
    dtype: torch.dtype,
    kv_cache_dtype: str,
    seed: int,
    device: str,
) -> None:
    if (kv_cache_dtype == "fp8" and head_size % 16) or (
        version == "rocm" and head_size not in (64, 128)
    ):
        pytest.skip()

    current_platform.seed_everything(seed)
    torch.set_default_device(device)
    scale = float(1.0 / (head_size**0.5))
    num_query_heads, num_kv_heads = num_heads
    query = torch.empty(num_seqs, num_query_heads, head_size, dtype=dtype)
    query.uniform_(-scale, scale)

    assert num_query_heads % num_kv_heads == 0
    num_queries_per_kv = num_query_heads // num_kv_heads
    alibi_slopes = None
    if use_alibi:
        alibi_slopes = torch.randn(num_query_heads, dtype=torch.float)

    seq_lens = [random.randint(1, MAX_SEQ_LEN) for _ in range(num_seqs)]
    seq_lens[-1] = MAX_SEQ_LEN
    max_seq_len = max(seq_lens)
    seq_lens = torch.tensor(seq_lens, dtype=torch.int)

    # Create the block tables.
    max_num_blocks_per_seq = (max_seq_len + block_size - 1) // block_size
    block_tables_lst: List[List[int]] = []
    for _ in range(num_seqs):
        block_table = [
            random.randint(0, NUM_BLOCKS - 1) for _ in range(max_num_blocks_per_seq)
        ]
        block_tables_lst.append(block_table)

    block_tables = torch.tensor(block_tables_lst, dtype=torch.int)

    # Create the KV caches.
    key_caches, value_caches = kv_cache_factory(
        NUM_BLOCKS,
        block_size,
        1,
        num_kv_heads,
        head_size,
        kv_cache_dtype,
        dtype,
        seed,
        device,
    )
    key_cache, value_cache = key_caches[0], value_caches[0]

    # Using default kv_scale
    k_scale = v_scale = torch.tensor(1.0, dtype=torch.float32, device=device)

    # Call the paged attention kernel.
    output = torch.empty_like(query)
    if version == "v1":
        ops.paged_attention_v1(
            output,
            query,
            key_cache,
            value_cache,
            num_kv_heads,
            scale,
            block_tables,
            seq_lens,
            block_size,
            max_seq_len,
            alibi_slopes,
            kv_cache_dtype,
            k_scale,
            v_scale,
        )

        opcheck(
            ops.ops.paged_attention_v1,
            (
                output,
                query,
                key_cache,
                value_cache,
                num_kv_heads,
                scale,
                block_tables,
                seq_lens,
                block_size,
                max_seq_len,
                alibi_slopes,
                kv_cache_dtype,
                k_scale,
                v_scale,
                0,
                0,
                0,
                64,
                0,
            ),
            cond=(
                head_size == HEAD_SIZES[0]
                and block_size == BLOCK_SIZES[0]
                and not device.startswith("mps")
            ),
        )

    elif version in ("v2", "rocm"):
        num_partitions = (max_seq_len + PARTITION_SIZE - 1) // PARTITION_SIZE
        assert PARTITION_SIZE % block_size == 0
        num_seqs, num_heads, head_size = output.shape
        tmp_output = torch.empty(
            size=(num_seqs, num_heads, num_partitions, head_size),
            dtype=output.dtype,
        )
        exp_sums = torch.empty(
            size=(num_seqs, num_heads, num_partitions),
            dtype=torch.float32,
        )
        max_logits = torch.empty_like(exp_sums)
        if version == "v2":
            ops.paged_attention_v2(
                output,
                exp_sums,
                max_logits,
                tmp_output,
                query,
                key_cache,
                value_cache,
                num_kv_heads,
                scale,
                block_tables,
                seq_lens,
                block_size,
                max_seq_len,
                alibi_slopes,
                kv_cache_dtype,
                k_scale,
                v_scale,
            )

            opcheck(
                ops.ops.paged_attention_v2,
                (
                    output,
                    exp_sums,
                    max_logits,
                    tmp_output,
                    query,
                    key_cache,
                    value_cache,
                    num_kv_heads,
                    scale,
                    block_tables,
                    seq_lens,
                    block_size,
                    max_seq_len,
                    alibi_slopes,
                    kv_cache_dtype,
                    k_scale,
                    v_scale,
                    0,
                    0,
                    0,
                    64,
                    0,
                ),
                cond=(
                    head_size == HEAD_SIZES[0]
                    and block_size == BLOCK_SIZES[0]
                    and not device.startswith("mps")
                ),
            )

