Fix
Browse files- build/torch27-cxx11-rocm63-x86_64-linux/residual_rms_rocm/__init__.py +0 -3
- build/torch27-cxx11-rocm63-x86_64-linux/residual_rms_rocm/_ops.py +0 -9
- build/torch27-cxx11-rocm63-x86_64-linux/residual_rms_rocm/wrapped_rms.py +0 -171
- build/torch28-cxx11-rocm63-x86_64-linux/residual_rms_rocm/__init__.py +0 -3
- build/torch28-cxx11-rocm63-x86_64-linux/residual_rms_rocm/_ops.py +0 -9
- build/torch28-cxx11-rocm63-x86_64-linux/residual_rms_rocm/wrapped_rms.py +0 -171
- build/torch28-cxx11-rocm64-x86_64-linux/residual_rms_rocm/__init__.py +0 -3
- build/torch28-cxx11-rocm64-x86_64-linux/residual_rms_rocm/_ops.py +0 -9
- build/torch28-cxx11-rocm64-x86_64-linux/residual_rms_rocm/wrapped_rms.py +0 -171
build/torch27-cxx11-rocm63-x86_64-linux/residual_rms_rocm/__init__.py
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
from .wrapped_rms import residual_rms, reference_residual_rms
|
| 2 |
-
|
| 3 |
-
__all__ = ["residual_rms", "reference_residual_rms"]
|
|
|
|
|
|
|
|
|
|
|
|
build/torch27-cxx11-rocm63-x86_64-linux/residual_rms_rocm/_ops.py
DELETED
|
@@ -1,9 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
from . import _residual_rms_rocm_7d048af
|
| 3 |
-
ops = torch.ops._residual_rms_rocm_7d048af
|
| 4 |
-
|
| 5 |
-
def add_op_namespace_prefix(op_name: str):
|
| 6 |
-
"""
|
| 7 |
-
Prefix op by namespace.
|
| 8 |
-
"""
|
| 9 |
-
return f"_residual_rms_rocm_7d048af::{op_name}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/torch27-cxx11-rocm63-x86_64-linux/residual_rms_rocm/wrapped_rms.py
DELETED
|
@@ -1,171 +0,0 @@
|
|
| 1 |
-
from typing import Tuple, Optional
|
| 2 |
-
import torch
|
| 3 |
-
from torch import Tensor
|
| 4 |
-
|
| 5 |
-
from ._ops import ops
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
_HIGHEST_RESIDUAL_RMS_MODE = 3
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
def residual_rms_checks(
|
| 12 |
-
input: Tensor,
|
| 13 |
-
residual: Tensor,
|
| 14 |
-
weight: Tensor,
|
| 15 |
-
scale_tensor: Tensor,
|
| 16 |
-
epsilon: float,
|
| 17 |
-
next_buffer: Tensor,
|
| 18 |
-
) -> None:
|
| 19 |
-
# Check shapes
|
| 20 |
-
assert input.dim() == 2, f"Expected input to have 2 dimensions but got {input.dim() = } instead."
|
| 21 |
-
assert residual.shape == input.shape, \
|
| 22 |
-
f"Expected input and residual to have same shape but got {input.shape = } and {residual.shape = }"
|
| 23 |
-
assert weight.shape == (input.size(1), ), \
|
| 24 |
-
f"Expected weight to have shape {(input.size(1), ) = } but got {weight.shape = }"
|
| 25 |
-
# Check devices
|
| 26 |
-
device = input.device
|
| 27 |
-
assert device.type == "cuda", f"Expected input.device to be of type cuda, but got {device.type = } instead."
