Add files using upload-large-folder tool
Browse files- .github/ISSUE_TEMPLATE/bug_report.md +38 -0
- .github/ISSUE_TEMPLATE/feature_request.md +20 -0
- .github/workflows/lint.yml +56 -0
- .github/workflows/stale-issues.yml +22 -0
- .gitignore +52 -0
- .gitmodules +3 -0
- CODE_OF_CONDUCT.md +76 -0
- FAQ.md +16 -0
- LICENSE +201 -0
- README.md +237 -3
- asset/dingding.png +0 -0
- cosyvoice/__init__.py +0 -0
- cosyvoice/bin/export_jit.py +91 -0
- cosyvoice/bin/export_onnx.py +116 -0
- cosyvoice/bin/export_trt.sh +10 -0
- cosyvoice/bin/inference.py +115 -0
- cosyvoice/bin/train.py +170 -0
- cosyvoice/cli/cosyvoice.py +173 -0
- cosyvoice/cli/model.py +411 -0
- cosyvoice/dataset/__init__.py +0 -0
- cosyvoice/dataset/dataset.py +164 -0
- cosyvoice/flow/decoder.py +301 -0
- cosyvoice/flow/flow.py +239 -0
- cosyvoice/flow/flow_matching.py +217 -0
- cosyvoice/flow/length_regulator.py +69 -0
- cosyvoice/hifigan/discriminator.py +140 -0
- cosyvoice/hifigan/f0_predictor.py +55 -0
- cosyvoice/hifigan/generator.py +411 -0
- cosyvoice/llm/llm.py +434 -0
- cosyvoice/transformer/__init__.py +0 -0
- cosyvoice/transformer/attention.py +330 -0
- cosyvoice/transformer/convolution.py +145 -0
- cosyvoice/transformer/decoder.py +396 -0
- cosyvoice/transformer/decoder_layer.py +132 -0
- cosyvoice/utils/__init__.py +0 -0
- cosyvoice/utils/class_utils.py +83 -0
- cosyvoice/utils/scheduler.py +738 -0
- examples/libritts/cosyvoice/local/prepare_data.py +53 -0
- examples/libritts/cosyvoice/path.sh +3 -0
- requirements.txt +38 -0
- runtime/python/Dockerfile +13 -0
- runtime/python/grpc/cosyvoice.proto +43 -0
- webui.py +200 -0
.github/ISSUE_TEMPLATE/bug_report.md
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: Bug report
|
3 |
+
about: Create a report to help us improve
|
4 |
+
title: ''
|
5 |
+
labels: ''
|
6 |
+
assignees: ''
|
7 |
+
|
8 |
+
---
|
9 |
+
|
10 |
+
**Describe the bug**
|
11 |
+
A clear and concise description of what the bug is.
|
12 |
+
|
13 |
+
**To Reproduce**
|
14 |
+
Steps to reproduce the behavior:
|
15 |
+
1. Go to '...'
|
16 |
+
2. Click on '....'
|
17 |
+
3. Scroll down to '....'
|
18 |
+
4. See error
|
19 |
+
|
20 |
+
**Expected behavior**
|
21 |
+
A clear and concise description of what you expected to happen.
|
22 |
+
|
23 |
+
**Screenshots**
|
24 |
+
If applicable, add screenshots to help explain your problem.
|
25 |
+
|
26 |
+
**Desktop (please complete the following information):**
|
27 |
+
- OS: [e.g. iOS]
|
28 |
+
- Browser [e.g. chrome, safari]
|
29 |
+
- Version [e.g. 22]
|
30 |
+
|
31 |
+
**Smartphone (please complete the following information):**
|
32 |
+
- Device: [e.g. iPhone6]
|
33 |
+
- OS: [e.g. iOS8.1]
|
34 |
+
- Browser [e.g. stock browser, safari]
|
35 |
+
- Version [e.g. 22]
|
36 |
+
|
37 |
+
**Additional context**
|
38 |
+
Add any other context about the problem here.
|
.github/ISSUE_TEMPLATE/feature_request.md
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: Feature request
|
3 |
+
about: Suggest an idea for this project
|
4 |
+
title: ''
|
5 |
+
labels: ''
|
6 |
+
assignees: ''
|
7 |
+
|
8 |
+
---
|
9 |
+
|
10 |
+
**Is your feature request related to a problem? Please describe.**
|
11 |
+
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
|
12 |
+
|
13 |
+
**Describe the solution you'd like**
|
14 |
+
A clear and concise description of what you want to happen.
|
15 |
+
|
16 |
+
**Describe alternatives you've considered**
|
17 |
+
A clear and concise description of any alternative solutions or features you've considered.
|
18 |
+
|
19 |
+
**Additional context**
|
20 |
+
Add any other context or screenshots about the feature request here.
|
.github/workflows/lint.yml
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Lint
|
2 |
+
|
3 |
+
on:
|
4 |
+
pull_request:
|
5 |
+
push:
|
6 |
+
|
7 |
+
jobs:
|
8 |
+
quick-checks:
|
9 |
+
runs-on: ubuntu-latest
|
10 |
+
steps:
|
11 |
+
- name: Fetch CosyVoice
|
12 |
+
uses: actions/checkout@v1
|
13 |
+
- name: Checkout PR tip
|
14 |
+
run: |
|
15 |
+
set -eux
|
16 |
+
if [[ "${{ github.event_name }}" == "pull_request" ]]; then
|
17 |
+
# We are on a PR, so actions/checkout leaves us on a merge commit.
|
18 |
+
# Check out the actual tip of the branch.
|
19 |
+
git checkout ${{ github.event.pull_request.head.sha }}
|
20 |
+
fi
|
21 |
+
echo ::set-output name=commit_sha::$(git rev-parse HEAD)
|
22 |
+
id: get_pr_tip
|
23 |
+
- name: Ensure no tabs
|
24 |
+
run: |
|
25 |
+
(! git grep -I -l $'\t' -- . ':(exclude)*.txt' ':(exclude)*.svg' ':(exclude)**Makefile' ':(exclude)**/contrib/**' ':(exclude)third_party' ':(exclude).gitattributes' ':(exclude).gitmodules' || (echo "The above files have tabs; please convert them to spaces"; false))
|
26 |
+
- name: Ensure no trailing whitespace
|
27 |
+
run: |
|
28 |
+
(! git grep -I -n $' $' -- . ':(exclude)*.txt' ':(exclude)third_party' ':(exclude).gitattributes' ':(exclude).gitmodules' || (echo "The above files have trailing whitespace; please remove them"; false))
|
29 |
+
|
30 |
+
flake8-py3:
|
31 |
+
runs-on: ubuntu-latest
|
32 |
+
steps:
|
33 |
+
- name: Setup Python
|
34 |
+
uses: actions/setup-python@v1
|
35 |
+
with:
|
36 |
+
python-version: 3.9
|
37 |
+
architecture: x64
|
38 |
+
- name: Fetch CosyVoice
|
39 |
+
uses: actions/checkout@v1
|
40 |
+
- name: Checkout PR tip
|
41 |
+
run: |
|
42 |
+
set -eux
|
43 |
+
if [[ "${{ github.event_name }}" == "pull_request" ]]; then
|
44 |
+
# We are on a PR, so actions/checkout leaves us on a merge commit.
|
45 |
+
# Check out the actual tip of the branch.
|
46 |
+
git checkout ${{ github.event.pull_request.head.sha }}
|
47 |
+
fi
|
48 |
+
echo ::set-output name=commit_sha::$(git rev-parse HEAD)
|
49 |
+
id: get_pr_tip
|
50 |
+
- name: Run flake8
|
51 |
+
run: |
|
52 |
+
set -eux
|
53 |
+
pip install flake8==3.8.2 flake8-bugbear flake8-comprehensions flake8-executable flake8-pyi==20.5.0 mccabe pycodestyle==2.6.0 pyflakes==2.2.0
|
54 |
+
flake8 --version
|
55 |
+
flake8 --max-line-length 180 --ignore B006,B008,B905,C408,E402,E731,E741,W503,W504 --exclude ./third_party/,./runtime/python/grpc/cosyvoice_pb2*py
|
56 |
+
if [ $? != 0 ]; then exit 1; fi
|
.github/workflows/stale-issues.yml
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Close inactive issues
|
2 |
+
on:
|
3 |
+
schedule:
|
4 |
+
- cron: "30 1 * * *"
|
5 |
+
|
6 |
+
jobs:
|
7 |
+
close-issues:
|
8 |
+
runs-on: ubuntu-latest
|
9 |
+
permissions:
|
10 |
+
issues: write
|
11 |
+
pull-requests: write
|
12 |
+
steps:
|
13 |
+
- uses: actions/stale@v5
|
14 |
+
with:
|
15 |
+
days-before-issue-stale: 30
|
16 |
+
days-before-issue-close: 14
|
17 |
+
stale-issue-label: "stale"
|
18 |
+
stale-issue-message: "This issue is stale because it has been open for 30 days with no activity."
|
19 |
+
close-issue-message: "This issue was closed because it has been inactive for 14 days since being marked as stale."
|
20 |
+
days-before-pr-stale: -1
|
21 |
+
days-before-pr-close: -1
|
22 |
+
repo-token: ${{ secrets.GITHUB_TOKEN }}
|
.gitignore
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# Visual Studio Code files
|
7 |
+
.vscode
|
8 |
+
.vs
|
9 |
+
|
10 |
+
# PyCharm files
|
11 |
+
.idea
|
12 |
+
|
13 |
+
# Eclipse Project settings
|
14 |
+
*.*project
|
15 |
+
.settings
|
16 |
+
|
17 |
+
# Sublime Text settings
|
18 |
+
*.sublime-workspace
|
19 |
+
*.sublime-project
|
20 |
+
|
21 |
+
# Editor temporaries
|
22 |
+
*.swn
|
23 |
+
*.swo
|
24 |
+
*.swp
|
25 |
+
*.swm
|
26 |
+
*~
|
27 |
+
|
28 |
+
# IPython notebook checkpoints
|
29 |
+
.ipynb_checkpoints
|
30 |
+
|
31 |
+
# macOS dir files
|
32 |
+
.DS_Store
|
33 |
+
|
34 |
+
exp
|
35 |
+
data
|
36 |
+
raw_wav
|
37 |
+
tensorboard
|
38 |
+
**/*build*
|
39 |
+
|
40 |
+
# Clangd files
|
41 |
+
.cache
|
42 |
+
compile_commands.json
|
43 |
+
|
44 |
+
# train/inference files
|
45 |
+
*.wav
|
46 |
+
*.m4a
|
47 |
+
*.aac
|
48 |
+
*.pt
|
49 |
+
pretrained_models/*
|
50 |
+
*_pb2_grpc.py
|
51 |
+
*_pb2.py
|
52 |
+
*.tar
|
.gitmodules
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "third_party/Matcha-TTS"]
|
2 |
+
path = third_party/Matcha-TTS
|
3 |
+
url = https://github.com/shivammehta25/Matcha-TTS.git
|
CODE_OF_CONDUCT.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Contributor Covenant Code of Conduct
|
2 |
+
|
3 |
+
## Our Pledge
|
4 |
+
|
5 |
+
In the interest of fostering an open and welcoming environment, we as
|
6 |
+
contributors and maintainers pledge to making participation in our project and
|
7 |
+
our community a harassment-free experience for everyone, regardless of age, body
|
8 |
+
size, disability, ethnicity, sex characteristics, gender identity and expression,
|
9 |
+
level of experience, education, socio-economic status, nationality, personal
|
10 |
+
appearance, race, religion, or sexual identity and orientation.
|
11 |
+
|
12 |
+
## Our Standards
|
13 |
+
|
14 |
+
Examples of behavior that contributes to creating a positive environment
|
15 |
+
include:
|
16 |
+
|
17 |
+
* Using welcoming and inclusive language
|
18 |
+
* Being respectful of differing viewpoints and experiences
|
19 |
+
* Gracefully accepting constructive criticism
|
20 |
+
* Focusing on what is best for the community
|
21 |
+
* Showing empathy towards other community members
|
22 |
+
|
23 |
+
Examples of unacceptable behavior by participants include:
|
24 |
+
|
25 |
+
* The use of sexualized language or imagery and unwelcome sexual attention or
|
26 |
+
advances
|
27 |
+
* Trolling, insulting/derogatory comments, and personal or political attacks
|
28 |
+
* Public or private harassment
|
29 |
+
* Publishing others' private information, such as a physical or electronic
|
30 |
+
address, without explicit permission
|
31 |
+
* Other conduct which could reasonably be considered inappropriate in a
|
32 |
+
professional setting
|
33 |
+
|
34 |
+
## Our Responsibilities
|
35 |
+
|
36 |
+
Project maintainers are responsible for clarifying the standards of acceptable
|
37 |
+
behavior and are expected to take appropriate and fair corrective action in
|
38 |
+
response to any instances of unacceptable behavior.
|
39 |
+
|
40 |
+
Project maintainers have the right and responsibility to remove, edit, or
|
41 |
+
reject comments, commits, code, wiki edits, issues, and other contributions
|
42 |
+
that are not aligned to this Code of Conduct, or to ban temporarily or
|
43 |
+
permanently any contributor for other behaviors that they deem inappropriate,
|
44 |
+
threatening, offensive, or harmful.
|
45 |
+
|
46 |
+
## Scope
|
47 |
+
|
48 |
+
This Code of Conduct applies both within project spaces and in public spaces
|
49 |
+
when an individual is representing the project or its community. Examples of
|
50 |
+
representing a project or community include using an official project e-mail
|
51 |
+
address, posting via an official social media account, or acting as an appointed
|
52 |
+
representative at an online or offline event. Representation of a project may be
|
53 |
+
further defined and clarified by project maintainers.
|
54 |
+
|
55 |
+
## Enforcement
|
56 |
+
|
57 |
+
Instances of abusive, harassing, or otherwise unacceptable behavior may be
|
58 |
+
reported by contacting the project team at [email protected]. All
|
59 |
+
complaints will be reviewed and investigated and will result in a response that
|
60 |
+
is deemed necessary and appropriate to the circumstances. The project team is
|
61 |
+
obligated to maintain confidentiality with regard to the reporter of an incident.
|
62 |
+
Further details of specific enforcement policies may be posted separately.
|
63 |
+
|
64 |
+
Project maintainers who do not follow or enforce the Code of Conduct in good
|
65 |
+
faith may face temporary or permanent repercussions as determined by other
|
66 |
+
members of the project's leadership.
|
67 |
+
|
68 |
+
## Attribution
|
69 |
+
|
70 |
+
This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
|
71 |
+
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
|
72 |
+
|
73 |
+
[homepage]: https://www.contributor-covenant.org
|
74 |
+
|
75 |
+
For answers to common questions about this code of conduct, see
|
76 |
+
https://www.contributor-covenant.org/faq
|
FAQ.md
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## ModuleNotFoundError: No module named 'matcha'
|
2 |
+
|
3 |
+
Matcha-TTS is a third_party module. Please check `third_party` directory. If there is no `Matcha-TTS`, execute `git submodule update --init --recursive`.
|
4 |
+
|
5 |
+
run `export PYTHONPATH=third_party/Matcha-TTS` if you want to use `from cosyvoice.cli.cosyvoice import CosyVoice` in python script.
|
6 |
+
|
7 |
+
## cannot find resource.zip or cannot unzip resource.zip
|
8 |
+
|
9 |
+
Please make sure you have git-lfs installed. Execute
|
10 |
+
|
11 |
+
```sh
|
12 |
+
git clone https://www.modelscope.cn/iic/CosyVoice-ttsfrd.git pretrained_models/CosyVoice-ttsfrd
|
13 |
+
cd pretrained_models/CosyVoice-ttsfrd/
|
14 |
+
unzip resource.zip -d .
|
15 |
+
pip install ttsfrd-0.3.6-cp38-cp38-linux_x86_64.whl
|
16 |
+
```
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
CHANGED
@@ -1,3 +1,237 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[](https://github.com/Akshay090/svg-banners)
|
2 |
+
|
3 |
+
## 👉🏻 CosyVoice 👈🏻
|
4 |
+
**CosyVoice 2.0**: [Demos](https://funaudiollm.github.io/cosyvoice2/); [Paper](https://arxiv.org/abs/2412.10117); [Modelscope](https://www.modelscope.cn/studios/iic/CosyVoice2-0.5B); [HuggingFace](https://huggingface.co/spaces/FunAudioLLM/CosyVoice2-0.5B)
|
5 |
+
|
6 |
+
**CosyVoice 1.0**: [Demos](https://fun-audio-llm.github.io); [Paper](https://funaudiollm.github.io/pdf/CosyVoice_v1.pdf); [Modelscope](https://www.modelscope.cn/studios/iic/CosyVoice-300M)
|
7 |
+
|
8 |
+
## Highlight🔥
|
9 |
+
|
10 |
+
**CosyVoice 2.0** has been released! Compared to version 1.0, the new version offers more accurate, more stable, faster, and better speech generation capabilities.