        else:
            ops.paged_attention_rocm(
                output,
                exp_sums,
                max_logits,
                tmp_output,
                query,
                key_cache,
                value_cache,
                num_kv_heads,
                scale,
                block_tables,
                seq_lens,
                block_size,
                max_seq_len,
                alibi_slopes,
                kv_cache_dtype,
                k_scale,
                v_scale,
            )

            opcheck(
                torch.ops._rocm_C.paged_attention,
                (
                    output,
                    exp_sums,
                    max_logits,
                    tmp_output,
                    query,
                    key_cache,
                    value_cache,
                    num_kv_heads,
                    scale,
                    block_tables,
                    seq_lens,
                    block_size,
                    max_seq_len,
                    alibi_slopes,
                    kv_cache_dtype,
                    k_scale,
                    v_scale,
                ),
                cond=(
                    head_size == HEAD_SIZES[0]
                    and block_size == BLOCK_SIZES[0]
                    and not device.startswith("mps")
                ),
            )

    else:
        raise AssertionError(f"Unknown version: {version}")

    # Run the reference implementation.
    if kv_cache_dtype == "fp8":
        # Convert cache data back to dtype.
        x = 16 // torch.tensor([], dtype=dtype).element_size()
        key_cache_shape = (NUM_BLOCKS, num_kv_heads, head_size // x, block_size, x)
        dequantized_key_cache = torch.empty(
            size=key_cache_shape, dtype=dtype, device=device
        )
        ops.convert_fp8(dequantized_key_cache, key_cache)
        key_cache = dequantized_key_cache

        value_cache_shape = value_cache.shape
        dequantized_value_cache = torch.empty(
            size=value_cache_shape, dtype=dtype, device=device
        )
        ops.convert_fp8(dequantized_value_cache, value_cache)
        value_cache = dequantized_value_cache

    ref_output = torch.empty_like(query)
    ref_single_query_cached_kv_attention(
        ref_output,
        query,
        num_queries_per_kv,
        key_cache,
        value_cache,
        block_tables,
        seq_lens,
        scale,
        alibi_slopes,
    )

    # NOTE(woosuk): Due to the kernel-level differences in the two
    # implementations, there is a small numerical difference in the two
    # outputs. Thus, we use a relaxed tolerance for the test.
    atol = get_default_atol(output) if current_platform.is_rocm() else 1e-3
    rtol = get_default_rtol(output) if current_platform.is_rocm() else 1e-5

    # NOTE(zhaoyang): FP8 KV Cache will introduce quantization error,
    # so we use a relaxed tolerance for the test.
    atol, rtol = 1e-3, 1e-5
    if kv_cache_dtype == "fp8":
        atol, rtol = 1e-2, 1e-5
    # NOTE: bfloat16 with ALiBi can have slightly higher precision differences
    elif dtype == torch.bfloat16 and use_alibi:
        atol, rtol = 2e-3, 1e-5
    torch.testing.assert_close(output, ref_output, atol=atol, rtol=rtol)


def ref_multi_query_kv_attention(
    cu_seq_lens: List[int],
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    scale: float,
    dtype: torch.dtype,
) -> torch.Tensor:
    num_seqs = len(cu_seq_lens) - 1
    ref_outputs: List[torch.Tensor] = []
    for i in range(num_seqs):
        start_idx = cu_seq_lens[i]
        end_idx = cu_seq_lens[i + 1]
        seq_len = end_idx - start_idx

        # Create attention mask.
        attn_mask = torch.triu(torch.ones(seq_len, seq_len, dtype=dtype), diagonal=1)
        attn_mask = attn_mask * torch.finfo(dtype).min
        attn_mask = attn_mask.to(dtype=dtype)

        ref_output = ref_masked_attention(
            query[start_idx:end_idx],
            key[start_idx:end_idx],
            value[start_idx:end_idx],
            scale,
            attn_mask=attn_mask,
        )
        ref_outputs.append(ref_output)

    return torch.cat(ref_outputs, dim=0)