|
| 28 |
-
assert residual.device == device, f"Expected {residual.device = } to be the same as {input.device = }"
|
| 29 |
-
if scale_tensor is not None:
|
| 30 |
-
assert scale_tensor.device == device, f"Expected {scale_tensor.device = } to be the same as {input.device = }"
|
| 31 |
-
assert next_buffer.device == device, f"Expected {next_buffer.device = } to be the same as {input.device = }"
|
| 32 |
-
# Check layouts
|
| 33 |
-
assert input.is_contiguous(), f"Expected input to be contiguous but got {input.stride() = }"
|
| 34 |
-
assert residual.is_contiguous(), f"Expected residual to be contiguous but got {residual.stride() = }"
|
| 35 |
-
# Check scalars
|
| 36 |
-
assert epsilon > 0, f"Expected RMS epsilon to be > 0 to avoid division by zero, but got {epsilon = }"
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
def residual_rms_choose_mode(
|
| 40 |
-
input: Tensor,
|
| 41 |
-
residual: Tensor,
|
| 42 |
-
weight: Tensor,
|
| 43 |
-
next_buffer: Tensor,
|
| 44 |
-
mode: int,
|
| 45 |
-
) -> int:
|
| 46 |
-
cols_is_multiple_of_8 = (input.size(1) % 8 == 0) and (next_buffer.size(1) % 8 == 0)
|
| 47 |
-
tensors_are_16b_aligned = all([x.data_ptr() % 16 == 0 for x in [input, residual, weight]])
|
| 48 |
-
if mode == -1:
|
| 49 |
-
mode = _HIGHEST_RESIDUAL_RMS_MODE if (tensors_are_16b_aligned and cols_is_multiple_of_8) else 0
|
| 50 |
-
elif mode > 0:
|
| 51 |
-
assert tensors_are_16b_aligned, (
|
| 52 |
-
f"Requested a {mode = } > 0 requires tensors to be 16 bits aligned but got {input.data_ptr() % 16 = }, "
|
| 53 |
-
f"{residual.data_ptr() % 16 = }, {weight.data_ptr() % 16 = }"
|
| 54 |
-
)
|
| 55 |
-
assert cols_is_multiple_of_8, f"Requested {mode = } requires {input.size(1) = } to be a multiple of 8."
|
| 56 |
-
return mode
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
def infer_num_threads(rows: int, num_threads: int) -> int:
|
| 60 |
-
# Error case
|
| 61 |
-
if num_threads < 0 or num_threads > 1024:
|
| 62 |
-
raise ValueError(f"{num_threads = } is not between 0 and 1024")
|
| 63 |
-
# Case: num_threads was specified
|
| 64 |
-
elif num_threads != 0:
|
| 65 |
-
return num_threads
|
| 66 |
-
# Otherwise, we branch upon the number of rows
|
| 67 |
-
if rows <= 16:
|
| 68 |
-
return 1024
|
| 69 |
-
if rows <= 32:
|
| 70 |
-
return 768
|
| 71 |
-
if rows <= 64:
|
| 72 |
-
return 1024
|
| 73 |
-
if rows <= 256:
|
| 74 |
-
return 960
|
| 75 |
-
return 1024
|
| 76 |
-
|
| 77 |
-
## Main kernel
|
| 78 |
-
def residual_rms(
|
| 79 |
-
input: Tensor,
|
| 80 |
-
residual: Tensor,
|
| 81 |
-
weight: Tensor,
|
| 82 |
-
epsilon: float,
|
| 83 |
-
scale_tensor: Optional[Tensor] = None,
|
| 84 |
-
next_buffer: Optional[Tensor] = None,
|
| 85 |
-
num_threads: int = 0,
|
| 86 |
-
force_scalar: bool = False,
|
| 87 |
-
) -> Tuple[Tensor, Tensor]:
|
| 88 |
-
"""Kernel that fuses a residual connection, an RMS normalization and a conversion to fp8. The resdiual argument is
|
| 89 |
-
modified inplace (residual <- input + residual).
|
| 90 |
-
Args:
|
| 91 |
-
- input: a fp16 tensor of shape (rows, cols) in row-major format
|
| 92 |
-
- residual: a fp16 tensor of shape (rows, cols) in row-major format
|
| 93 |
-
- weight: a fp16 tensor of shape (cols, ) in row-major format which contains the weight of the RMS norm
|
| 94 |
-
- epsilon: the small epsilon used inside the RMS norm to avoid division by zero
|
| 95 |
-
- scale_tensor: a fp32 one-item tensor to divide the output of the RMS norm before their conversion to fp8. If
|
| 96 |
-
set to None, then the output dtype is fp16
|
| 97 |
-
- next_buffer: an optional tensor of shape (rows, .) to initialize to zero if the output dtype in fp8
|
| 98 |
-
- num_threads: the number of threads per block in the kernel. Default value is 0, which then defaults to 1024
|
| 99 |
-
Outputs:
|
| 100 |
-
- an fp8 tensor of shape (rows, cols) in row-major format
|
| 101 |
-
- the residual modified in place