|
11 |
+
### Multilingual
|
12 |
+
- **Supported Language**: Chinese, English, Japanese, Korean, Chinese dialects (Cantonese, Sichuanese, Shanghainese, Tianjinese, Wuhanese, etc.)
|
13 |
+
- **Crosslingual & Mixlingual**:Support zero-shot voice cloning for cross-lingual and code-switching scenarios.
|
14 |
+
### Ultra-Low Latency
|
15 |
+
- **Bidirectional Streaming Support**: CosyVoice 2.0 integrates offline and streaming modeling technologies.
|
16 |
+
- **Rapid First Packet Synthesis**: Achieves latency as low as 150ms while maintaining high-quality audio output.
|
17 |
+
### High Accuracy
|
18 |
+
- **Improved Pronunciation**: Reduces pronunciation errors by 30% to 50% compared to CosyVoice 1.0.
|
19 |
+
- **Benchmark Achievements**: Attains the lowest character error rate on the hard test set of the Seed-TTS evaluation set.
|
20 |
+
### Strong Stability
|
21 |
+
- **Consistency in Timbre**: Ensures reliable voice consistency for zero-shot and cross-language speech synthesis.
|
22 |
+
- **Cross-language Synthesis**: Marked improvements compared to version 1.0.
|
23 |
+
### Natural Experience
|
24 |
+
- **Enhanced Prosody and Sound Quality**: Improved alignment of synthesized audio, raising MOS evaluation scores from 5.4 to 5.53.
|
25 |
+
- **Emotional and Dialectal Flexibility**: Now supports more granular emotional controls and accent adjustments.
|
26 |
+
|
27 |
+
## Roadmap
|
28 |
+
|
29 |
+
- [x] 2024/12
|
30 |
+
|
31 |
+
- [x] 25hz cosyvoice 2.0 released
|
32 |
+
|
33 |
+
- [x] 2024/09
|
34 |
+
|
35 |
+
- [x] 25hz cosyvoice base model
|
36 |
+
- [x] 25hz cosyvoice voice conversion model
|
37 |
+
|
38 |
+
- [x] 2024/08
|
39 |
+
|
40 |
+
- [x] Repetition Aware Sampling(RAS) inference for llm stability
|
41 |
+
- [x] Streaming inference mode support, including kv cache and sdpa for rtf optimization
|
42 |
+
|
43 |
+
- [x] 2024/07
|
44 |
+
|
45 |
+
- [x] Flow matching training support
|
46 |
+
- [x] WeTextProcessing support when ttsfrd is not available
|
47 |
+
- [x] Fastapi server and client
|
48 |
+
|
49 |
+
|
50 |
+
## Install
|
51 |
+
|
52 |
+
**Clone and install**
|
53 |
+
|
54 |
+
- Clone the repo
|
55 |
+
``` sh
|
56 |
+
git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
|
57 |
+
# If you failed to clone submodule due to network failures, please run following command until success
|
58 |
+
cd CosyVoice
|
59 |
+
git submodule update --init --recursive
|
60 |
+
```
|
61 |
+
|
62 |
+
- Install Conda: please see https://docs.conda.io/en/latest/miniconda.html
|
63 |
+
- Create Conda env:
|
64 |
+
|
65 |
+
``` sh
|
66 |
+
conda create -n cosyvoice -y python=3.10
|
67 |
+
conda activate cosyvoice
|
68 |
+
# pynini is required by WeTextProcessing, use conda to install it as it can be executed on all platform.
|
69 |
+
conda install -y -c conda-forge pynini==2.1.5
|
70 |
+
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
|
71 |
+
|
72 |
+
# If you encounter sox compatibility issues
|
73 |
+
# ubuntu
|
74 |
+
sudo apt-get install sox libsox-dev
|
75 |
+
# centos
|
76 |
+
sudo yum install sox sox-devel
|
77 |
+
```
|
78 |
+
|
79 |
+
**Model download**
|
80 |
+
|
81 |
+
We strongly recommend that you download our pretrained `CosyVoice2-0.5B` `CosyVoice-300M` `CosyVoice-300M-SFT` `CosyVoice-300M-Instruct` model and `CosyVoice-ttsfrd` resource.
|
82 |
+
|
83 |
+
``` python
|
84 |
+
# SDK模型下载
|
85 |
+
from modelscope import snapshot_download
|
86 |
+
snapshot_download('iic/CosyVoice2-0.5B', local_dir='pretrained_models/CosyVoice2-0.5B')
|
87 |
+
snapshot_download('iic/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')
|
88 |
+
snapshot_download('iic/CosyVoice-300M-25Hz', local_dir='pretrained_models/CosyVoice-300M-25Hz')
|
89 |
+
snapshot_download('iic/CosyVoice-300M-SFT', local_dir='pretrained_models/CosyVoice-300M-SFT')
|
90 |
+
snapshot_download('iic/CosyVoice-300M-Instruct', local_dir='pretrained_models/CosyVoice-300M-Instruct')
|
91 |
+
snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
|
92 |
+
```
|
93 |
+
|
94 |
+
``` sh
|
95 |
+
# git模型下载,请确保已安装git lfs
|
96 |
+
mkdir -p pretrained_models
|
97 |
+
git clone https://www.modelscope.cn/iic/CosyVoice2-0.5B.git pretrained_models/CosyVoice2-0.5B
|
98 |
+
git clone https://www.modelscope.cn/iic/CosyVoice-300M.git pretrained_models/CosyVoice-300M
|
99 |
+
git clone https://www.modelscope.cn/iic/CosyVoice-300M-25Hz.git pretrained_models/CosyVoice-300M-25Hz
|
100 |
+
git clone https://www.modelscope.cn/iic/CosyVoice-300M-SFT.git pretrained_models/CosyVoice-300M-SFT
|
101 |
+
git clone https://www.modelscope.cn/iic/CosyVoice-300M-Instruct.git pretrained_models/CosyVoice-300M-Instruct
|
102 |
+
git clone https://www.modelscope.cn/iic/CosyVoice-ttsfrd.git pretrained_models/CosyVoice-ttsfrd
|
103 |
+
```
|
104 |
+
|
105 |
+
Optionally, you can unzip `ttsfrd` resouce and install `ttsfrd` package for better text normalization performance.
|
106 |
+
|
107 |
+
Notice that this step is not necessary. If you do not install `ttsfrd` package, we will use WeTextProcessing by default.
|
108 |
+
|
109 |
+
``` sh
|
110 |
+
cd pretrained_models/CosyVoice-ttsfrd/
|
111 |
+
unzip resource.zip -d .
|
112 |
+
pip install ttsfrd_dependency-0.1-py3-none-any.whl
|
113 |
+
pip install ttsfrd-0.4.2-cp310-cp310-linux_x86_64.whl
|
114 |
+
```
|
115 |
+
|
116 |
+
**Basic Usage**
|
117 |
+
|
118 |
+
We strongly recommend using `CosyVoice2-0.5B` for better performance.
|
119 |
+
Follow code below for detailed usage of each model.
|
120 |
+
|
121 |
+
``` python
|
122 |
+
import sys
|
123 |
+
sys.path.append('third_party/Matcha-TTS')
|
124 |
+
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
125 |
+
from cosyvoice.utils.file_utils import load_wav
|
126 |
+
import torchaudio
|
127 |
+
```
|
128 |
+
|
129 |
+
**CosyVoice2 Usage**
|
130 |
+
```python
|
131 |
+
cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=False, load_trt=False, fp16=False)
|
132 |
+
|
133 |
+
# NOTE if you want to reproduce the results on https://funaudiollm.github.io/cosyvoice2, please add text_frontend=False during inference
|
134 |
+
# zero_shot usage
|
135 |
+
prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
|
136 |
+
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
137 |
+
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
138 |
+
|
139 |
+
# fine grained control, for supported control, check cosyvoice/tokenizer/tokenizer.py#L248
|
140 |
+
for i, j in enumerate(cosyvoice.inference_cross_lingual('在他讲述那个荒诞故事的过程中,他突然[laughter]停下来,因为他自己也被逗笑了[laughter]。', prompt_speech_16k, stream=False)):
|
141 |
+
torchaudio.save('fine_grained_control_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
142 |
+
|
143 |
+
# instruct usage
|
144 |
+
for i, j in enumerate(cosyvoice.inference_instruct2('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '用四川话说这句话', prompt_speech_16k, stream=False)):
|
145 |
+
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
146 |
+
|
147 |
+
# bistream usage, you can use generator as input, this is useful when using text llm model as input
|
148 |
+
# NOTE you should still have some basic sentence split logic because llm can not handle arbitrary sentence length
|
149 |
+
def text_generator():
|
150 |
+
yield '收到好友从远方寄来的生日礼物,'
|
151 |
+
yield '那份意外的惊喜与深深的祝福'
|
152 |
+
yield '让我心中充满了甜蜜的快乐,'
|
153 |
+
yield '笑容如花儿般绽放。'
|
154 |
+
for i, j in enumerate(cosyvoice.inference_zero_shot(text_generator(), '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
155 |
+
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
156 |
+
```
|
157 |
+
|
158 |
+
**CosyVoice Usage**
|
159 |
+
```python
|
160 |
+
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-SFT', load_jit=False, load_trt=False, fp16=False)
|
161 |
+
# sft usage
|
162 |
+
print(cosyvoice.list_available_spks())
|
163 |
+
# change stream=True for chunk stream inference
|
164 |
+
for i, j in enumerate(cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女', stream=False)):
|
165 |
+
torchaudio.save('sft_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
166 |
+
|
167 |
+
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M') # or change to pretrained_models/CosyVoice-300M-25Hz for 25Hz inference
|
168 |
+
# zero_shot usage, <|zh|><|en|><|jp|><|yue|><|ko|> for Chinese/English/Japanese/Cantonese/Korean
|
169 |
+
prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
|
170 |
+
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
|
171 |
+
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
172 |
+
# cross_lingual usage
|
173 |
+
prompt_speech_16k = load_wav('./asset/cross_lingual_prompt.wav', 16000)
|
174 |
+
for i, j in enumerate(cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k, stream=False)):
|
175 |
+
torchaudio.save('cross_lingual_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
176 |
+
# vc usage
|
177 |
+
prompt_speech_16k = load_wav('./asset/zero_shot_prompt.wav', 16000)
|
178 |
+
source_speech_16k = load_wav('./asset/cross_lingual_prompt.wav', 16000)
|
179 |
+
for i, j in enumerate(cosyvoice.inference_vc(source_speech_16k, prompt_speech_16k, stream=False)):
|
180 |
+
torchaudio.save('vc_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
181 |
+
|
182 |
+
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-Instruct')
|
183 |
+
# instruct usage, support <laughter></laughter><strong></strong>[laughter][breath]
|
184 |
+
for i, j in enumerate(cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的<strong>勇气</strong>与<strong>智慧</strong>。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.', stream=False)):
|
185 |
+
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)
|
186 |
+
```
|
187 |
+
|
188 |
+
**Start web demo**
|
189 |
+
|
190 |
+
You can use our web demo page to get familiar with CosyVoice quickly.
|
191 |
+
|
192 |
+
Please see the demo website for details.
|
193 |
+
|
194 |
+
``` python
|
195 |
+
# change iic/CosyVoice-300M-SFT for sft inference, or iic/CosyVoice-300M-Instruct for instruct inference
|
196 |
+
python3 webui.py --port 50000 --model_dir pretrained_models/CosyVoice-300M
|
197 |
+
```
|
198 |
+
|
199 |
+
**Advanced Usage**
|
200 |
+
|
201 |
+
For advanced user, we have provided train and inference scripts in `examples/libritts/cosyvoice/run.sh`.
|
202 |
+
|
203 |
+
**Build for deployment**
|
204 |
+
|
205 |
+
Optionally, if you want service deployment,
|
206 |
+
you can run following steps.
|
207 |
+
|
208 |
+
``` sh
|
209 |
+
cd runtime/python
|
210 |
+
docker build -t cosyvoice:v1.0 .
|
211 |
+
# change iic/CosyVoice-300M to iic/CosyVoice-300M-Instruct if you want to use instruct inference
|
212 |
+
# for grpc usage
|
213 |
+
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/grpc && python3 server.py --port 50000 --max_conc 4 --model_dir iic/CosyVoice-300M && sleep infinity"
|
214 |
+
cd grpc && python3 client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
|
215 |
+
# for fastapi usage
|
216 |
+
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/fastapi && python3 server.py --port 50000 --model_dir iic/CosyVoice-300M && sleep infinity"
|
217 |
+
cd fastapi && python3 client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
|
218 |
+
```
|
219 |
+
|
220 |
+
## Discussion & Communication
|
221 |
+
|
222 |
+
You can directly discuss on [Github Issues](https://github.com/FunAudioLLM/CosyVoice/issues).
|
223 |
+
|
224 |
+
You can also scan the QR code to join our official Dingding chat group.
|
225 |
+
|
226 |
+
<img src="./asset/dingding.png" width="250px">
|
227 |
+
|
228 |
+
## Acknowledge
|
229 |
+
|
230 |
+
1. We borrowed a lot of code from [FunASR](https://github.com/modelscope/FunASR).
|
231 |
+
2. We borrowed a lot of code from [FunCodec](https://github.com/modelscope/FunCodec).
|
232 |
+
3. We borrowed a lot of code from [Matcha-TTS](https://github.com/shivammehta25/Matcha-TTS).
|
233 |
+
4. We borrowed a lot of code from [AcademiCodec](https://github.com/yangdongchao/AcademiCodec).
|
234 |
+
5. We borrowed a lot of code from [WeNet](https://github.com/wenet-e2e/wenet).
|
235 |
+
|
236 |
+
## Disclaimer
|
237 |
+
The content provided above is for academic purposes only and is intended to demonstrate technical capabilities. Some examples are sourced from the internet. If any content infringes on your rights, please contact us to request its removal.
|
asset/dingding.png
ADDED
![]() |
cosyvoice/__init__.py
ADDED
File without changes
|
cosyvoice/bin/export_jit.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from __future__ import print_function
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import logging
|
19 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
20 |
+
import os
|
21 |
+
import sys
|
22 |
+
import torch
|
23 |
+
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
24 |
+
sys.path.append('{}/../..'.format(ROOT_DIR))
|
25 |
+
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
26 |
+
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
27 |
+
|
28 |
+
|
29 |
+
def get_args():
|
30 |
+
parser = argparse.ArgumentParser(description='export your model for deployment')
|
31 |
+
parser.add_argument('--model_dir',
|
32 |
+
type=str,
|
33 |
+
default='pretrained_models/CosyVoice-300M',
|
34 |
+
help='local path')
|
35 |
+
args = parser.parse_args()
|
36 |
+
print(args)
|
37 |
+
return args
|
38 |
+
|
39 |
+
|
40 |
+
def get_optimized_script(model, preserved_attrs=[]):
|
41 |
+
script = torch.jit.script(model)
|
42 |
+
if preserved_attrs != []:
|
43 |
+
script = torch.jit.freeze(script, preserved_attrs=preserved_attrs)
|
44 |
+
else:
|
45 |
+
script = torch.jit.freeze(script)
|
46 |
+
script = torch.jit.optimize_for_inference(script)
|
47 |
+
return script
|
48 |
+
|
49 |
+
|
50 |
+
def main():
|
51 |
+
args = get_args()
|
52 |
+
logging.basicConfig(level=logging.DEBUG,
|
53 |
+
format='%(asctime)s %(levelname)s %(message)s')
|
54 |
+
|
55 |
+
torch._C._jit_set_fusion_strategy([('STATIC', 1)])
|
56 |
+
torch._C._jit_set_profiling_mode(False)
|
57 |
+
torch._C._jit_set_profiling_executor(False)
|
58 |
+
|
59 |
+
try:
|
60 |
+
model = CosyVoice(args.model_dir)
|
61 |
+
except Exception:
|
62 |
+
try:
|
63 |
+
model = CosyVoice2(args.model_dir)
|
64 |
+
except Exception:
|
65 |
+
raise TypeError('no valid model_type!')