|
| 102 |
-
"""
|
| 103 |
-
if next_buffer is None:
|
| 104 |
-
next_buffer = torch.empty(size=(input.size(0), 0), device=input.device, dtype=torch.float16)
|
| 105 |
-
|
| 106 |
-
residual_rms_checks(input, residual, weight, scale_tensor, epsilon, next_buffer)
|
| 107 |
-
num_threads = infer_num_threads(input.size(0), num_threads)
|
| 108 |
-
|
| 109 |
-
if scale_tensor is not None:
|
| 110 |
-
output = torch.empty(size=input.shape, dtype=torch.float8_e4m3fnuz, device=input.device)
|
| 111 |
-
else:
|
| 112 |
-
# TODO: here, we could use input as the output tensor
|
| 113 |
-
output = torch.empty(size=input.shape, dtype=torch.float16, device=input.device)
|
| 114 |
-
ops.residual_rms(
|
| 115 |
-
input=input,
|
| 116 |
-
residual=residual,
|
| 117 |
-
weight=weight,
|
| 118 |
-
scale_tensor=scale_tensor,
|
| 119 |
-
epsilon=epsilon,
|
| 120 |
-
output=output,
|
| 121 |
-
next_buffer=next_buffer,
|
| 122 |
-
num_threads=num_threads,
|
| 123 |
-
force_scalar=force_scalar,
|
| 124 |
-
)
|
| 125 |
-
return output, residual
|
| 126 |
-
|
| 127 |
-
## Reference implementation
|
| 128 |
-
def fp8_quantize(
|
| 129 |
-
x_full_precision: Tensor,
|
| 130 |
-
scale: Tensor,
|
| 131 |
-
) -> Tuple[Tensor, Tensor]:
|
| 132 |
-
finfo = torch.finfo(torch.float8_e4m3fn)
|
| 133 |
-
x_quantized = (x_full_precision * scale.reciprocal()).clamp(min=finfo.min, max=finfo.max)
|
| 134 |
-
x_quantized = x_quantized.to(torch.float8_e4m3fn)
|
| 135 |
-
weight_as_int8 = x_quantized.view(torch.int8)
|
| 136 |
-
ROCM_FP8_NAN_AS_INT = -128
|
| 137 |
-
mask = weight_as_int8 == ROCM_FP8_NAN_AS_INT
|
| 138 |
-
weight_as_int8[mask] = 0
|
| 139 |
-
x_quantized = weight_as_int8.view(torch.float8_e4m3fnuz)
|
| 140 |
-
return x_quantized, scale * 2.0
|
| 141 |
-
|
| 142 |
-
def reference_residual_rms(
|
| 143 |
-
input: Tensor,
|
| 144 |
-
residual: Tensor,
|
| 145 |
-
weight: Tensor,
|
| 146 |
-
epsilon: float,
|
| 147 |
-
scale_tensor: Optional[Tensor],
|
| 148 |
-
next_buffer: Optional[Tensor] = None,
|
| 149 |
-
) -> Tuple[Tensor, Tensor, float]:
|
| 150 |
-
"""Reference for the residual_rms operation. Check its docstring for more details, the only difference here is that
|
| 151 |
-
the scale needs to be passed a tensor and not a float."""
|
| 152 |
-
assert input.dtype == torch.float16, f"Expected torch.float16 but got {input.dtype = }"
|
| 153 |
-
assert residual.dtype == torch.float16, f"Expected torch.float16 but got {residual.dtype = }"
|
| 154 |
-
input += residual
|
| 155 |
-
residual = input
|
| 156 |
-
input = reference_rms(input, epsilon)
|
| 157 |
-
if weight.dtype in [torch.float16, torch.bfloat16]:
|
| 158 |
-
input = input.to(weight.dtype)
|
| 159 |
-
input = weight * input
|
| 160 |
-
if scale_tensor is not None:
|
| 161 |
-
qinput, scale_tensor = fp8_quantize(input, scale_tensor)
|
| 162 |
-
if next_buffer is not None:
|
| 163 |
-
next_buffer.fill_(0)
|
| 164 |
-
else:
|
| 165 |
-
qinput = input
|
| 166 |
-
return qinput, residual, scale_tensor
|
| 167 |
-
|
| 168 |
-
def reference_rms(x: Tensor, eps: float) -> Tensor:
|
| 169 |
-
x = x.to(torch.float32)
|
| 170 |
-
variance = x.pow(2).mean(-1, keepdim=True)
|
| 171 |
-
return x * torch.rsqrt(variance + eps)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/torch28-cxx11-rocm63-x86_64-linux/residual_rms_rocm/__init__.py
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
from .wrapped_rms import residual_rms, reference_residual_rms
|
| 2 |
-
|
| 3 |
-
__all__ = ["residual_rms", "reference_residual_rms"]
|
|
|
|
|
|
|
|
|
|
|
|
build/torch28-cxx11-rocm63-x86_64-linux/residual_rms_rocm/_ops.py
DELETED
|
@@ -1,9 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
from . import _residual_rms_rocm_7d048af
|
| 3 |
-
ops = torch.ops._residual_rms_rocm_7d048af
|
| 4 |
-
|
| 5 |
-
def add_op_namespace_prefix(op_name: str):
|
| 6 |
-
"""
|
| 7 |
-
Prefix op by namespace.