|
66 |
+
|
67 |
+
if not isinstance(model, CosyVoice2):
|
68 |
+
# 1. export llm text_encoder
|
69 |
+
llm_text_encoder = model.model.llm.text_encoder
|
70 |
+
script = get_optimized_script(llm_text_encoder)
|
71 |
+
script.save('{}/llm.text_encoder.fp32.zip'.format(args.model_dir))
|
72 |
+
script = get_optimized_script(llm_text_encoder.half())
|
73 |
+
script.save('{}/llm.text_encoder.fp16.zip'.format(args.model_dir))
|
74 |
+
|
75 |
+
# 2. export llm llm
|
76 |
+
llm_llm = model.model.llm.llm
|
77 |
+
script = get_optimized_script(llm_llm, ['forward_chunk'])
|
78 |
+
script.save('{}/llm.llm.fp32.zip'.format(args.model_dir))
|
79 |
+
script = get_optimized_script(llm_llm.half(), ['forward_chunk'])
|
80 |
+
script.save('{}/llm.llm.fp16.zip'.format(args.model_dir))
|
81 |
+
|
82 |
+
# 3. export flow encoder
|
83 |
+
flow_encoder = model.model.flow.encoder
|
84 |
+
script = get_optimized_script(flow_encoder)
|
85 |
+
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
|
86 |
+
script = get_optimized_script(flow_encoder.half())
|
87 |
+
script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
|
88 |
+
|
89 |
+
|
90 |
+
if __name__ == '__main__':
|
91 |
+
main()
|
cosyvoice/bin/export_onnx.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Antgroup Inc (authors: Zhoubofan, [email protected])
|
2 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from __future__ import print_function
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import logging
|
20 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
21 |
+
import os
|
22 |
+
import sys
|
23 |
+
import onnxruntime
|
24 |
+
import random
|
25 |
+
import torch
|
26 |
+
from tqdm import tqdm
|
27 |
+
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
28 |
+
sys.path.append('{}/../..'.format(ROOT_DIR))
|
29 |
+
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
30 |
+
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
31 |
+
|
32 |
+
|
33 |
+
def get_dummy_input(batch_size, seq_len, out_channels, device):
|
34 |
+
x = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
35 |
+
mask = torch.ones((batch_size, 1, seq_len), dtype=torch.float32, device=device)
|
36 |
+
mu = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
37 |
+
t = torch.rand((batch_size), dtype=torch.float32, device=device)
|
38 |
+
spks = torch.rand((batch_size, out_channels), dtype=torch.float32, device=device)
|
39 |
+
cond = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
40 |
+
return x, mask, mu, t, spks, cond
|
41 |
+
|
42 |
+
|
43 |
+
def get_args():
|
44 |
+
parser = argparse.ArgumentParser(description='export your model for deployment')
|
45 |
+
parser.add_argument('--model_dir',
|
46 |
+
type=str,
|
47 |
+
default='pretrained_models/CosyVoice-300M',
|
48 |
+
help='local path')
|
49 |
+
args = parser.parse_args()
|
50 |
+
print(args)
|
51 |
+
return args
|
52 |
+
|
53 |
+
|
54 |
+
def main():
|
55 |
+
args = get_args()
|
56 |
+
logging.basicConfig(level=logging.DEBUG,
|
57 |
+
format='%(asctime)s %(levelname)s %(message)s')
|
58 |
+
|
59 |
+
try:
|
60 |
+
model = CosyVoice(args.model_dir)
|
61 |
+
except Exception:
|
62 |
+
try:
|
63 |
+
model = CosyVoice2(args.model_dir)
|
64 |
+
except Exception:
|
65 |
+
raise TypeError('no valid model_type!')
|
66 |
+
|
67 |
+
# 1. export flow decoder estimator
|
68 |
+
estimator = model.model.flow.decoder.estimator
|
69 |
+
|
70 |
+
device = model.model.device
|
71 |
+
batch_size, seq_len = 2, 256
|
72 |
+
out_channels = model.model.flow.decoder.estimator.out_channels
|
73 |
+
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
|
74 |
+
torch.onnx.export(
|
75 |
+
estimator,
|
76 |
+
(x, mask, mu, t, spks, cond),
|
77 |
+
'{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
78 |
+
export_params=True,
|
79 |
+
opset_version=18,
|
80 |
+
do_constant_folding=True,
|
81 |
+
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
82 |
+
output_names=['estimator_out'],
|
83 |
+
dynamic_axes={
|
84 |
+
'x': {2: 'seq_len'},
|
85 |
+
'mask': {2: 'seq_len'},
|
86 |
+
'mu': {2: 'seq_len'},
|
87 |
+
'cond': {2: 'seq_len'},
|
88 |
+
'estimator_out': {2: 'seq_len'},
|
89 |
+
}
|
90 |
+
)
|
91 |
+
|
92 |
+
# 2. test computation consistency
|
93 |
+
option = onnxruntime.SessionOptions()
|
94 |
+
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
95 |
+
option.intra_op_num_threads = 1
|
96 |
+
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
97 |
+
estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
98 |
+
sess_options=option, providers=providers)
|
99 |
+
|
100 |
+
for _ in tqdm(range(10)):
|
101 |
+
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, random.randint(16, 512), out_channels, device)
|
102 |
+
output_pytorch = estimator(x, mask, mu, t, spks, cond)
|
103 |
+
ort_inputs = {
|
104 |
+
'x': x.cpu().numpy(),
|
105 |
+
'mask': mask.cpu().numpy(),
|
106 |
+
'mu': mu.cpu().numpy(),
|
107 |
+
't': t.cpu().numpy(),
|
108 |
+
'spks': spks.cpu().numpy(),
|
109 |
+
'cond': cond.cpu().numpy()
|
110 |
+
}
|
111 |
+
output_onnx = estimator_onnx.run(None, ort_inputs)[0]
|
112 |
+
torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4)
|
113 |
+
|
114 |
+
|
115 |
+
if __name__ == "__main__":
|
116 |
+
main()
|
cosyvoice/bin/export_trt.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# Copyright 2024 Alibaba Inc. All Rights Reserved.
|
3 |
+
# download tensorrt from https://developer.nvidia.com/tensorrt/download/10x, check your system and cuda for compatibability
|
4 |
+
# for example for linux + cuda12.4, you can download https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.0.1/tars/TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-12.4.tar.gz
|
5 |
+
TRT_DIR=<YOUR_TRT_DIR>
|
6 |
+
MODEL_DIR=<COSYVOICE2_MODEL_DIR>
|
7 |
+
|
8 |
+
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TRT_DIR/lib:/usr/local/cuda/lib64
|
9 |
+
$TRT_DIR/bin/trtexec --onnx=$MODEL_DIR/flow.decoder.estimator.fp32.onnx --saveEngine=$MODEL_DIR/flow.decoder.estimator.fp32.mygpu.plan --minShapes=x:2x80x4,mask:2x1x4,mu:2x80x4,cond:2x80x4 --optShapes=x:2x80x193,mask:2x1x193,mu:2x80x193,cond:2x80x193 --maxShapes=x:2x80x6800,mask:2x1x6800,mu:2x80x6800,cond:2x80x6800 --inputIOFormats=fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw --outputIOFormats=fp32:chw
|
10 |
+
$TRT_DIR/bin/trtexec --onnx=$MODEL_DIR/flow.decoder.estimator.fp32.onnx --saveEngine=$MODEL_DIR/flow.decoder.estimator.fp16.mygpu.plan --fp16 --minShapes=x:2x80x4,mask:2x1x4,mu:2x80x4,cond:2x80x4 --optShapes=x:2x80x193,mask:2x1x193,mu:2x80x193,cond:2x80x193 --maxShapes=x:2x80x6800,mask:2x1x6800,mu:2x80x6800,cond:2x80x6800 --inputIOFormats=fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw --outputIOFormats=fp16:chw
|
cosyvoice/bin/inference.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from __future__ import print_function
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import logging
|
19 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
20 |
+
import os
|
21 |
+
import torch
|
22 |
+
from torch.utils.data import DataLoader
|
23 |
+
import torchaudio
|
24 |
+
from hyperpyyaml import load_hyperpyyaml
|
25 |
+
from tqdm import tqdm
|
26 |
+
from cosyvoice.cli.model import CosyVoiceModel
|
27 |
+
from cosyvoice.dataset.dataset import Dataset
|
28 |
+
|
29 |
+
|
30 |
+
def get_args():
|
31 |
+
parser = argparse.ArgumentParser(description='inference with your model')
|
32 |
+
parser.add_argument('--config', required=True, help='config file')
|
33 |
+
parser.add_argument('--prompt_data', required=True, help='prompt data file')
|
34 |
+
parser.add_argument('--prompt_utt2data', required=True, help='prompt data file')
|
35 |
+
parser.add_argument('--tts_text', required=True, help='tts input file')
|
36 |
+
parser.add_argument('--llm_model', required=True, help='llm model file')
|
37 |
+
parser.add_argument('--flow_model', required=True, help='flow model file')
|
38 |
+
parser.add_argument('--hifigan_model', required=True, help='hifigan model file')
|
39 |
+
parser.add_argument('--gpu',
|
40 |
+
type=int,
|
41 |
+
default=-1,
|
42 |
+
help='gpu id for this rank, -1 for cpu')
|
43 |
+
parser.add_argument('--mode',
|
44 |
+
default='sft',
|
45 |
+
choices=['sft', 'zero_shot'],
|
46 |
+
help='inference mode')
|
47 |
+
parser.add_argument('--result_dir', required=True, help='asr result file')
|
48 |
+
args = parser.parse_args()
|
49 |
+
print(args)
|
50 |
+
return args
|
51 |
+
|
52 |
+
|
53 |
+
def main():
|
54 |
+
args = get_args()
|
55 |
+
logging.basicConfig(level=logging.DEBUG,
|
56 |
+
format='%(asctime)s %(levelname)s %(message)s')
|
57 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
|
58 |
+
|
59 |
+
# Init cosyvoice models from configs
|
60 |
+
use_cuda = args.gpu >= 0 and torch.cuda.is_available()
|
61 |
+
device = torch.device('cuda' if use_cuda else 'cpu')
|
62 |
+
with open(args.config, 'r') as f:
|
63 |
+
configs = load_hyperpyyaml(f)
|
64 |
+
|
65 |
+
model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
66 |
+
model.load(args.llm_model, args.flow_model, args.hifigan_model)
|
67 |
+
|
68 |
+
test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=False, partition=False,
|
69 |
+
tts_file=args.tts_text, prompt_utt2data=args.prompt_utt2data)
|
70 |
+
test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0)
|
71 |
+
|
72 |
+
del configs
|
73 |
+
os.makedirs(args.result_dir, exist_ok=True)
|
74 |
+
fn = os.path.join(args.result_dir, 'wav.scp')
|
75 |
+
f = open(fn, 'w')
|
76 |
+
with torch.no_grad():
|
77 |
+
for _, batch in tqdm(enumerate(test_data_loader)):
|
78 |
+
utts = batch["utts"]
|
79 |
+
assert len(utts) == 1, "inference mode only support batchsize 1"
|
80 |
+
text_token = batch["text_token"].to(device)
|
81 |
+
text_token_len = batch["text_token_len"].to(device)
|
82 |
+
tts_index = batch["tts_index"]
|
83 |
+
tts_text_token = batch["tts_text_token"].to(device)
|
84 |
+
tts_text_token_len = batch["tts_text_token_len"].to(device)
|
85 |
+
speech_token = batch["speech_token"].to(device)
|
86 |
+
speech_token_len = batch["speech_token_len"].to(device)
|
87 |
+
speech_feat = batch["speech_feat"].to(device)
|
88 |
+
speech_feat_len = batch["speech_feat_len"].to(device)
|
89 |
+
utt_embedding = batch["utt_embedding"].to(device)
|
90 |
+
spk_embedding = batch["spk_embedding"].to(device)
|
91 |
+
if args.mode == 'sft':
|
92 |
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
93 |
+
'llm_embedding': spk_embedding, 'flow_embedding': spk_embedding}
|
94 |
+
else:
|
95 |
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
96 |
+
'prompt_text': text_token, 'prompt_text_len': text_token_len,
|
97 |
+
'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
|
98 |
+
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
99 |
+
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
100 |
+
'llm_embedding': utt_embedding, 'flow_embedding': utt_embedding}
|
101 |
+
tts_speeches = []
|
102 |
+
for model_output in model.tts(**model_input):
|
103 |
+
tts_speeches.append(model_output['tts_speech'])
|
104 |
+
tts_speeches = torch.concat(tts_speeches, dim=1)
|
105 |
+
tts_key = '{}_{}'.format(utts[0], tts_index[0])
|
106 |
+
tts_fn = os.path.join(args.result_dir, '{}.wav'.format(tts_key))
|
107 |
+
torchaudio.save(tts_fn, tts_speeches, sample_rate=22050)
|
108 |
+
f.write('{} {}\n'.format(tts_key, tts_fn))
|
109 |
+
f.flush()
|
110 |
+
f.close()
|
111 |
+
logging.info('Result wav.scp saved in {}'.format(fn))
|
112 |
+
|
113 |
+
|
114 |
+
if __name__ == '__main__':
|
115 |
+
main()
|
cosyvoice/bin/train.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from __future__ import print_function
|
16 |
+
import argparse
|
17 |
+
import datetime
|
18 |
+
import logging
|
19 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
20 |
+
from copy import deepcopy
|
21 |
+
import os
|
22 |
+
import torch
|
23 |
+
import torch.distributed as dist
|
24 |
+
import deepspeed
|
25 |
+
|
26 |
+
from hyperpyyaml import load_hyperpyyaml
|
27 |
+
|
28 |
+
from torch.distributed.elastic.multiprocessing.errors import record
|
29 |
+
|
30 |
+
from cosyvoice.utils.executor import Executor
|
31 |
+
from cosyvoice.utils.train_utils import (
|
32 |
+
init_distributed,
|
33 |
+
init_dataset_and_dataloader,
|
34 |
+
init_optimizer_and_scheduler,
|
35 |
+
init_summarywriter, save_model,
|
36 |
+
wrap_cuda_model, check_modify_and_save_config)
|
37 |
+
|
38 |
+
|
39 |
+
def get_args():
|
40 |
+
parser = argparse.ArgumentParser(description='training your network')
|
41 |
+
parser.add_argument('--train_engine',
|
42 |
+
default='torch_ddp',
|
43 |
+
choices=['torch_ddp', 'deepspeed'],
|
44 |
+
help='Engine for paralleled training')
|
45 |
+
parser.add_argument('--model', required=True, help='model which will be trained')
|
46 |
+
parser.add_argument('--config', required=True, help='config file')
|
47 |
+
parser.add_argument('--train_data', required=True, help='train data file')
|
48 |
+
parser.add_argument('--cv_data', required=True, help='cv data file')
|
49 |
+
parser.add_argument('--checkpoint', help='checkpoint model')
|
50 |
+
parser.add_argument('--model_dir', required=True, help='save model dir')
|
51 |
+
parser.add_argument('--tensorboard_dir',
|
52 |
+
default='tensorboard',
|
53 |
+
help='tensorboard log dir')
|
54 |
+
parser.add_argument('--ddp.dist_backend',
|
55 |
+
dest='dist_backend',
|
56 |
+
default='nccl',
|
57 |
+
choices=['nccl', 'gloo'],
|
58 |
+
help='distributed backend')
|
59 |
+
parser.add_argument('--num_workers',
|
60 |
+
default=0,
|
61 |
+
type=int,
|
62 |
+
help='num of subprocess workers for reading')
|
63 |
+
parser.add_argument('--prefetch',
|
64 |
+
default=100,
|
65 |
+
type=int,
|
66 |
+
help='prefetch number')
|
67 |
+
parser.add_argument('--pin_memory',
|
68 |
+
action='store_true',
|
69 |
+
default=False,
|
70 |
+
help='Use pinned memory buffers used for reading')
|
71 |
+
parser.add_argument('--use_amp',
|
72 |
+
action='store_true',
|
73 |
+
default=False,
|
74 |
+
help='Use automatic mixed precision training')
|
75 |
+
parser.add_argument('--deepspeed.save_states',
|
76 |
+
dest='save_states',
|
77 |
+
default='model_only',
|
78 |
+
choices=['model_only', 'model+optimizer'],
|
79 |
+
help='save model/optimizer states')
|
80 |
+
parser.add_argument('--timeout',
|
81 |
+
default=60,
|
82 |
+
type=int,
|
83 |
+
help='timeout (in seconds) of cosyvoice_join.')
|
84 |
+
parser = deepspeed.add_config_arguments(parser)
|
85 |
+
args = parser.parse_args()
|
86 |
+
return args
|
87 |
+
|
88 |
+
|
89 |
+
@record
|
90 |
+
def main():
|
91 |
+
args = get_args()
|
92 |
+
logging.basicConfig(level=logging.DEBUG,
|
93 |
+
format='%(asctime)s %(levelname)s %(message)s')
|
94 |
+
# gan train has some special initialization logic
|
95 |
+
gan = True if args.model == 'hifigan' else False
|
96 |
+
|
97 |
+
override_dict = {k: None for k in ['llm', 'flow', 'hift', 'hifigan'] if k != args.model}
|
98 |
+
if gan is True:
|
99 |
+
override_dict.pop('hift')
|
100 |
+
with open(args.config, 'r') as f:
|
101 |
+
configs = load_hyperpyyaml(f, overrides=override_dict)
|
102 |
+
if gan is True:
|
103 |
+
configs['train_conf'] = configs['train_conf_gan']
|
104 |
+
configs['train_conf'].update(vars(args))
|
105 |
+
|
106 |
+
# Init env for ddp
|
107 |
+
init_distributed(args)
|
108 |
+
|
109 |
+
# Get dataset & dataloader
|
110 |
+
train_dataset, cv_dataset, train_data_loader, cv_data_loader = \
|
111 |
+
init_dataset_and_dataloader(args, configs, gan)
|
112 |
+
|
113 |
+
# Do some sanity checks and save config to arsg.model_dir
|
114 |
+
configs = check_modify_and_save_config(args, configs)
|
115 |
+
|
116 |
+
# Tensorboard summary
|
117 |
+
writer = init_summarywriter(args)
|
118 |
+
|
119 |
+
# load checkpoint
|
120 |
+
model = configs[args.model]
|
121 |
+
start_step, start_epoch = 0, -1
|
122 |
+
if args.checkpoint is not None:
|
123 |
+
if os.path.exists(args.checkpoint):
|
124 |
+
state_dict = torch.load(args.checkpoint, map_location='cpu')
|
125 |
+
model.load_state_dict(state_dict, strict=False)
|
126 |
+
if 'step' in state_dict:
|
127 |
+
start_step = state_dict['step']
|
128 |
+
if 'epoch' in state_dict:
|
129 |
+
start_epoch = state_dict['epoch']
|
130 |
+
else:
|
131 |
+
logging.warning('checkpoint {} do not exsist!'.format(args.checkpoint))
|
132 |
+
|
133 |
+
# Dispatch model from cpu to gpu
|
134 |
+
model = wrap_cuda_model(args, model)
|
135 |
+
|
136 |
+
# Get optimizer & scheduler
|
137 |
+
model, optimizer, scheduler, optimizer_d, scheduler_d = init_optimizer_and_scheduler(args, configs, model, gan)
|
138 |
+
scheduler.set_step(start_step)
|
139 |
+
if scheduler_d is not None:
|
140 |
+
scheduler_d.set_step(start_step)
|
141 |
+
|
142 |
+
# Save init checkpoints
|
143 |
+
info_dict = deepcopy(configs['train_conf'])
|
144 |
+
info_dict['step'] = start_step
|
145 |
+
info_dict['epoch'] = start_epoch
|
146 |
+
save_model(model, 'init', info_dict)
|
147 |
+
|
148 |
+
# Get executor
|
149 |
+
executor = Executor(gan=gan)
|
150 |
+
executor.step = start_step
|
151 |
+
|
152 |
+
# Init scaler, used for pytorch amp mixed precision training
|
153 |
+
scaler = torch.cuda.amp.GradScaler() if args.use_amp else None
|
154 |
+
print('start step {} start epoch {}'.format(start_step, start_epoch))
|
155 |
+
# Start training loop
|
156 |
+
for epoch in range(start_epoch + 1, info_dict['max_epoch']):
|
157 |
+
executor.epoch = epoch
|
158 |
+
train_dataset.set_epoch(epoch)
|
159 |
+
dist.barrier()
|
160 |
+
group_join = dist.new_group(backend="gloo", timeout=datetime.timedelta(seconds=args.timeout))
|
161 |
+
if gan is True:
|
162 |
+
executor.train_one_epoc_gan(model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
|
163 |
+
writer, info_dict, scaler, group_join)
|
164 |
+
else:
|
165 |
+
executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join)
|
166 |
+
dist.destroy_process_group(group_join)
|
167 |
+
|
168 |
+
|
169 |
+
if __name__ == '__main__':
|
170 |
+
main()
|
cosyvoice/cli/cosyvoice.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import os
|
15 |
+
import time
|
16 |
+
from typing import Generator
|
17 |
+
from tqdm import tqdm
|
18 |
+
from hyperpyyaml import load_hyperpyyaml
|
19 |
+
from modelscope import snapshot_download
|
20 |
+
import torch
|
21 |
+
from cosyvoice.cli.frontend import CosyVoiceFrontEnd
|
22 |
+
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
|
23 |
+
from cosyvoice.utils.file_utils import logging
|
24 |
+
from cosyvoice.utils.class_utils import get_model_type
|
25 |
+
|
26 |
+
|
27 |
+
class CosyVoice:
|
28 |
+
|
29 |
+
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False):
|
30 |
+
self.instruct = True if '-Instruct' in model_dir else False
|
31 |
+
self.model_dir = model_dir
|
32 |
+
self.fp16 = fp16
|
33 |
+
if not os.path.exists(model_dir):
|
34 |
+
model_dir = snapshot_download(model_dir)
|
35 |
+
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
36 |
+
configs = load_hyperpyyaml(f)
|
37 |
+
assert get_model_type(configs) != CosyVoice2Model, 'do not use {} for CosyVoice initialization!'.format(model_dir)
|
38 |
+
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
39 |
+
configs['feat_extractor'],
|
40 |
+
'{}/campplus.onnx'.format(model_dir),
|
41 |
+
'{}/speech_tokenizer_v1.onnx'.format(model_dir),
|
42 |
+
'{}/spk2info.pt'.format(model_dir),
|
43 |
+
configs['allowed_special'])
|
44 |
+
self.sample_rate = configs['sample_rate']
|
45 |
+
if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
|
46 |
+
load_jit, load_trt, fp16 = False, False, False
|
47 |
+
logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
|
48 |
+
self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16)
|
49 |
+
self.model.load('{}/llm.pt'.format(model_dir),
|
50 |
+
'{}/flow.pt'.format(model_dir),
|
51 |
+
'{}/hift.pt'.format(model_dir))
|
52 |
+
if load_jit:
|
53 |
+
self.model.load_jit('{}/llm.text_encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
54 |
+
'{}/llm.llm.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
55 |
+
'{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
|
56 |
+
if load_trt:
|
57 |
+
self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
58 |
+
'{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
|
59 |
+
self.fp16)
|
60 |
+
del configs
|
61 |
+
|
62 |
+
def list_available_spks(self):
|
63 |
+
spks = list(self.frontend.spk2info.keys())
|
64 |
+
return spks
|
65 |
+
|
66 |
+
def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
|
67 |
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
68 |
+
model_input = self.frontend.frontend_sft(i, spk_id)
|
69 |
+
start_time = time.time()
|
70 |
+
logging.info('synthesis text {}'.format(i))
|
71 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
72 |
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
73 |
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
74 |
+
yield model_output
|
75 |
+
start_time = time.time()
|
76 |
+
|
77 |
+
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
78 |
+
prompt_text = self.frontend.text_normalize(prompt_text, split=False, text_frontend=text_frontend)
|
79 |
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
80 |
+
if (not isinstance(i, Generator)) and len(i) < 0.5 * len(prompt_text):
|
81 |
+
logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
|
82 |
+
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate)
|
83 |
+
start_time = time.time()
|
84 |
+
logging.info('synthesis text {}'.format(i))
|
85 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
86 |
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
87 |
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
88 |
+
yield model_output
|
89 |
+
start_time = time.time()
|
90 |
+
|
91 |
+
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
92 |
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
93 |
+
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
|
94 |
+
start_time = time.time()
|
95 |
+
logging.info('synthesis text {}'.format(i))
|
96 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
97 |
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
98 |
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
99 |
+
yield model_output
|
100 |
+
start_time = time.time()
|
101 |
+
|
102 |
+
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0, text_frontend=True):
|
103 |
+
assert isinstance(self.model, CosyVoiceModel), 'inference_instruct is only implemented for CosyVoice!'
|
104 |
+
if self.instruct is False:
|
105 |
+
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
106 |
+
instruct_text = self.frontend.text_normalize(instruct_text, split=False, text_frontend=text_frontend)
|
107 |
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
108 |
+
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
109 |
+
start_time = time.time()
|
110 |
+
logging.info('synthesis text {}'.format(i))
|
111 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
112 |
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
113 |
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
114 |
+
yield model_output
|
115 |
+
start_time = time.time()
|
116 |
+
|
117 |
+
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
|
118 |
+
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
|
119 |
+
start_time = time.time()
|
120 |
+
for model_output in self.model.vc(**model_input, stream=stream, speed=speed):
|
121 |
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
122 |
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
123 |
+
yield model_output
|
124 |
+
start_time = time.time()
|
125 |
+
|
126 |
+
|
127 |
+
class CosyVoice2(CosyVoice):
|
128 |
+
|
129 |
+
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False):
|
130 |
+
self.instruct = True if '-Instruct' in model_dir else False
|
131 |
+
self.model_dir = model_dir
|
132 |
+
self.fp16 = fp16
|
133 |
+
if not os.path.exists(model_dir):
|
134 |
+
model_dir = snapshot_download(model_dir)
|
135 |
+
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
136 |
+
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
|
137 |
+
assert get_model_type(configs) == CosyVoice2Model, 'do not use {} for CosyVoice2 initialization!'.format(model_dir)
|
138 |
+
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
139 |
+
configs['feat_extractor'],
|
140 |
+
'{}/campplus.onnx'.format(model_dir),
|
141 |
+
'{}/speech_tokenizer_v2.onnx'.format(model_dir),
|
142 |
+
'{}/spk2info.pt'.format(model_dir),
|
143 |
+
configs['allowed_special'])
|
144 |
+
self.sample_rate = configs['sample_rate']
|
145 |
+
if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
|
146 |
+
load_jit, load_trt, fp16 = False, False, False
|
147 |
+
logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
|
148 |
+
self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16)
|
149 |
+
self.model.load('{}/llm.pt'.format(model_dir),
|
150 |
+
'{}/flow.pt'.format(model_dir),
|
151 |
+
'{}/hift.pt'.format(model_dir))
|
152 |
+
if load_jit:
|
153 |
+
self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
|
154 |
+
if load_trt:
|
155 |
+
self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
156 |
+
'{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
|
157 |
+
self.fp16)
|
158 |
+
del configs
|
159 |
+
|
160 |
+
def inference_instruct(self, *args, **kwargs):
|
161 |
+
raise NotImplementedError('inference_instruct is not implemented for CosyVoice2!')
|
162 |
+
|
163 |
+
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
164 |
+
assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
|
165 |
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
166 |
+
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
|
167 |
+
start_time = time.time()
|
168 |
+
logging.info('synthesis text {}'.format(i))
|
169 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
170 |
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
171 |
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
172 |
+
yield model_output
|
173 |
+
start_time = time.time()
|
cosyvoice/cli/model.py
ADDED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import os
|
15 |
+
from typing import Generator
|
16 |
+
import torch
|
17 |
+
import numpy as np
|
18 |
+
import threading
|
19 |
+
import time
|
20 |
+
from torch.nn import functional as F
|
21 |
+
from contextlib import nullcontext
|
22 |
+
import uuid
|
23 |
+
from cosyvoice.utils.common import fade_in_out
|
24 |
+
from cosyvoice.utils.file_utils import convert_onnx_to_trt
|
25 |
+
|
26 |
+
|
27 |
+
class CosyVoiceModel:
|
28 |
+
|
29 |
+
def __init__(self,
|
30 |
+
llm: torch.nn.Module,
|
31 |
+
flow: torch.nn.Module,
|
32 |
+
hift: torch.nn.Module,
|
33 |
+
fp16: bool):
|
34 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
35 |
+
self.llm = llm
|
36 |
+
self.flow = flow
|
37 |
+
self.hift = hift
|
38 |
+
self.fp16 = fp16
|
39 |
+
self.llm.fp16 = fp16
|
40 |
+
self.flow.fp16 = fp16
|
41 |
+
if self.fp16 is True:
|
42 |
+
self.llm.half()
|
43 |
+
self.flow.half()
|
44 |
+
self.token_min_hop_len = 2 * self.flow.input_frame_rate
|
45 |
+
self.token_max_hop_len = 4 * self.flow.input_frame_rate
|
46 |
+
self.token_overlap_len = 20
|
47 |
+
# here we fix set flow.decoder.estimator.static_chunk_size = 0 for compatibability
|
48 |
+
self.flow.decoder.estimator.static_chunk_size = 0
|
49 |
+
# mel fade in out
|
50 |
+
self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
|
51 |
+
self.mel_window = np.hamming(2 * self.mel_overlap_len)
|
52 |
+
# hift cache
|
53 |
+
self.mel_cache_len = 20
|
54 |
+
self.source_cache_len = int(self.mel_cache_len * 256)
|
55 |
+
# speech fade in out
|
56 |
+
self.speech_window = np.hamming(2 * self.source_cache_len)
|
57 |
+
# rtf and decoding related
|
58 |
+
self.stream_scale_factor = 1
|
59 |
+
assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
|
60 |
+
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
61 |
+
self.lock = threading.Lock()
|
62 |
+
# dict used to store session related variable
|
63 |
+
self.tts_speech_token_dict = {}
|
64 |
+
self.llm_end_dict = {}
|
65 |
+
self.mel_overlap_dict = {}
|
66 |
+
self.flow_cache_dict = {}
|
67 |
+
self.hift_cache_dict = {}
|
68 |
+
|
69 |
+
def load(self, llm_model, flow_model, hift_model):
|
70 |
+
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
|
71 |
+
self.llm.to(self.device).eval()
|
72 |
+
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True)
|
73 |
+
self.flow.to(self.device).eval()
|
74 |
+
# in case hift_model is a hifigan model
|
75 |
+
hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
|
76 |
+
self.hift.load_state_dict(hift_state_dict, strict=True)
|
77 |
+
self.hift.to(self.device).eval()
|
78 |
+
|
79 |
+
def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model):
|
80 |
+
llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device)
|
81 |
+
self.llm.text_encoder = llm_text_encoder
|
82 |
+
llm_llm = torch.jit.load(llm_llm_model, map_location=self.device)
|
83 |
+
self.llm.llm = llm_llm
|
84 |
+
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
85 |
+
self.flow.encoder = flow_encoder
|
86 |
+
|
87 |
+
def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, fp16):
|
88 |
+
assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
|
89 |
+
if not os.path.exists(flow_decoder_estimator_model):
|
90 |
+
convert_onnx_to_trt(flow_decoder_estimator_model, flow_decoder_onnx_model, fp16)
|
91 |
+
if os.path.getsize(flow_decoder_estimator_model) == 0:
|
92 |
+
raise ValueError('{} is empty file, delete it and export again!'.format(flow_decoder_estimator_model))
|
93 |
+
del self.flow.decoder.estimator
|
94 |
+
import tensorrt as trt
|
95 |
+
with open(flow_decoder_estimator_model, 'rb') as f:
|
96 |
+
self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
|
97 |
+
if self.flow.decoder.estimator_engine is None:
|
98 |
+
raise ValueError('failed to load trt {}'.format(flow_decoder_estimator_model))
|
99 |
+
self.flow.decoder.estimator = self.flow.decoder.estimator_engine.create_execution_context()
|
100 |
+
|
101 |
+
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
102 |
+
with self.llm_context:
|
103 |
+
if isinstance(text, Generator):
|
104 |
+
assert isinstance(self, CosyVoice2Model), 'streaming input text is only implemented for CosyVoice2!'