|
| 8 |
-
"""
|
| 9 |
-
return f"_residual_rms_rocm_7d048af::{op_name}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/torch28-cxx11-rocm63-x86_64-linux/residual_rms_rocm/wrapped_rms.py
DELETED
|
@@ -1,171 +0,0 @@
|
|
| 1 |
-
from typing import Tuple, Optional
|
| 2 |
-
import torch
|
| 3 |
-
from torch import Tensor
|
| 4 |
-
|
| 5 |
-
from ._ops import ops
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
_HIGHEST_RESIDUAL_RMS_MODE = 3
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
def residual_rms_checks(
|
| 12 |
-
input: Tensor,
|
| 13 |
-
residual: Tensor,
|
| 14 |
-
weight: Tensor,
|
| 15 |
-
scale_tensor: Tensor,
|
| 16 |
-
epsilon: float,
|
| 17 |
-
next_buffer: Tensor,
|
| 18 |
-
) -> None:
|
| 19 |
-
# Check shapes
|
| 20 |
-
assert input.dim() == 2, f"Expected input to have 2 dimensions but got {input.dim() = } instead."
|
| 21 |
-
assert residual.shape == input.shape, \
|
| 22 |
-
f"Expected input and residual to have same shape but got {input.shape = } and {residual.shape = }"
|
| 23 |
-
assert weight.shape == (input.size(1), ), \
|
| 24 |
-
f"Expected weight to have shape {(input.size(1), ) = } but got {weight.shape = }"
|
| 25 |
-
# Check devices
|
| 26 |
-
device = input.device
|
| 27 |
-
assert device.type == "cuda", f"Expected input.device to be of type cuda, but got {device.type = } instead."
|
| 28 |
-
assert residual.device == device, f"Expected {residual.device = } to be the same as {input.device = }"
|
| 29 |
-
if scale_tensor is not None:
|
| 30 |
-
assert scale_tensor.device == device, f"Expected {scale_tensor.device = } to be the same as {input.device = }"
|
| 31 |
-
assert next_buffer.device == device, f"Expected {next_buffer.device = } to be the same as {input.device = }"
|
| 32 |
-
# Check layouts
|
| 33 |
-
assert input.is_contiguous(), f"Expected input to be contiguous but got {input.stride() = }"
|
| 34 |
-
assert residual.is_contiguous(), f"Expected residual to be contiguous but got {residual.stride() = }"
|
| 35 |
-
# Check scalars
|
| 36 |
-
assert epsilon > 0, f"Expected RMS epsilon to be > 0 to avoid division by zero, but got {epsilon = }"
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
def residual_rms_choose_mode(
|
| 40 |
-
input: Tensor,
|
| 41 |
-
residual: Tensor,
|
| 42 |
-
weight: Tensor,
|
| 43 |
-
next_buffer: Tensor,
|
| 44 |
-
mode: int,
|
| 45 |
-
) -> int:
|
| 46 |
-
cols_is_multiple_of_8 = (input.size(1) % 8 == 0) and (next_buffer.size(1) % 8 == 0)
|
| 47 |
-
tensors_are_16b_aligned = all([x.data_ptr() % 16 == 0 for x in [input, residual, weight]])
|
| 48 |
-
if mode == -1:
|
| 49 |
-
mode = _HIGHEST_RESIDUAL_RMS_MODE if (tensors_are_16b_aligned and cols_is_multiple_of_8) else 0
|
| 50 |
-
elif mode > 0:
|
| 51 |
-
assert tensors_are_16b_aligned, (
|
| 52 |
-
f"Requested a {mode = } > 0 requires tensors to be 16 bits aligned but got {input.data_ptr() % 16 = }, "
|
| 53 |
-
f"{residual.data_ptr() % 16 = }, {weight.data_ptr() % 16 = }"
|
| 54 |
-
)
|
| 55 |
-
assert cols_is_multiple_of_8, f"Requested {mode = } requires {input.size(1) = } to be a multiple of 8."
|
| 56 |
-
return mode
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
def infer_num_threads(rows: int, num_threads: int) -> int:
|
| 60 |
-
# Error case
|
| 61 |
-
if num_threads < 0 or num_threads > 1024:
|
| 62 |
-
raise ValueError(f"{num_threads = } is not between 0 and 1024")
|
| 63 |
-
# Case: num_threads was specified
|
| 64 |
-
elif num_threads != 0:
|
| 65 |
-
return num_threads
|
| 66 |
-
# Otherwise, we branch upon the number of rows
|
| 67 |
-
if rows <= 16:
|
| 68 |
-
return 1024
|
| 69 |
-
if rows <= 32:
|
| 70 |
-
return 768
|
| 71 |
-
if rows <= 64:
|
| 72 |
-
return 1024
|
| 73 |
-
if rows <= 256:
|
| 74 |
-
return 960
|
| 75 |
-
return 1024
|
| 76 |
-
|
| 77 |
-
## Main kernel
|
| 78 |
-
def residual_rms(
|
| 79 |
-
input: Tensor,
|
| 80 |
-
residual: Tensor,
|
| 81 |
-
weight: Tensor,
|
| 82 |
-
epsilon: float,
|
| 83 |
-
scale_tensor: Optional[Tensor] = None,
|
| 84 |
-
next_buffer: Optional[Tensor] = None,
|
| 85 |
-
num_threads: int = 0,
|
| 86 |
-
force_scalar: bool = False,
|
| 87 |
-
) -> Tuple[Tensor, Tensor]:
|
| 88 |
-
"""Kernel that fuses a residual connection, an RMS normalization and a conversion to fp8. The resdiual argument is
|
| 89 |
-
modified inplace (residual <- input + residual).
|
| 90 |
-
Args:
|
| 91 |
-
- input: a fp16 tensor of shape (rows, cols) in row-major format
|
| 92 |
-
- residual: a fp16 tensor of shape (rows, cols) in row-major format
|
| 93 |
-
- weight: a fp16 tensor of shape (cols, ) in row-major format which contains the weight of the RMS norm
|
| 94 |
-
- epsilon: the small epsilon used inside the RMS norm to avoid division by zero
|
| 95 |
-
- scale_tensor: a fp32 one-item tensor to divide the output of the RMS norm before their conversion to fp8. If
|
| 96 |
-
set to None, then the output dtype is fp16
|
| 97 |
-
- next_buffer: an optional tensor of shape (rows, .) to initialize to zero if the output dtype in fp8
|
| 98 |
-
- num_threads: the number of threads per block in the kernel. Default value is 0, which then defaults to 1024
|
| 99 |
-
Outputs:
|
| 100 |
-
- an fp8 tensor of shape (rows, cols) in row-major format
|
| 101 |
-
- the residual modified in place
|
| 102 |
-
"""
|
| 103 |
-
if next_buffer is None:
|
| 104 |
-
next_buffer = torch.empty(size=(input.size(0), 0), device=input.device, dtype=torch.float16)
|
| 105 |
-
|
| 106 |
-
residual_rms_checks(input, residual, weight, scale_tensor, epsilon, next_buffer)
|
| 107 |
-
num_threads = infer_num_threads(input.size(0), num_threads)
|
| 108 |
-
|
| 109 |
-
if scale_tensor is not None:
|
| 110 |
-
output = torch.empty(size=input.shape, dtype=torch.float8_e4m3fnuz, device=input.device)
|
| 111 |
-
else:
|
| 112 |
-
# TODO: here, we could use input as the output tensor
|
| 113 |
-
output = torch.empty(size=input.shape, dtype=torch.float16, device=input.device)
|
| 114 |
-
ops.residual_rms(
|
| 115 |
-
input=input,
|
| 116 |
-
residual=residual,
|
| 117 |
-
weight=weight,
|
| 118 |
-
scale_tensor=scale_tensor,
|
| 119 |
-
epsilon=epsilon,
|
| 120 |
-
output=output,
|
| 121 |
-
next_buffer=next_buffer,
|
| 122 |
-
num_threads=num_threads,
|
| 123 |
-
force_scalar=force_scalar,
|
| 124 |
-
)
|
| 125 |
-
return output, residual
|
| 126 |
-
|
| 127 |
-
## Reference implementation
|
| 128 |
-
def fp8_quantize(
|
| 129 |
-
x_full_precision: Tensor,
|
| 130 |
-
scale: Tensor,
|
| 131 |
-
) -> Tuple[Tensor, Tensor]:
|
| 132 |
-
finfo = torch.finfo(torch.float8_e4m3fn)
|
| 133 |
-
x_quantized = (x_full_precision * scale.reciprocal()).clamp(min=finfo.min, max=finfo.max)
|
| 134 |
-
x_quantized = x_quantized.to(torch.float8_e4m3fn)
|
| 135 |
-
weight_as_int8 = x_quantized.view(torch.int8)
|
| 136 |
-
ROCM_FP8_NAN_AS_INT = -128
|
| 137 |
-
mask = weight_as_int8 == ROCM_FP8_NAN_AS_INT
|
| 138 |
-
weight_as_int8[mask] = 0
|
| 139 |
-
x_quantized = weight_as_int8.view(torch.float8_e4m3fnuz)
|
| 140 |
-
return x_quantized, scale * 2.0
|
| 141 |
-
|
| 142 |
-
def reference_residual_rms(
|
| 143 |
-
input: Tensor,
|
| 144 |
-
residual: Tensor,
|
| 145 |
-
weight: Tensor,
|
| 146 |
-
epsilon: float,
|
| 147 |
-
scale_tensor: Optional[Tensor],
|
| 148 |
-
next_buffer: Optional[Tensor] = None,
|
| 149 |
-
) -> Tuple[Tensor, Tensor, float]:
|
| 150 |
-
"""Reference for the residual_rms operation. Check its docstring for more details, the only difference here is that
|
| 151 |
-
the scale needs to be passed a tensor and not a float."""