|
105 |
+
for i in self.llm.inference_bistream(text=text,
|
106 |
+
prompt_text=prompt_text.to(self.device),
|
107 |
+
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
108 |
+
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
109 |
+
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
110 |
+
embedding=llm_embedding.to(self.device)):
|
111 |
+
self.tts_speech_token_dict[uuid].append(i)
|
112 |
+
else:
|
113 |
+
for i in self.llm.inference(text=text.to(self.device),
|
114 |
+
text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
|
115 |
+
prompt_text=prompt_text.to(self.device),
|
116 |
+
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
117 |
+
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
118 |
+
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
119 |
+
embedding=llm_embedding.to(self.device)):
|
120 |
+
self.tts_speech_token_dict[uuid].append(i)
|
121 |
+
self.llm_end_dict[uuid] = True
|
122 |
+
|
123 |
+
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
|
124 |
+
tts_mel, flow_cache = self.flow.inference(token=token.to(self.device),
|
125 |
+
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
126 |
+
prompt_token=prompt_token.to(self.device),
|
127 |
+
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
128 |
+
prompt_feat=prompt_feat.to(self.device),
|
129 |
+
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
130 |
+
embedding=embedding.to(self.device),
|
131 |
+
flow_cache=self.flow_cache_dict[uuid])
|
132 |
+
self.flow_cache_dict[uuid] = flow_cache
|
133 |
+
|
134 |
+
# mel overlap fade in out
|
135 |
+
if self.mel_overlap_dict[uuid].shape[2] != 0:
|
136 |
+
tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
|
137 |
+
# append hift cache
|
138 |
+
if self.hift_cache_dict[uuid] is not None:
|
139 |
+
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
140 |
+
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
141 |
+
else:
|
142 |
+
hift_cache_source = torch.zeros(1, 1, 0)
|
143 |
+
# keep overlap mel and hift cache
|
144 |
+
if finalize is False:
|
145 |
+
self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
|
146 |
+
tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
|
147 |
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
148 |
+
if self.hift_cache_dict[uuid] is not None:
|
149 |
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
150 |
+
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
|
151 |
+
'source': tts_source[:, :, -self.source_cache_len:],
|
152 |
+
'speech': tts_speech[:, -self.source_cache_len:]}
|
153 |
+
tts_speech = tts_speech[:, :-self.source_cache_len]
|
154 |
+
else:
|
155 |
+
if speed != 1.0:
|
156 |
+
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
|
157 |
+
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
|
158 |
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
159 |
+
if self.hift_cache_dict[uuid] is not None:
|
160 |
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
161 |
+
return tts_speech
|
162 |
+
|
163 |
+
def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
164 |
+
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
|
165 |
+
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
166 |
+
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
167 |
+
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
|
168 |
+
# this_uuid is used to track variables related to this inference thread
|
169 |
+
this_uuid = str(uuid.uuid1())
|
170 |
+
with self.lock:
|
171 |
+
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
172 |
+
self.hift_cache_dict[this_uuid] = None
|
173 |
+
self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
|
174 |
+
self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
|
175 |
+
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
176 |
+
p.start()
|
177 |
+
if stream is True:
|
178 |
+
token_hop_len = self.token_min_hop_len
|
179 |
+
while True:
|
180 |
+
time.sleep(0.1)
|
181 |
+
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
|
182 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
|
183 |
+
.unsqueeze(dim=0)
|
184 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
185 |
+
prompt_token=flow_prompt_speech_token,
|
186 |
+
prompt_feat=prompt_speech_feat,
|
187 |
+
embedding=flow_embedding,
|
188 |
+
uuid=this_uuid,
|
189 |
+
finalize=False)
|
190 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
191 |
+
with self.lock:
|
192 |
+
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
|
193 |
+
# increase token_hop_len for better speech quality
|
194 |
+
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
|
195 |
+
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
|
196 |
+
break
|
197 |
+
p.join()
|
198 |
+
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
199 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
200 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
201 |
+
prompt_token=flow_prompt_speech_token,
|
202 |
+
prompt_feat=prompt_speech_feat,
|
203 |
+
embedding=flow_embedding,
|
204 |
+
uuid=this_uuid,
|
205 |
+
finalize=True)
|
206 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
207 |
+
else:
|
208 |
+
# deal with all tokens
|
209 |
+
p.join()
|
210 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
211 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
212 |
+
prompt_token=flow_prompt_speech_token,
|
213 |
+
prompt_feat=prompt_speech_feat,
|
214 |
+
embedding=flow_embedding,
|
215 |
+
uuid=this_uuid,
|
216 |
+
finalize=True,
|
217 |
+
speed=speed)
|
218 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
219 |
+
with self.lock:
|
220 |
+
self.tts_speech_token_dict.pop(this_uuid)
|
221 |
+
self.llm_end_dict.pop(this_uuid)
|
222 |
+
self.mel_overlap_dict.pop(this_uuid)
|
223 |
+
self.hift_cache_dict.pop(this_uuid)
|
224 |
+
self.flow_cache_dict.pop(this_uuid)
|
225 |
+
torch.cuda.empty_cache()
|
226 |
+
|
227 |
+
def vc(self, source_speech_token, flow_prompt_speech_token, prompt_speech_feat, flow_embedding, stream=False, speed=1.0, **kwargs):
|
228 |
+
# this_uuid is used to track variables related to this inference thread
|
229 |
+
this_uuid = str(uuid.uuid1())
|
230 |
+
with self.lock:
|
231 |
+
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = source_speech_token.flatten().tolist(), True
|
232 |
+
self.hift_cache_dict[this_uuid] = None
|
233 |
+
self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
|
234 |
+
self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
|
235 |
+
if stream is True:
|
236 |
+
token_hop_len = self.token_min_hop_len
|
237 |
+
while True:
|
238 |
+
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
|
239 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
|
240 |
+
.unsqueeze(dim=0)
|
241 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
242 |
+
prompt_token=flow_prompt_speech_token,
|
243 |
+
prompt_feat=prompt_speech_feat,
|
244 |
+
embedding=flow_embedding,
|
245 |
+
uuid=this_uuid,
|
246 |
+
finalize=False)
|
247 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
248 |
+
with self.lock:
|
249 |
+
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
|
250 |
+
# increase token_hop_len for better speech quality
|
251 |
+
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
|
252 |
+
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
|
253 |
+
break
|
254 |
+
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
255 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
256 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
257 |
+
prompt_token=flow_prompt_speech_token,
|
258 |
+
prompt_feat=prompt_speech_feat,
|
259 |
+
embedding=flow_embedding,
|
260 |
+
uuid=this_uuid,
|
261 |
+
finalize=True)
|
262 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
263 |
+
else:
|
264 |
+
# deal with all tokens
|
265 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
266 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
267 |
+
prompt_token=flow_prompt_speech_token,
|
268 |
+
prompt_feat=prompt_speech_feat,
|
269 |
+
embedding=flow_embedding,
|
270 |
+
uuid=this_uuid,
|
271 |
+
finalize=True,
|
272 |
+
speed=speed)
|
273 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
274 |
+
with self.lock:
|
275 |
+
self.tts_speech_token_dict.pop(this_uuid)
|
276 |
+
self.llm_end_dict.pop(this_uuid)
|
277 |
+
self.mel_overlap_dict.pop(this_uuid)
|
278 |
+
self.hift_cache_dict.pop(this_uuid)
|
279 |
+
torch.cuda.empty_cache()
|
280 |
+
|
281 |
+
|
282 |
+
class CosyVoice2Model(CosyVoiceModel):
|
283 |
+
|
284 |
+
def __init__(self,
|
285 |
+
llm: torch.nn.Module,
|
286 |
+
flow: torch.nn.Module,
|
287 |
+
hift: torch.nn.Module,
|
288 |
+
fp16: bool):
|
289 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
290 |
+
self.llm = llm
|
291 |
+
self.flow = flow
|
292 |
+
self.hift = hift
|
293 |
+
self.fp16 = fp16
|
294 |
+
self.llm.fp16 = fp16
|
295 |
+
self.flow.fp16 = fp16
|
296 |
+
if self.fp16 is True:
|
297 |
+
self.llm.half()
|
298 |
+
self.flow.half()
|
299 |
+
self.token_hop_len = 2 * self.flow.input_frame_rate
|
300 |
+
# here we fix flow encoder/decoder decoding_chunk_size, in the future we will send it as arguments, or use cache
|
301 |
+
self.flow.encoder.static_chunk_size = 2 * self.flow.input_frame_rate
|
302 |
+
self.flow.decoder.estimator.static_chunk_size = 2 * self.flow.input_frame_rate * self.flow.token_mel_ratio
|
303 |
+
# hift cache
|
304 |
+
self.mel_cache_len = 8
|
305 |
+
self.source_cache_len = int(self.mel_cache_len * 480)
|
306 |
+
# speech fade in out
|
307 |
+
self.speech_window = np.hamming(2 * self.source_cache_len)
|
308 |
+
# rtf and decoding related
|
309 |
+
self.stream_scale_factor = 1
|
310 |
+
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
311 |
+
self.lock = threading.Lock()
|
312 |
+
# dict used to store session related variable
|
313 |
+
self.tts_speech_token_dict = {}
|
314 |
+
self.llm_end_dict = {}
|
315 |
+
self.hift_cache_dict = {}
|
316 |
+
|
317 |
+
def load_jit(self, flow_encoder_model):
|
318 |
+
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
319 |
+
self.flow.encoder = flow_encoder
|
320 |
+
|
321 |
+
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, token_offset, finalize=False, speed=1.0):
|
322 |
+
tts_mel, _ = self.flow.inference(token=token.to(self.device),
|
323 |
+
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
324 |
+
prompt_token=prompt_token.to(self.device),
|
325 |
+
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
326 |
+
prompt_feat=prompt_feat.to(self.device),
|
327 |
+
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
328 |
+
embedding=embedding.to(self.device),
|
329 |
+
finalize=finalize)
|
330 |
+
tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
|
331 |
+
# append hift cache
|
332 |
+
if self.hift_cache_dict[uuid] is not None:
|
333 |
+
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
334 |
+
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
335 |
+
else:
|
336 |
+
hift_cache_source = torch.zeros(1, 1, 0)
|
337 |
+
# keep overlap mel and hift cache
|
338 |
+
if finalize is False:
|
339 |
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
340 |
+
if self.hift_cache_dict[uuid] is not None:
|
341 |
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
342 |
+
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
|
343 |
+
'source': tts_source[:, :, -self.source_cache_len:],
|
344 |
+
'speech': tts_speech[:, -self.source_cache_len:]}
|
345 |
+
tts_speech = tts_speech[:, :-self.source_cache_len]
|
346 |
+
else:
|
347 |
+
if speed != 1.0:
|
348 |
+
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
|
349 |
+
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
|
350 |
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
351 |
+
if self.hift_cache_dict[uuid] is not None:
|
352 |
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
353 |
+
return tts_speech
|
354 |
+
|
355 |
+
def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
356 |
+
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
|
357 |
+
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
358 |
+
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
359 |
+
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
|
360 |
+
# this_uuid is used to track variables related to this inference thread
|
361 |
+
this_uuid = str(uuid.uuid1())
|
362 |
+
with self.lock:
|
363 |
+
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
364 |
+
self.hift_cache_dict[this_uuid] = None
|
365 |
+
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
366 |
+
p.start()
|
367 |
+
if stream is True:
|
368 |
+
token_offset = 0
|
369 |
+
while True:
|
370 |
+
time.sleep(0.1)
|
371 |
+
if len(self.tts_speech_token_dict[this_uuid]) - token_offset >= self.token_hop_len + self.flow.pre_lookahead_len:
|
372 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_offset + self.token_hop_len + self.flow.pre_lookahead_len]).unsqueeze(dim=0)
|
373 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
374 |
+
prompt_token=flow_prompt_speech_token,
|
375 |
+
prompt_feat=prompt_speech_feat,
|
376 |
+
embedding=flow_embedding,
|
377 |
+
uuid=this_uuid,
|
378 |
+
token_offset=token_offset,
|
379 |
+
finalize=False)
|
380 |
+
token_offset += self.token_hop_len
|
381 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
382 |
+
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < self.token_hop_len + self.flow.pre_lookahead_len:
|
383 |
+
break
|
384 |
+
p.join()
|
385 |
+
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
386 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
387 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
388 |
+
prompt_token=flow_prompt_speech_token,
|
389 |
+
prompt_feat=prompt_speech_feat,
|
390 |
+
embedding=flow_embedding,
|
391 |
+
uuid=this_uuid,
|
392 |
+
token_offset=token_offset,
|
393 |
+
finalize=True)
|
394 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
395 |
+
else:
|
396 |
+
# deal with all tokens
|
397 |
+
p.join()
|
398 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
399 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
400 |
+
prompt_token=flow_prompt_speech_token,
|
401 |
+
prompt_feat=prompt_speech_feat,
|
402 |
+
embedding=flow_embedding,
|
403 |
+
uuid=this_uuid,
|
404 |
+
token_offset=0,
|
405 |
+
finalize=True,
|
406 |
+
speed=speed)
|
407 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
408 |
+
with self.lock:
|
409 |
+
self.tts_speech_token_dict.pop(this_uuid)
|
410 |
+
self.llm_end_dict.pop(this_uuid)
|
411 |
+
torch.cuda.empty_cache()
|
cosyvoice/dataset/__init__.py
ADDED
File without changes
|
cosyvoice/dataset/dataset.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import random
|
17 |
+
import json
|
18 |
+
import math
|
19 |
+
from functools import partial
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.distributed as dist
|
23 |
+
from torch.utils.data import IterableDataset
|
24 |
+
from cosyvoice.utils.file_utils import read_lists, read_json_lists
|
25 |
+
|
26 |
+
|
27 |
+
class Processor(IterableDataset):
|
28 |
+
|
29 |
+
def __init__(self, source, f, *args, **kw):
|
30 |
+
assert callable(f)
|
31 |
+
self.source = source
|
32 |
+
self.f = f
|
33 |
+
self.args = args
|
34 |
+
self.kw = kw
|
35 |
+
|
36 |
+
def set_epoch(self, epoch):
|
37 |
+
self.source.set_epoch(epoch)
|
38 |
+
|
39 |
+
def __iter__(self):
|
40 |
+
""" Return an iterator over the source dataset processed by the
|
41 |
+
given processor.
|
42 |
+
"""
|
43 |
+
assert self.source is not None
|
44 |
+
assert callable(self.f)
|
45 |
+
return self.f(iter(self.source), *self.args, **self.kw)
|
46 |
+
|
47 |
+
def apply(self, f):
|
48 |
+
assert callable(f)
|
49 |
+
return Processor(self, f, *self.args, **self.kw)
|
50 |
+
|
51 |
+
|
52 |
+
class DistributedSampler:
|
53 |
+
|
54 |
+
def __init__(self, shuffle=True, partition=True):
|
55 |
+
self.epoch = -1
|
56 |
+
self.update()
|
57 |
+
self.shuffle = shuffle
|
58 |
+
self.partition = partition
|
59 |
+
|
60 |
+
def update(self):
|
61 |
+
assert dist.is_available()
|
62 |
+
if dist.is_initialized():
|
63 |
+
self.rank = dist.get_rank()
|
64 |
+
self.world_size = dist.get_world_size()
|
65 |
+
else:
|
66 |
+
self.rank = 0
|
67 |
+
self.world_size = 1
|
68 |
+
worker_info = torch.utils.data.get_worker_info()
|
69 |
+
if worker_info is None:
|
70 |
+
self.worker_id = 0
|
71 |
+
self.num_workers = 1
|
72 |
+
else:
|
73 |
+
self.worker_id = worker_info.id
|
74 |
+
self.num_workers = worker_info.num_workers
|
75 |
+
return dict(rank=self.rank,
|
76 |
+
world_size=self.world_size,
|
77 |
+
worker_id=self.worker_id,
|
78 |
+
num_workers=self.num_workers)
|
79 |
+
|
80 |
+
def set_epoch(self, epoch):
|
81 |
+
self.epoch = epoch
|
82 |
+
|
83 |
+
def sample(self, data):
|
84 |
+
""" Sample data according to rank/world_size/num_workers
|
85 |
+
|
86 |
+
Args:
|
87 |
+
data(List): input data list
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
List: data list after sample
|
91 |
+
"""
|
92 |
+
data = list(range(len(data)))
|
93 |
+
# force datalist even
|
94 |
+
if self.partition:
|
95 |
+
if self.shuffle:
|
96 |
+
random.Random(self.epoch).shuffle(data)
|
97 |
+
if len(data) < self.world_size:
|
98 |
+
data = data * math.ceil(self.world_size / len(data))
|
99 |
+
data = data[:self.world_size]
|
100 |
+
data = data[self.rank::self.world_size]
|
101 |
+
if len(data) < self.num_workers:
|
102 |
+
data = data * math.ceil(self.num_workers / len(data))
|
103 |
+
data = data[:self.num_workers]
|
104 |
+
data = data[self.worker_id::self.num_workers]
|
105 |
+
return data
|
106 |
+
|
107 |
+
|
108 |
+
class DataList(IterableDataset):
|
109 |
+
|
110 |
+
def __init__(self, lists, shuffle=True, partition=True):
|
111 |
+
self.lists = lists
|
112 |
+
self.sampler = DistributedSampler(shuffle, partition)
|
113 |
+
|
114 |
+
def set_epoch(self, epoch):
|
115 |
+
self.sampler.set_epoch(epoch)
|
116 |
+
|
117 |
+
def __iter__(self):
|
118 |
+
sampler_info = self.sampler.update()
|
119 |
+
indexes = self.sampler.sample(self.lists)
|
120 |
+
for index in indexes:
|
121 |
+
data = dict(src=self.lists[index])
|
122 |
+
data.update(sampler_info)
|
123 |
+
yield data
|
124 |
+
|
125 |
+
|
126 |
+
def Dataset(data_list_file,
|
127 |
+
data_pipeline,
|
128 |
+
mode='train',
|
129 |
+
gan=False,
|
130 |
+
shuffle=True,
|
131 |
+
partition=True,
|
132 |
+
tts_file='',
|
133 |
+
prompt_utt2data=''):
|
134 |
+
""" Construct dataset from arguments
|
135 |
+
|
136 |
+
We have two shuffle stage in the Dataset. The first is global
|
137 |
+
shuffle at shards tar/raw file level. The second is global shuffle
|
138 |
+
at training samples level.