|
| 152 |
-
assert input.dtype == torch.float16, f"Expected torch.float16 but got {input.dtype = }"
|
| 153 |
-
assert residual.dtype == torch.float16, f"Expected torch.float16 but got {residual.dtype = }"
|
| 154 |
-
input += residual
|
| 155 |
-
residual = input
|
| 156 |
-
input = reference_rms(input, epsilon)
|
| 157 |
-
if weight.dtype in [torch.float16, torch.bfloat16]:
|
| 158 |
-
input = input.to(weight.dtype)
|
| 159 |
-
input = weight * input
|
| 160 |
-
if scale_tensor is not None:
|
| 161 |
-
qinput, scale_tensor = fp8_quantize(input, scale_tensor)
|
| 162 |
-
if next_buffer is not None:
|
| 163 |
-
next_buffer.fill_(0)
|
| 164 |
-
else:
|
| 165 |
-
qinput = input
|
| 166 |
-
return qinput, residual, scale_tensor
|
| 167 |
-
|
| 168 |
-
def reference_rms(x: Tensor, eps: float) -> Tensor:
|
| 169 |
-
x = x.to(torch.float32)
|
| 170 |
-
variance = x.pow(2).mean(-1, keepdim=True)
|
| 171 |
-
return x * torch.rsqrt(variance + eps)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/torch28-cxx11-rocm64-x86_64-linux/residual_rms_rocm/__init__.py
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
from .wrapped_rms import residual_rms, reference_residual_rms
|
| 2 |
-
|
| 3 |
-
__all__ = ["residual_rms", "reference_residual_rms"]
|
|
|
|
|
|
|
|
|
|
|
|
build/torch28-cxx11-rocm64-x86_64-linux/residual_rms_rocm/_ops.py
DELETED
|
@@ -1,9 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
from . import _residual_rms_rocm_7d048af
|
| 3 |
-
ops = torch.ops._residual_rms_rocm_7d048af
|
| 4 |
-
|
| 5 |
-
def add_op_namespace_prefix(op_name: str):
|
| 6 |
-
"""
|
| 7 |
-
Prefix op by namespace.
|
| 8 |
-
"""
|
| 9 |
-
return f"_residual_rms_rocm_7d048af::{op_name}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/torch28-cxx11-rocm64-x86_64-linux/residual_rms_rocm/wrapped_rms.py
DELETED
|
@@ -1,171 +0,0 @@
|
|
| 1 |
-
from typing import Tuple, Optional
|
| 2 |
-
import torch
|
| 3 |
-
from torch import Tensor
|
| 4 |
-
|
| 5 |
-
from ._ops import ops
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
_HIGHEST_RESIDUAL_RMS_MODE = 3
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
def residual_rms_checks(
|
| 12 |
-
input: Tensor,
|
| 13 |
-
residual: Tensor,
|
| 14 |
-
weight: Tensor,
|
| 15 |
-
scale_tensor: Tensor,
|
| 16 |
-
epsilon: float,
|
| 17 |
-
next_buffer: Tensor,
|
| 18 |
-
) -> None:
|
| 19 |
-
# Check shapes
|
| 20 |
-
assert input.dim() == 2, f"Expected input to have 2 dimensions but got {input.dim() = } instead."
|
| 21 |
-
assert residual.shape == input.shape, \
|
| 22 |
-
f"Expected input and residual to have same shape but got {input.shape = } and {residual.shape = }"
|
| 23 |
-
assert weight.shape == (input.size(1), ), \
|
| 24 |
-
f"Expected weight to have shape {(input.size(1), ) = } but got {weight.shape = }"
|
| 25 |
-
# Check devices
|
| 26 |
-
device = input.device
|
| 27 |
-
assert device.type == "cuda", f"Expected input.device to be of type cuda, but got {device.type = } instead."
|
| 28 |
-
assert residual.device == device, f"Expected {residual.device = } to be the same as {input.device = }"
|
| 29 |
-
if scale_tensor is not None:
|
| 30 |
-
assert scale_tensor.device == device, f"Expected {scale_tensor.device = } to be the same as {input.device = }"
|
| 31 |
-
assert next_buffer.device == device, f"Expected {next_buffer.device = } to be the same as {input.device = }"
|
| 32 |
-
# Check layouts
|
| 33 |
-
assert input.is_contiguous(), f"Expected input to be contiguous but got {input.stride() = }"
|
| 34 |
-
assert residual.is_contiguous(), f"Expected residual to be contiguous but got {residual.stride() = }"
|
| 35 |
-
# Check scalars
|
| 36 |
-
assert epsilon > 0, f"Expected RMS epsilon to be > 0 to avoid division by zero, but got {epsilon = }"
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
def residual_rms_choose_mode(
|
| 40 |
-
input: Tensor,
|
| 41 |
-
residual: Tensor,
|
| 42 |
-
weight: Tensor,
|
| 43 |
-
next_buffer: Tensor,
|
| 44 |
-
mode: int,
|
| 45 |
-
) -> int:
|
| 46 |
-
cols_is_multiple_of_8 = (input.size(1) % 8 == 0) and (next_buffer.size(1) % 8 == 0)
|
| 47 |
-
tensors_are_16b_aligned = all([x.data_ptr() % 16 == 0 for x in [input, residual, weight]])
|
| 48 |
-
if mode == -1:
|
| 49 |
-
mode = _HIGHEST_RESIDUAL_RMS_MODE if (tensors_are_16b_aligned and cols_is_multiple_of_8) else 0
|
| 50 |
-
elif mode > 0:
|
| 51 |
-
assert tensors_are_16b_aligned, (
|
| 52 |
-
f"Requested a {mode = } > 0 requires tensors to be 16 bits aligned but got {input.data_ptr() % 16 = }, "
|
| 53 |
-
f"{residual.data_ptr() % 16 = }, {weight.data_ptr() % 16 = }"
|
| 54 |
-
)
|
| 55 |
-
assert cols_is_multiple_of_8, f"Requested {mode = } requires {input.size(1) = } to be a multiple of 8."
|
| 56 |
-
return mode
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
def infer_num_threads(rows: int, num_threads: int) -> int:
|
| 60 |
-
# Error case
|
| 61 |
-
if num_threads < 0 or num_threads > 1024:
|
| 62 |
-
raise ValueError(f"{num_threads = } is not between 0 and 1024")
|
| 63 |
-
# Case: num_threads was specified
|
| 64 |
-
elif num_threads != 0:
|
| 65 |
-
return num_threads
|
| 66 |
-
# Otherwise, we branch upon the number of rows
|
| 67 |
-
if rows <= 16:
|
| 68 |
-
return 1024
|
| 69 |
-
if rows <= 32:
|
| 70 |
-
return 768
|
| 71 |
-
if rows <= 64:
|
| 72 |
-
return 1024
|
| 73 |
-
if rows <= 256:
|
| 74 |
-
return 960
|
| 75 |
-
return 1024
|
| 76 |
-
|
| 77 |
-
## Main kernel
|
| 78 |
-
def residual_rms(
|
| 79 |
-
input: Tensor,
|
| 80 |
-
residual: Tensor,
|
| 81 |
-
weight: Tensor,
|
| 82 |
-
epsilon: float,
|
| 83 |
-
scale_tensor: Optional[Tensor] = None,
|
| 84 |
-
next_buffer: Optional[Tensor] = None,
|
| 85 |
-
num_threads: int = 0,
|
| 86 |
-
force_scalar: bool = False,
|
| 87 |
-
) -> Tuple[Tensor, Tensor]:
|
| 88 |
-
"""Kernel that fuses a residual connection, an RMS normalization and a conversion to fp8. The resdiual argument is
|
| 89 |
-
modified inplace (residual <- input + residual).