|
139 |
+
|
140 |
+
Args:
|
141 |
+
data_type(str): raw/shard
|
142 |
+
tokenizer (BaseTokenizer): tokenizer to tokenize
|
143 |
+
partition(bool): whether to do data partition in terms of rank
|
144 |
+
"""
|
145 |
+
assert mode in ['train', 'inference']
|
146 |
+
lists = read_lists(data_list_file)
|
147 |
+
if mode == 'inference':
|
148 |
+
with open(tts_file) as f:
|
149 |
+
tts_data = json.load(f)
|
150 |
+
utt2lists = read_json_lists(prompt_utt2data)
|
151 |
+
# filter unnecessary file in inference mode
|
152 |
+
lists = list({utt2lists[utt] for utt in tts_data.keys() if utt2lists[utt] in lists})
|
153 |
+
dataset = DataList(lists,
|
154 |
+
shuffle=shuffle,
|
155 |
+
partition=partition)
|
156 |
+
if mode == 'inference':
|
157 |
+
# map partial arg to parquet_opener func in inference mode
|
158 |
+
data_pipeline[0] = partial(data_pipeline[0], tts_data=tts_data)
|
159 |
+
if gan is True:
|
160 |
+
# map partial arg to padding func in gan mode
|
161 |
+
data_pipeline[-1] = partial(data_pipeline[-1], gan=gan)
|
162 |
+
for func in data_pipeline:
|
163 |
+
dataset = Processor(dataset, func, mode=mode)
|
164 |
+
return dataset
|
cosyvoice/flow/decoder.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
import torch.nn.functional as F
|
17 |
+
from einops import pack, rearrange, repeat
|
18 |
+
from cosyvoice.utils.common import mask_to_bias
|
19 |
+
from cosyvoice.utils.mask import add_optional_chunk_mask
|
20 |
+
from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D
|
21 |
+
from matcha.models.components.transformer import BasicTransformerBlock
|
22 |
+
|
23 |
+
|
24 |
+
class Transpose(torch.nn.Module):
|
25 |
+
def __init__(self, dim0: int, dim1: int):
|
26 |
+
super().__init__()
|
27 |
+
self.dim0 = dim0
|
28 |
+
self.dim1 = dim1
|
29 |
+
|
30 |
+
def forward(self, x: torch.Tensor):
|
31 |
+
x = torch.transpose(x, self.dim0, self.dim1)
|
32 |
+
return x
|
33 |
+
|
34 |
+
|
35 |
+
class CausalBlock1D(Block1D):
|
36 |
+
def __init__(self, dim: int, dim_out: int):
|
37 |
+
super(CausalBlock1D, self).__init__(dim, dim_out)
|
38 |
+
self.block = torch.nn.Sequential(
|
39 |
+
CausalConv1d(dim, dim_out, 3),
|
40 |
+
Transpose(1, 2),
|
41 |
+
nn.LayerNorm(dim_out),
|
42 |
+
Transpose(1, 2),
|
43 |
+
nn.Mish(),
|
44 |
+
)
|
45 |
+
|
46 |
+
def forward(self, x: torch.Tensor, mask: torch.Tensor):
|
47 |
+
output = self.block(x * mask)
|
48 |
+
return output * mask
|
49 |
+
|
50 |
+
|
51 |
+
class CausalResnetBlock1D(ResnetBlock1D):
|
52 |
+
def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8):
|
53 |
+
super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups)
|
54 |
+
self.block1 = CausalBlock1D(dim, dim_out)
|
55 |
+
self.block2 = CausalBlock1D(dim_out, dim_out)
|
56 |
+
|
57 |
+
|
58 |
+
class CausalConv1d(torch.nn.Conv1d):
|
59 |
+
def __init__(
|
60 |
+
self,
|
61 |
+
in_channels: int,
|
62 |
+
out_channels: int,
|
63 |
+
kernel_size: int,
|
64 |
+
stride: int = 1,
|
65 |
+
dilation: int = 1,
|
66 |
+
groups: int = 1,
|
67 |
+
bias: bool = True,
|
68 |
+
padding_mode: str = 'zeros',
|
69 |
+
device=None,
|
70 |
+
dtype=None
|
71 |
+
) -> None:
|
72 |
+
super(CausalConv1d, self).__init__(in_channels, out_channels,
|
73 |
+
kernel_size, stride,
|
74 |
+
padding=0, dilation=dilation,
|
75 |
+
groups=groups, bias=bias,
|
76 |
+
padding_mode=padding_mode,
|
77 |
+
device=device, dtype=dtype)
|
78 |
+
assert stride == 1
|
79 |
+
self.causal_padding = (kernel_size - 1, 0)
|
80 |
+
|
81 |
+
def forward(self, x: torch.Tensor):
|
82 |
+
x = F.pad(x, self.causal_padding)
|
83 |
+
x = super(CausalConv1d, self).forward(x)
|
84 |
+
return x
|
85 |
+
|
86 |
+
|
87 |
+
class ConditionalDecoder(nn.Module):
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
in_channels,
|
91 |
+
out_channels,
|
92 |
+
causal=False,
|
93 |
+
channels=(256, 256),
|
94 |
+
dropout=0.05,
|
95 |
+
attention_head_dim=64,
|
96 |
+
n_blocks=1,
|
97 |
+
num_mid_blocks=2,
|
98 |
+
num_heads=4,
|
99 |
+
act_fn="snake",
|
100 |
+
):
|
101 |
+
"""
|
102 |
+
This decoder requires an input with the same shape of the target. So, if your text content
|
103 |
+
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
|
104 |
+
"""
|
105 |
+
super().__init__()
|
106 |
+
channels = tuple(channels)
|
107 |
+
self.in_channels = in_channels
|
108 |
+
self.out_channels = out_channels
|
109 |
+
self.causal = causal
|
110 |
+
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
111 |
+
time_embed_dim = channels[0] * 4
|
112 |
+
self.time_mlp = TimestepEmbedding(
|
113 |
+
in_channels=in_channels,
|
114 |
+
time_embed_dim=time_embed_dim,
|
115 |
+
act_fn="silu",
|
116 |
+
)
|
117 |
+
self.down_blocks = nn.ModuleList([])
|
118 |
+
self.mid_blocks = nn.ModuleList([])
|
119 |
+
self.up_blocks = nn.ModuleList([])
|
120 |
+
|
121 |
+
output_channel = in_channels
|
122 |
+
for i in range(len(channels)): # pylint: disable=consider-using-enumerate
|
123 |
+
input_channel = output_channel
|
124 |
+
output_channel = channels[i]
|
125 |
+
is_last = i == len(channels) - 1
|
126 |
+
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
|
127 |
+
ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
128 |
+
transformer_blocks = nn.ModuleList(
|
129 |
+
[
|
130 |
+
BasicTransformerBlock(
|
131 |
+
dim=output_channel,
|
132 |
+
num_attention_heads=num_heads,
|
133 |
+
attention_head_dim=attention_head_dim,
|
134 |
+
dropout=dropout,
|
135 |
+
activation_fn=act_fn,
|
136 |
+
)
|
137 |
+
for _ in range(n_blocks)
|
138 |
+
]
|
139 |
+
)
|
140 |
+
downsample = (
|
141 |
+
Downsample1D(output_channel) if not is_last else
|
142 |
+
CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
143 |
+
)
|
144 |
+
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
145 |
+
|
146 |
+
for _ in range(num_mid_blocks):
|
147 |
+
input_channel = channels[-1]
|
148 |
+
out_channels = channels[-1]
|
149 |
+
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
|
150 |
+
ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
151 |
+
|
152 |
+
transformer_blocks = nn.ModuleList(
|
153 |
+
[
|
154 |
+
BasicTransformerBlock(
|
155 |
+
dim=output_channel,
|
156 |
+
num_attention_heads=num_heads,
|
157 |
+
attention_head_dim=attention_head_dim,
|
158 |
+
dropout=dropout,
|
159 |
+
activation_fn=act_fn,
|
160 |
+
)
|
161 |
+
for _ in range(n_blocks)
|
162 |
+
]
|
163 |
+
)
|
164 |
+
|
165 |
+
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
|
166 |
+
|
167 |
+
channels = channels[::-1] + (channels[0],)
|
168 |
+
for i in range(len(channels) - 1):
|
169 |
+
input_channel = channels[i] * 2
|
170 |
+
output_channel = channels[i + 1]
|
171 |
+
is_last = i == len(channels) - 2
|
172 |
+
resnet = CausalResnetBlock1D(
|
173 |
+
dim=input_channel,
|
174 |
+
dim_out=output_channel,
|
175 |
+
time_emb_dim=time_embed_dim,
|
176 |
+
) if self.causal else ResnetBlock1D(
|
177 |
+
dim=input_channel,
|
178 |
+
dim_out=output_channel,
|
179 |
+
time_emb_dim=time_embed_dim,
|
180 |
+
)
|
181 |
+
transformer_blocks = nn.ModuleList(
|
182 |
+
[
|
183 |
+
BasicTransformerBlock(
|
184 |
+
dim=output_channel,
|
185 |
+
num_attention_heads=num_heads,
|
186 |
+
attention_head_dim=attention_head_dim,
|
187 |
+
dropout=dropout,
|
188 |
+
activation_fn=act_fn,
|
189 |
+
)
|
190 |
+
for _ in range(n_blocks)
|
191 |
+
]
|
192 |
+
)
|
193 |
+
upsample = (
|
194 |
+
Upsample1D(output_channel, use_conv_transpose=True)
|
195 |
+
if not is_last
|
196 |
+
else CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
197 |
+
)
|
198 |
+
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
199 |
+
self.final_block = CausalBlock1D(channels[-1], channels[-1]) if self.causal else Block1D(channels[-1], channels[-1])
|
200 |
+
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
201 |
+
self.initialize_weights()
|
202 |
+
|
203 |
+
def initialize_weights(self):
|
204 |
+
for m in self.modules():
|
205 |
+
if isinstance(m, nn.Conv1d):
|
206 |
+
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
207 |
+
if m.bias is not None:
|
208 |
+
nn.init.constant_(m.bias, 0)
|
209 |
+
elif isinstance(m, nn.GroupNorm):
|
210 |
+
nn.init.constant_(m.weight, 1)
|
211 |
+
nn.init.constant_(m.bias, 0)
|
212 |
+
elif isinstance(m, nn.Linear):
|
213 |
+
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
214 |
+
if m.bias is not None:
|
215 |
+
nn.init.constant_(m.bias, 0)
|
216 |
+
|
217 |
+
def forward(self, x, mask, mu, t, spks=None, cond=None):
|
218 |
+
"""Forward pass of the UNet1DConditional model.
|
219 |
+
|
220 |
+
Args:
|
221 |
+
x (torch.Tensor): shape (batch_size, in_channels, time)
|
222 |
+
mask (_type_): shape (batch_size, 1, time)
|
223 |
+
t (_type_): shape (batch_size)
|
224 |
+
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
|
225 |
+
cond (_type_, optional): placeholder for future use. Defaults to None.