|
| 90 |
-
Args:
|
| 91 |
-
- input: a fp16 tensor of shape (rows, cols) in row-major format
|
| 92 |
-
- residual: a fp16 tensor of shape (rows, cols) in row-major format
|
| 93 |
-
- weight: a fp16 tensor of shape (cols, ) in row-major format which contains the weight of the RMS norm
|
| 94 |
-
- epsilon: the small epsilon used inside the RMS norm to avoid division by zero
|
| 95 |
-
- scale_tensor: a fp32 one-item tensor to divide the output of the RMS norm before their conversion to fp8. If
|
| 96 |
-
set to None, then the output dtype is fp16
|
| 97 |
-
- next_buffer: an optional tensor of shape (rows, .) to initialize to zero if the output dtype in fp8
|
| 98 |
-
- num_threads: the number of threads per block in the kernel. Default value is 0, which then defaults to 1024
|
| 99 |
-
Outputs:
|
| 100 |
-
- an fp8 tensor of shape (rows, cols) in row-major format
|
| 101 |
-
- the residual modified in place
|
| 102 |
-
"""
|
| 103 |
-
if next_buffer is None:
|
| 104 |
-
next_buffer = torch.empty(size=(input.size(0), 0), device=input.device, dtype=torch.float16)
|
| 105 |
-
|
| 106 |
-
residual_rms_checks(input, residual, weight, scale_tensor, epsilon, next_buffer)
|
| 107 |
-
num_threads = infer_num_threads(input.size(0), num_threads)
|
| 108 |
-
|
| 109 |
-
if scale_tensor is not None:
|
| 110 |
-
output = torch.empty(size=input.shape, dtype=torch.float8_e4m3fnuz, device=input.device)
|
| 111 |
-
else:
|
| 112 |
-
# TODO: here, we could use input as the output tensor
|
| 113 |
-
output = torch.empty(size=input.shape, dtype=torch.float16, device=input.device)
|
| 114 |
-
ops.residual_rms(
|
| 115 |
-
input=input,
|
| 116 |
-
residual=residual,
|
| 117 |
-
weight=weight,
|
| 118 |
-
scale_tensor=scale_tensor,
|
| 119 |
-
epsilon=epsilon,
|
| 120 |
-
output=output,
|
| 121 |
-
next_buffer=next_buffer,
|
| 122 |
-
num_threads=num_threads,
|
| 123 |
-
force_scalar=force_scalar,
|
| 124 |
-
)
|
| 125 |
-
return output, residual
|
| 126 |
-
|
| 127 |
-
## Reference implementation
|
| 128 |
-
def fp8_quantize(
|
| 129 |
-
x_full_precision: Tensor,
|
| 130 |
-
scale: Tensor,
|
| 131 |
-
) -> Tuple[Tensor, Tensor]:
|
| 132 |
-
finfo = torch.finfo(torch.float8_e4m3fn)
|
| 133 |
-
x_quantized = (x_full_precision * scale.reciprocal()).clamp(min=finfo.min, max=finfo.max)
|
| 134 |
-
x_quantized = x_quantized.to(torch.float8_e4m3fn)
|
| 135 |
-
weight_as_int8 = x_quantized.view(torch.int8)
|
| 136 |
-
ROCM_FP8_NAN_AS_INT = -128
|
| 137 |
-
mask = weight_as_int8 == ROCM_FP8_NAN_AS_INT
|
| 138 |
-
weight_as_int8[mask] = 0
|
| 139 |
-
x_quantized = weight_as_int8.view(torch.float8_e4m3fnuz)
|
| 140 |
-
return x_quantized, scale * 2.0
|
| 141 |
-
|
| 142 |
-
def reference_residual_rms(
|
| 143 |
-
input: Tensor,
|
| 144 |
-
residual: Tensor,
|
| 145 |
-
weight: Tensor,
|
| 146 |
-
epsilon: float,
|
| 147 |
-
scale_tensor: Optional[Tensor],
|
| 148 |
-
next_buffer: Optional[Tensor] = None,
|
| 149 |
-
) -> Tuple[Tensor, Tensor, float]:
|
| 150 |
-
"""Reference for the residual_rms operation. Check its docstring for more details, the only difference here is that
|
| 151 |
-
the scale needs to be passed a tensor and not a float."""
|
| 152 |
-
assert input.dtype == torch.float16, f"Expected torch.float16 but got {input.dtype = }"
|
| 153 |
-
assert residual.dtype == torch.float16, f"Expected torch.float16 but got {residual.dtype = }"
|
| 154 |
-
input += residual
|
| 155 |
-
residual = input
|
| 156 |
-
input = reference_rms(input, epsilon)
|
| 157 |
-
if weight.dtype in [torch.float16, torch.bfloat16]:
|
| 158 |
-
input = input.to(weight.dtype)
|
| 159 |
-
input = weight * input
|
| 160 |
-
if scale_tensor is not None:
|
| 161 |
-
qinput, scale_tensor = fp8_quantize(input, scale_tensor)
|
| 162 |
-
if next_buffer is not None:
|
| 163 |
-
next_buffer.fill_(0)
|
| 164 |
-
else:
|
| 165 |
-
qinput = input
|
| 166 |
-
return qinput, residual, scale_tensor
|
| 167 |
-
|
| 168 |
-
def reference_rms(x: Tensor, eps: float) -> Tensor:
|
| 169 |
-
x = x.to(torch.float32)
|
| 170 |
-
variance = x.pow(2).mean(-1, keepdim=True)
|
| 171 |
-
return x * torch.rsqrt(variance + eps)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|