|
226 |
+
|
227 |
+
Raises:
|
228 |
+
ValueError: _description_
|
229 |
+
ValueError: _description_
|
230 |
+
|
231 |
+
Returns:
|
232 |
+
_type_: _description_
|
233 |
+
"""
|
234 |
+
|
235 |
+
t = self.time_embeddings(t).to(t.dtype)
|
236 |
+
t = self.time_mlp(t)
|
237 |
+
|
238 |
+
x = pack([x, mu], "b * t")[0]
|
239 |
+
|
240 |
+
if spks is not None:
|
241 |
+
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
|
242 |
+
x = pack([x, spks], "b * t")[0]
|
243 |
+
if cond is not None:
|
244 |
+
x = pack([x, cond], "b * t")[0]
|
245 |
+
|
246 |
+
hiddens = []
|
247 |
+
masks = [mask]
|
248 |
+
for resnet, transformer_blocks, downsample in self.down_blocks:
|
249 |
+
mask_down = masks[-1]
|
250 |
+
x = resnet(x, mask_down, t)
|
251 |
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
252 |
+
# attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
|
253 |
+
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, -1)
|
254 |
+
attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
|
255 |
+
for transformer_block in transformer_blocks:
|
256 |
+
x = transformer_block(
|
257 |
+
hidden_states=x,
|
258 |
+
attention_mask=attn_mask,
|
259 |
+
timestep=t,
|
260 |
+
)
|
261 |
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
262 |
+
hiddens.append(x) # Save hidden states for skip connections
|
263 |
+
x = downsample(x * mask_down)
|
264 |
+
masks.append(mask_down[:, :, ::2])
|
265 |
+
masks = masks[:-1]
|
266 |
+
mask_mid = masks[-1]
|
267 |
+
|
268 |
+
for resnet, transformer_blocks in self.mid_blocks:
|
269 |
+
x = resnet(x, mask_mid, t)
|
270 |
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
271 |
+
# attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
|
272 |
+
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, -1)
|
273 |
+
attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
|
274 |
+
for transformer_block in transformer_blocks:
|
275 |
+
x = transformer_block(
|
276 |
+
hidden_states=x,
|
277 |
+
attention_mask=attn_mask,
|
278 |
+
timestep=t,
|
279 |
+
)
|
280 |
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
281 |
+
|
282 |
+
for resnet, transformer_blocks, upsample in self.up_blocks:
|
283 |
+
mask_up = masks.pop()
|
284 |
+
skip = hiddens.pop()
|
285 |
+
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
286 |
+
x = resnet(x, mask_up, t)
|
287 |
+
x = rearrange(x, "b c t -> b t c").contiguous()
|
288 |
+
# attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
|
289 |
+
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, -1)
|
290 |
+
attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
|
291 |
+
for transformer_block in transformer_blocks:
|
292 |
+
x = transformer_block(
|
293 |
+
hidden_states=x,
|
294 |
+
attention_mask=attn_mask,
|
295 |
+
timestep=t,
|
296 |
+
)
|
297 |
+
x = rearrange(x, "b t c -> b c t").contiguous()
|
298 |
+
x = upsample(x * mask_up)
|
299 |
+
x = self.final_block(x, mask_up)
|
300 |
+
output = self.final_proj(x * mask_up)
|
301 |
+
return output * mask
|
cosyvoice/flow/flow.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import logging
|
15 |
+
import random
|
16 |
+
from typing import Dict, Optional
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
from torch.nn import functional as F
|
20 |
+
from omegaconf import DictConfig
|
21 |
+
from cosyvoice.utils.mask import make_pad_mask
|
22 |
+
|
23 |
+
|
24 |
+
class MaskedDiffWithXvec(torch.nn.Module):
|
25 |
+
def __init__(self,
|
26 |
+
input_size: int = 512,
|
27 |
+
output_size: int = 80,
|
28 |
+
spk_embed_dim: int = 192,
|
29 |
+
output_type: str = "mel",
|
30 |
+
vocab_size: int = 4096,
|
31 |
+
input_frame_rate: int = 50,
|
32 |
+
only_mask_loss: bool = True,
|
33 |
+
encoder: torch.nn.Module = None,
|
34 |
+
length_regulator: torch.nn.Module = None,
|
35 |
+
decoder: torch.nn.Module = None,
|
36 |
+
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
|
37 |
+
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
|
38 |
+
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
|
39 |
+
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
|
40 |
+
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
41 |
+
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
|
42 |
+
'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
43 |
+
super().__init__()
|
44 |
+
self.input_size = input_size
|
45 |
+
self.output_size = output_size
|
46 |
+
self.decoder_conf = decoder_conf
|
47 |
+
self.mel_feat_conf = mel_feat_conf
|
48 |
+
self.vocab_size = vocab_size
|
49 |
+
self.output_type = output_type
|
50 |
+
self.input_frame_rate = input_frame_rate
|
51 |
+
logging.info(f"input frame rate={self.input_frame_rate}")
|
52 |
+
self.input_embedding = nn.Embedding(vocab_size, input_size)
|
53 |
+
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
|
54 |
+
self.encoder = encoder
|
55 |
+
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
|
56 |
+
self.decoder = decoder
|
57 |
+
self.length_regulator = length_regulator
|
58 |
+
self.only_mask_loss = only_mask_loss
|
59 |
+
|
60 |
+
def forward(
|
61 |
+
self,
|
62 |
+
batch: dict,
|
63 |
+
device: torch.device,
|
64 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
65 |
+
token = batch['speech_token'].to(device)
|
66 |
+
token_len = batch['speech_token_len'].to(device)
|
67 |
+
feat = batch['speech_feat'].to(device)
|
68 |
+
feat_len = batch['speech_feat_len'].to(device)
|
69 |
+
embedding = batch['embedding'].to(device)
|
70 |
+
|
71 |
+
# xvec projection
|
72 |
+
embedding = F.normalize(embedding, dim=1)
|
73 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
74 |
+
|
75 |
+
# concat text and prompt_text
|
76 |
+
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
|
77 |
+
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
78 |
+
|
79 |
+
# text encode
|
80 |
+
h, h_lengths = self.encoder(token, token_len)
|
81 |
+
h = self.encoder_proj(h)
|
82 |
+
h, h_lengths = self.length_regulator(h, feat_len)
|
83 |
+
|
84 |
+
# get conditions
|
85 |
+
conds = torch.zeros(feat.shape, device=token.device)
|
86 |
+
for i, j in enumerate(feat_len):
|
87 |
+
if random.random() < 0.5:
|
88 |
+
continue
|
89 |
+
index = random.randint(0, int(0.3 * j))
|
90 |
+
conds[i, :index] = feat[i, :index]
|
91 |
+
conds = conds.transpose(1, 2)
|
92 |
+
|
93 |
+
mask = (~make_pad_mask(feat_len)).to(h)
|
94 |
+
feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
|
95 |
+
loss, _ = self.decoder.compute_loss(
|
96 |
+
feat.transpose(1, 2).contiguous(),
|
97 |
+
mask.unsqueeze(1),
|
98 |
+
h.transpose(1, 2).contiguous(),
|
99 |
+
embedding,
|
100 |
+
cond=conds
|
101 |
+
)
|
102 |
+
return {'loss': loss}
|
103 |
+
|
104 |
+
@torch.inference_mode()
|
105 |
+
def inference(self,
|
106 |
+
token,
|
107 |
+
token_len,
|
108 |
+
prompt_token,
|
109 |
+
prompt_token_len,
|
110 |
+
prompt_feat,
|
111 |
+
prompt_feat_len,
|
112 |
+
embedding,
|
113 |
+
flow_cache):
|
114 |
+
if self.fp16 is True:
|
115 |
+
prompt_feat = prompt_feat.half()
|
116 |
+
embedding = embedding.half()
|
117 |
+
|
118 |
+
assert token.shape[0] == 1
|
119 |
+
# xvec projection
|
120 |
+
embedding = F.normalize(embedding, dim=1)
|
121 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
122 |
+
|
123 |
+
# concat text and prompt_text
|
124 |
+
token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
|
125 |
+
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
126 |
+
mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
|
127 |
+
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
128 |
+
|
129 |
+
# text encode
|
130 |
+
h, h_lengths = self.encoder(token, token_len)
|
131 |
+
h = self.encoder_proj(h)
|
132 |
+
mel_len1, mel_len2 = prompt_feat.shape[1], int(token_len2 / self.input_frame_rate * 22050 / 256)
|
133 |
+
h, h_lengths = self.length_regulator.inference(h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2, self.input_frame_rate)
|
134 |
+
|
135 |
+
# get conditions
|
136 |
+
conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device).to(h.dtype)
|
137 |
+
conds[:, :mel_len1] = prompt_feat
|
138 |
+
conds = conds.transpose(1, 2)
|
139 |
+
|
140 |
+
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
141 |
+
feat, flow_cache = self.decoder(
|
142 |
+
mu=h.transpose(1, 2).contiguous(),
|
143 |
+
mask=mask.unsqueeze(1),
|
144 |
+
spks=embedding,
|
145 |
+
cond=conds,
|
146 |
+
n_timesteps=10,
|
147 |
+
prompt_len=mel_len1,
|
148 |
+
flow_cache=flow_cache
|
149 |
+
)
|
150 |
+
feat = feat[:, :, mel_len1:]
|
151 |
+
assert feat.shape[2] == mel_len2
|
152 |
+
return feat.float(), flow_cache
|
153 |
+
|
154 |
+
|
155 |
+
class CausalMaskedDiffWithXvec(torch.nn.Module):
|
156 |
+
def __init__(self,
|
157 |
+
input_size: int = 512,
|
158 |
+
output_size: int = 80,
|
159 |
+
spk_embed_dim: int = 192,
|
160 |
+
output_type: str = "mel",
|
161 |
+
vocab_size: int = 4096,
|
162 |
+
input_frame_rate: int = 50,
|
163 |
+
only_mask_loss: bool = True,
|
164 |
+
token_mel_ratio: int = 2,
|
165 |
+
pre_lookahead_len: int = 3,
|
166 |
+
encoder: torch.nn.Module = None,
|
167 |
+
decoder: torch.nn.Module = None,
|
168 |
+
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
|
169 |
+
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
|
170 |
+
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
|
171 |
+
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
|
172 |
+
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
173 |
+
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
|
174 |
+
'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
175 |
+
super().__init__()
|
176 |
+
self.input_size = input_size
|
177 |
+
self.output_size = output_size
|
178 |
+
self.decoder_conf = decoder_conf
|
179 |
+
self.mel_feat_conf = mel_feat_conf
|
180 |
+
self.vocab_size = vocab_size
|
181 |
+
self.output_type = output_type
|
182 |
+
self.input_frame_rate = input_frame_rate
|
183 |
+
logging.info(f"input frame rate={self.input_frame_rate}")
|
184 |
+
self.input_embedding = nn.Embedding(vocab_size, input_size)
|
185 |
+
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
|
186 |
+
self.encoder = encoder
|
187 |
+
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
|
188 |
+
self.decoder = decoder
|
189 |
+
self.only_mask_loss = only_mask_loss
|
190 |
+
self.token_mel_ratio = token_mel_ratio
|
191 |
+
self.pre_lookahead_len = pre_lookahead_len
|
192 |
+
|
193 |
+
@torch.inference_mode()
|
194 |
+
def inference(self,
|
195 |
+
token,
|
196 |
+
token_len,
|
197 |
+
prompt_token,
|
198 |
+
prompt_token_len,
|
199 |
+
prompt_feat,
|
200 |
+
prompt_feat_len,
|
201 |
+
embedding,
|
202 |
+
finalize):
|
203 |
+
if self.fp16 is True:
|
204 |
+
prompt_feat = prompt_feat.half()
|
205 |
+
embedding = embedding.half()
|
206 |
+
|
207 |
+
assert token.shape[0] == 1
|
208 |
+
# xvec projection
|
209 |
+
embedding = F.normalize(embedding, dim=1)
|
210 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
211 |
+
|
212 |
+
# concat text and prompt_text
|
213 |
+
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
214 |
+
mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
|
215 |
+
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
216 |
+
|
217 |
+
# text encode
|
218 |
+
h, h_lengths = self.encoder(token, token_len)
|
219 |
+
if finalize is False:
|
220 |
+
h = h[:, :-self.pre_lookahead_len * self.token_mel_ratio]
|
221 |
+
mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
|
222 |
+
h = self.encoder_proj(h)
|
223 |
+
|
224 |
+
# get conditions
|
225 |
+
conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device).to(h.dtype)
|
226 |
+
conds[:, :mel_len1] = prompt_feat
|
227 |
+
conds = conds.transpose(1, 2)
|
228 |
+
|
229 |
+
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
230 |
+
feat, _ = self.decoder(
|
231 |
+
mu=h.transpose(1, 2).contiguous(),
|
232 |
+
mask=mask.unsqueeze(1),
|
233 |
+
spks=embedding,
|
234 |
+
cond=conds,
|
235 |
+
n_timesteps=10
|
236 |
+
)
|
237 |
+
feat = feat[:, :, mel_len1:]
|
238 |
+
assert feat.shape[2] == mel_len2
|
239 |
+
return feat.float(), None
|
cosyvoice/flow/flow_matching.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import threading
|
15 |
+
import torch
|
16 |
+
import torch.nn.functional as F
|
17 |
+
from matcha.models.components.flow_matching import BASECFM
|
18 |
+
|
19 |
+
|
20 |
+
class ConditionalCFM(BASECFM):
|
21 |
+
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
22 |
+
super().__init__(
|
23 |
+
n_feats=in_channels,
|
24 |
+
cfm_params=cfm_params,
|
25 |
+
n_spks=n_spks,
|
26 |
+
spk_emb_dim=spk_emb_dim,
|
27 |
+
)
|
28 |
+
self.t_scheduler = cfm_params.t_scheduler
|
29 |
+
self.training_cfg_rate = cfm_params.training_cfg_rate
|
30 |
+
self.inference_cfg_rate = cfm_params.inference_cfg_rate
|
31 |
+
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
|
32 |
+
# Just change the architecture of the estimator here
|
33 |
+
self.estimator = estimator
|
34 |
+
self.lock = threading.Lock()
|
35 |
+
|
36 |
+
@torch.inference_mode()
|
37 |
+
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, flow_cache=torch.zeros(1, 80, 0, 2)):
|
38 |
+
"""Forward diffusion
|
39 |
+
|
40 |
+
Args:
|
41 |
+
mu (torch.Tensor): output of encoder
|
42 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
43 |
+
mask (torch.Tensor): output_mask
|
44 |
+
shape: (batch_size, 1, mel_timesteps)
|
45 |
+
n_timesteps (int): number of diffusion steps
|
46 |
+
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
47 |
+
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
48 |
+
shape: (batch_size, spk_emb_dim)
|
49 |
+
cond: Not used but kept for future purposes
|
50 |
+
|
51 |
+
Returns:
|
52 |
+
sample: generated mel-spectrogram
|
53 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
54 |
+
"""
|
55 |
+
|
56 |
+
z = torch.randn_like(mu).to(mu.device).to(mu.dtype) * temperature
|
57 |
+
cache_size = flow_cache.shape[2]
|
58 |
+
# fix prompt and overlap part mu and z
|
59 |
+
if cache_size != 0:
|
60 |
+
z[:, :, :cache_size] = flow_cache[:, :, :, 0]
|
61 |
+
mu[:, :, :cache_size] = flow_cache[:, :, :, 1]
|
62 |
+
z_cache = torch.concat([z[:, :, :prompt_len], z[:, :, -34:]], dim=2)
|
63 |
+
mu_cache = torch.concat([mu[:, :, :prompt_len], mu[:, :, -34:]], dim=2)
|
64 |
+
flow_cache = torch.stack([z_cache, mu_cache], dim=-1)
|
65 |
+
|
66 |
+
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
67 |
+
if self.t_scheduler == 'cosine':
|
68 |
+
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
69 |
+
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), flow_cache
|
70 |
+
|
71 |
+
def solve_euler(self, x, t_span, mu, mask, spks, cond):
|
72 |
+
"""
|
73 |
+
Fixed euler solver for ODEs.
|
74 |
+
Args:
|
75 |
+
x (torch.Tensor): random noise
|
76 |
+
t_span (torch.Tensor): n_timesteps interpolated
|
77 |
+
shape: (n_timesteps + 1,)
|
78 |
+
mu (torch.Tensor): output of encoder
|
79 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
80 |
+
mask (torch.Tensor): output_mask
|
81 |
+
shape: (batch_size, 1, mel_timesteps)
|
82 |
+
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
83 |
+
shape: (batch_size, spk_emb_dim)
|
84 |
+
cond: Not used but kept for future purposes
|
85 |
+
"""
|
86 |
+
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
87 |
+
t = t.unsqueeze(dim=0)
|
88 |
+
|
89 |
+
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
90 |
+
# Or in future might add like a return_all_steps flag
|
91 |
+
sol = []
|
92 |
+
|
93 |
+
# Do not use concat, it may cause memory format changed and trt infer with wrong results!
|
94 |
+
x_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
95 |
+
mask_in = torch.zeros([2, 1, x.size(2)], device=x.device, dtype=x.dtype)
|
96 |
+
mu_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
97 |
+
t_in = torch.zeros([2], device=x.device, dtype=x.dtype)
|
98 |
+
spks_in = torch.zeros([2, 80], device=x.device, dtype=x.dtype)
|
99 |
+
cond_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
100 |
+
for step in range(1, len(t_span)):
|
101 |
+
# Classifier-Free Guidance inference introduced in VoiceBox
|
102 |
+
x_in[:] = x
|
103 |
+
mask_in[:] = mask
|
104 |
+
mu_in[0] = mu
|
105 |
+
t_in[:] = t.unsqueeze(0)
|
106 |
+
spks_in[0] = spks
|
107 |
+
cond_in[0] = cond
|
108 |
+
dphi_dt = self.forward_estimator(
|
109 |
+
x_in, mask_in,
|
110 |
+
mu_in, t_in,
|
111 |
+
spks_in,
|
112 |
+
cond_in
|
113 |
+
)
|
114 |
+
dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0)
|
115 |
+
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt)
|
116 |
+
x = x + dt * dphi_dt
|
117 |
+
t = t + dt
|
118 |
+
sol.append(x)
|
119 |
+
if step < len(t_span) - 1:
|
120 |
+
dt = t_span[step + 1] - t
|
121 |
+
|
122 |
+
return sol[-1].float()
|
123 |
+
|
124 |
+
def forward_estimator(self, x, mask, mu, t, spks, cond):
|
125 |
+
if isinstance(self.estimator, torch.nn.Module):
|
126 |
+
return self.estimator.forward(x, mask, mu, t, spks, cond)
|
127 |
+
else:
|
128 |
+
with self.lock:
|
129 |
+
self.estimator.set_input_shape('x', (2, 80, x.size(2)))
|
130 |
+
self.estimator.set_input_shape('mask', (2, 1, x.size(2)))
|
131 |
+
self.estimator.set_input_shape('mu', (2, 80, x.size(2)))
|
132 |
+
self.estimator.set_input_shape('t', (2,))
|
133 |
+
self.estimator.set_input_shape('spks', (2, 80))
|
134 |
+
self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
|
135 |
+
# run trt engine
|
136 |
+
self.estimator.execute_v2([x.contiguous().data_ptr(),
|
137 |
+
mask.contiguous().data_ptr(),
|
138 |
+
mu.contiguous().data_ptr(),
|
139 |
+
t.contiguous().data_ptr(),
|
140 |
+
spks.contiguous().data_ptr(),
|
141 |
+
cond.contiguous().data_ptr(),
|
142 |
+
x.data_ptr()])
|
143 |
+
return x
|
144 |
+
|
145 |
+
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
146 |
+
"""Computes diffusion loss
|
147 |
+
|
148 |
+
Args:
|
149 |
+
x1 (torch.Tensor): Target
|
150 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
151 |
+
mask (torch.Tensor): target mask
|
152 |
+
shape: (batch_size, 1, mel_timesteps)
|
153 |
+
mu (torch.Tensor): output of encoder
|
154 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
155 |
+
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
|
156 |
+
shape: (batch_size, spk_emb_dim)
|
157 |
+
|
158 |
+
Returns:
|
159 |
+
loss: conditional flow matching loss
|
160 |
+
y: conditional flow
|
161 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
162 |
+
"""
|
163 |
+
b, _, t = mu.shape
|
164 |
+
|
165 |
+
# random timestep
|
166 |
+
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
|
167 |
+
if self.t_scheduler == 'cosine':
|
168 |
+
t = 1 - torch.cos(t * 0.5 * torch.pi)
|
169 |
+
# sample noise p(x_0)
|
170 |
+
z = torch.randn_like(x1)
|
171 |
+
|
172 |
+
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
|
173 |
+
u = x1 - (1 - self.sigma_min) * z
|
174 |
+
|
175 |
+
# during training, we randomly drop condition to trade off mode coverage and sample fidelity
|
176 |
+
if self.training_cfg_rate > 0:
|
177 |
+
cfg_mask = torch.rand(b, device=x1.device) > self.training_cfg_rate
|
178 |
+
mu = mu * cfg_mask.view(-1, 1, 1)
|
179 |
+
spks = spks * cfg_mask.view(-1, 1)
|
180 |
+
cond = cond * cfg_mask.view(-1, 1, 1)
|
181 |
+
|
182 |
+
pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
|
183 |
+
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
|
184 |
+
return loss, y
|
185 |
+
|
186 |
+
|
187 |
+
class CausalConditionalCFM(ConditionalCFM):
|
188 |
+
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
189 |
+
super().__init__(in_channels, cfm_params, n_spks, spk_emb_dim, estimator)
|
190 |
+
self.rand_noise = torch.randn([1, 80, 50 * 300])
|
191 |
+
|
192 |
+
@torch.inference_mode()
|
193 |
+
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
194 |
+
"""Forward diffusion
|
195 |
+
|
196 |
+
Args:
|
197 |
+
mu (torch.Tensor): output of encoder
|
198 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
199 |
+
mask (torch.Tensor): output_mask
|
200 |
+
shape: (batch_size, 1, mel_timesteps)
|
201 |
+
n_timesteps (int): number of diffusion steps
|
202 |
+
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
203 |
+
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
204 |
+
shape: (batch_size, spk_emb_dim)
|
205 |
+
cond: Not used but kept for future purposes
|
206 |
+
|
207 |
+
Returns:
|
208 |
+
sample: generated mel-spectrogram
|
209 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
210 |
+
"""
|
211 |
+
|
212 |
+
z = self.rand_noise[:, :, :mu.size(2)].to(mu.device).to(mu.dtype) * temperature
|
213 |
+
# fix prompt and overlap part mu and z
|
214 |
+
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
215 |
+
if self.t_scheduler == 'cosine':
|
216 |
+
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
217 |
+
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), None
|
cosyvoice/flow/length_regulator.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Tuple
|
15 |
+
import torch.nn as nn
|
16 |
+
import torch
|
17 |
+
from torch.nn import functional as F
|
18 |
+
from cosyvoice.utils.mask import make_pad_mask
|
19 |
+
|
20 |
+
|
21 |
+
class InterpolateRegulator(nn.Module):
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
channels: int,
|
25 |
+
sampling_ratios: Tuple,
|
26 |
+
out_channels: int = None,
|
27 |
+
groups: int = 1,
|
28 |
+
):
|
29 |
+
super().__init__()
|
30 |
+
self.sampling_ratios = sampling_ratios
|
31 |
+
out_channels = out_channels or channels
|
32 |
+
model = nn.ModuleList([])
|
33 |
+
if len(sampling_ratios) > 0:
|
34 |
+
for _ in sampling_ratios:
|
35 |
+
module = nn.Conv1d(channels, channels, 3, 1, 1)
|
36 |
+
norm = nn.GroupNorm(groups, channels)
|
37 |
+
act = nn.Mish()
|
38 |
+
model.extend([module, norm, act])
|
39 |
+
model.append(
|
40 |
+
nn.Conv1d(channels, out_channels, 1, 1)
|
41 |
+
)
|
42 |
+
self.model = nn.Sequential(*model)
|
43 |
+
|
44 |
+
def forward(self, x, ylens=None):
|
45 |
+
# x in (B, T, D)
|
46 |
+
mask = (~make_pad_mask(ylens)).to(x).unsqueeze(-1)
|
47 |
+
x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='linear')
|
48 |
+
out = self.model(x).transpose(1, 2).contiguous()
|
49 |
+
olens = ylens
|
50 |
+
return out * mask, olens
|
51 |
+
|
52 |
+
def inference(self, x1, x2, mel_len1, mel_len2, input_frame_rate=50):
|
53 |
+
# in inference mode, interploate prompt token and token(head/mid/tail) seprately, so we can get a clear separation point of mel
|
54 |
+
# x in (B, T, D)
|
55 |
+
if x2.shape[1] > 40:
|
56 |
+
x2_head = F.interpolate(x2[:, :20].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')
|
57 |
+
x2_mid = F.interpolate(x2[:, 20:-20].transpose(1, 2).contiguous(), size=mel_len2 - int(20 / input_frame_rate * 22050 / 256) * 2,
|
58 |
+
mode='linear')
|
59 |
+
x2_tail = F.interpolate(x2[:, -20:].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')
|
60 |
+
x2 = torch.concat([x2_head, x2_mid, x2_tail], dim=2)
|
61 |
+
else:
|
62 |
+
x2 = F.interpolate(x2.transpose(1, 2).contiguous(), size=mel_len2, mode='linear')
|
63 |
+
if x1.shape[1] != 0:
|
64 |
+
x1 = F.interpolate(x1.transpose(1, 2).contiguous(), size=mel_len1, mode='linear')
|
65 |
+
x = torch.concat([x1, x2], dim=2)
|
66 |
+
else:
|
67 |
+
x = x2
|
68 |
+
out = self.model(x).transpose(1, 2).contiguous()
|
69 |
+
return out, mel_len1 + mel_len2
|
cosyvoice/hifigan/discriminator.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.nn.utils.parametrizations import weight_norm
|
4 |
+
from typing import List, Optional, Tuple
|
5 |
+
from einops import rearrange
|
6 |
+
from torchaudio.transforms import Spectrogram
|
7 |
+
|
8 |
+
|
9 |
+
class MultipleDiscriminator(nn.Module):
|
10 |
+
def __init__(
|
11 |
+
self, mpd: nn.Module, mrd: nn.Module
|
12 |
+
):
|
13 |
+
super().__init__()
|
14 |
+
self.mpd = mpd
|
15 |
+
self.mrd = mrd
|
16 |
+
|
17 |
+
def forward(self, y: torch.Tensor, y_hat: torch.Tensor):
|
18 |
+
y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], []
|
19 |
+
this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mpd(y.unsqueeze(dim=1), y_hat.unsqueeze(dim=1))
|
20 |
+
y_d_rs += this_y_d_rs
|
21 |
+
y_d_gs += this_y_d_gs
|
22 |
+
fmap_rs += this_fmap_rs
|
23 |
+
fmap_gs += this_fmap_gs
|
24 |
+
this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mrd(y, y_hat)
|
25 |
+
y_d_rs += this_y_d_rs
|
26 |
+
y_d_gs += this_y_d_gs
|
27 |
+
fmap_rs += this_fmap_rs
|
28 |
+
fmap_gs += this_fmap_gs
|
29 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
30 |
+
|
31 |
+
|
32 |
+
class MultiResolutionDiscriminator(nn.Module):
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
fft_sizes: Tuple[int, ...] = (2048, 1024, 512),
|
36 |
+
num_embeddings: Optional[int] = None,
|
37 |
+
):
|
38 |
+
"""
|
39 |
+
Multi-Resolution Discriminator module adapted from https://github.com/descriptinc/descript-audio-codec.
|
40 |
+
Additionally, it allows incorporating conditional information with a learned embeddings table.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
fft_sizes (tuple[int]): Tuple of window lengths for FFT. Defaults to (2048, 1024, 512).
|
44 |
+
num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator.
|
45 |
+
Defaults to None.
|
46 |
+
"""
|
47 |
+
|
48 |
+
super().__init__()
|
49 |
+
self.discriminators = nn.ModuleList(
|
50 |
+
[DiscriminatorR(window_length=w, num_embeddings=num_embeddings) for w in fft_sizes]
|
51 |
+
)
|
52 |
+
|
53 |
+
def forward(
|
54 |
+
self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None
|
55 |
+
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
|
56 |
+
y_d_rs = []
|
57 |
+
y_d_gs = []
|
58 |
+
fmap_rs = []
|
59 |
+
fmap_gs = []
|
60 |
+
|
61 |
+
for d in self.discriminators:
|
62 |
+
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id)
|
63 |
+
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id)
|
64 |
+
y_d_rs.append(y_d_r)
|
65 |
+
fmap_rs.append(fmap_r)
|
66 |
+
y_d_gs.append(y_d_g)
|
67 |
+
fmap_gs.append(fmap_g)
|
68 |
+
|
69 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
70 |
+
|
71 |
+
|
72 |
+
class DiscriminatorR(nn.Module):
|
73 |
+
def __init__(
|
74 |
+
self,
|
75 |
+
window_length: int,
|
76 |
+
num_embeddings: Optional[int] = None,
|
77 |
+
channels: int = 32,
|
78 |
+
hop_factor: float = 0.25,
|
79 |
+
bands: Tuple[Tuple[float, float], ...] = ((0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)),
|
80 |
+
):
|
81 |
+
super().__init__()
|
82 |
+
self.window_length = window_length
|
83 |
+
self.hop_factor = hop_factor
|
84 |
+
self.spec_fn = Spectrogram(
|
85 |
+
n_fft=window_length, hop_length=int(window_length * hop_factor), win_length=window_length, power=None
|
86 |
+
)
|
87 |
+
n_fft = window_length // 2 + 1
|
88 |
+
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
|
89 |
+
self.bands = bands
|
90 |
+
convs = lambda: nn.ModuleList(
|
91 |
+
[
|
92 |
+
weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))),
|
93 |
+
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
94 |
+
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
95 |
+
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
96 |
+
weight_norm(nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))),
|
97 |
+
]
|
98 |
+
)
|
99 |
+
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
|
100 |
+
|
101 |
+
if num_embeddings is not None:
|
102 |
+
self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels)
|
103 |
+
torch.nn.init.zeros_(self.emb.weight)
|
104 |
+
|
105 |
+
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1)))
|
106 |
+
|
107 |
+
def spectrogram(self, x):
|
108 |
+
# Remove DC offset
|
109 |
+
x = x - x.mean(dim=-1, keepdims=True)
|
110 |
+
# Peak normalize the volume of input audio
|
111 |
+
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
|
112 |
+
x = self.spec_fn(x)
|
113 |
+
x = torch.view_as_real(x)
|
114 |
+
x = rearrange(x, "b f t c -> b c t f")
|
115 |
+
# Split into bands
|
116 |
+
x_bands = [x[..., b[0]: b[1]] for b in self.bands]
|
117 |
+
return x_bands
|
118 |
+
|
119 |
+
def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None):
|
120 |
+
x_bands = self.spectrogram(x)
|
121 |
+
fmap = []
|
122 |
+
x = []
|
123 |
+
for band, stack in zip(x_bands, self.band_convs):
|
124 |
+
for i, layer in enumerate(stack):
|
125 |
+
band = layer(band)
|
126 |
+
band = torch.nn.functional.leaky_relu(band, 0.1)
|
127 |
+
if i > 0:
|
128 |
+
fmap.append(band)
|
129 |
+
x.append(band)
|
130 |
+
x = torch.cat(x, dim=-1)
|
131 |
+
if cond_embedding_id is not None:
|
132 |
+
emb = self.emb(cond_embedding_id)
|
133 |
+
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
|
134 |
+
else:
|
135 |
+
h = 0
|
136 |
+
x = self.conv_post(x)
|
137 |
+
fmap.append(x)
|
138 |
+
x += h
|
139 |
+
|
140 |
+
return x, fmap
|
cosyvoice/hifigan/f0_predictor.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
from torch.nn.utils.parametrizations import weight_norm
|
17 |
+
|
18 |
+
|
19 |
+
class ConvRNNF0Predictor(nn.Module):
|
20 |
+
def __init__(self,
|
21 |
+
num_class: int = 1,
|
22 |
+
in_channels: int = 80,
|
23 |
+
cond_channels: int = 512
|
24 |
+
):
|
25 |
+
super().__init__()
|
26 |
+
|
27 |
+
self.num_class = num_class
|
28 |
+
self.condnet = nn.Sequential(
|
29 |
+
weight_norm(
|
30 |
+
nn.Conv1d(in_channels, cond_channels, kernel_size=3, padding=1)
|
31 |
+
),
|
32 |
+
nn.ELU(),
|
33 |
+
weight_norm(
|
34 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
35 |
+
),
|
36 |
+
nn.ELU(),
|
37 |
+
weight_norm(
|
38 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
39 |
+
),
|
40 |
+
nn.ELU(),
|
41 |
+
weight_norm(
|
42 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
43 |
+
),
|
44 |
+
nn.ELU(),
|
45 |
+
weight_norm(
|
46 |
+
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
47 |
+
),
|
48 |
+
nn.ELU(),
|
49 |
+
)
|
50 |
+
self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class)
|
51 |
+
|
52 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
53 |
+
x = self.condnet(x)
|
54 |
+
x = x.transpose(1, 2)
|
55 |
+
return torch.abs(self.classifier(x).squeeze(-1))
|
cosyvoice/hifigan/generator.py
ADDED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""HIFI-GAN"""
|
16 |
+
|
17 |
+
from typing import Dict, Optional, List
|
18 |
+
import numpy as np
|
19 |
+
from scipy.signal import get_window
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
import torch.nn.functional as F
|
23 |
+
from torch.nn import Conv1d
|
24 |
+
from torch.nn import ConvTranspose1d
|
25 |
+
from torch.nn.utils import remove_weight_norm
|
26 |
+
from torch.nn.utils.parametrizations import weight_norm
|
27 |
+
from torch.distributions.uniform import Uniform
|
28 |
+
|
29 |
+
from cosyvoice.transformer.activation import Snake
|
30 |
+
from cosyvoice.utils.common import get_padding
|
31 |
+
from cosyvoice.utils.common import init_weights
|
32 |
+
|
33 |
+
|
34 |
+
"""hifigan based generator implementation.
|
35 |
+
|
36 |
+
This code is modified from https://github.com/jik876/hifi-gan
|
37 |
+
,https://github.com/kan-bayashi/ParallelWaveGAN and
|
38 |
+
https://github.com/NVIDIA/BigVGAN
|
39 |
+
|
40 |
+
"""
|
41 |
+
|
42 |
+
|
43 |
+
class ResBlock(torch.nn.Module):
|
44 |
+
"""Residual block module in HiFiGAN/BigVGAN."""
|
45 |
+
def __init__(
|
46 |
+
self,
|
47 |
+
channels: int = 512,
|
48 |
+
kernel_size: int = 3,
|
49 |
+
dilations: List[int] = [1, 3, 5],
|
50 |
+
):
|
51 |
+
super(ResBlock, self).__init__()
|
52 |
+
self.convs1 = nn.ModuleList()
|
53 |
+
self.convs2 = nn.ModuleList()
|
54 |
+
|
55 |
+
for dilation in dilations:
|
56 |
+
self.convs1.append(
|
57 |
+
weight_norm(
|
58 |
+
Conv1d(
|
59 |
+
channels,
|
60 |
+
channels,
|
61 |
+
kernel_size,
|
62 |
+
1,
|
63 |
+
dilation=dilation,
|
64 |
+
padding=get_padding(kernel_size, dilation)
|
65 |
+
)
|
66 |
+
)
|
67 |
+
)
|
68 |
+
self.convs2.append(
|
69 |
+
weight_norm(
|
70 |
+
Conv1d(
|
71 |
+
channels,
|
72 |
+
channels,
|
73 |
+
kernel_size,
|
74 |
+
1,
|
75 |
+
dilation=1,
|
76 |
+
padding=get_padding(kernel_size, 1)
|
77 |
+
)
|
78 |
+
)
|
79 |
+
)
|
80 |
+
self.convs1.apply(init_weights)
|
81 |
+
self.convs2.apply(init_weights)
|
82 |
+
self.activations1 = nn.ModuleList([
|
83 |
+
Snake(channels, alpha_logscale=False)
|
84 |
+
for _ in range(len(self.convs1))
|
85 |
+
])
|
86 |
+
self.activations2 = nn.ModuleList([
|
87 |
+
Snake(channels, alpha_logscale=False)
|
88 |
+
for _ in range(len(self.convs2))
|
89 |
+
])
|
90 |
+
|
91 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
92 |
+
for idx in range(len(self.convs1)):
|
93 |
+
xt = self.activations1[idx](x)
|
94 |
+
xt = self.convs1[idx](xt)
|
95 |
+
xt = self.activations2[idx](xt)
|
96 |
+
xt = self.convs2[idx](xt)
|
97 |
+
x = xt + x
|
98 |
+
return x
|
99 |
+
|
100 |
+
def remove_weight_norm(self):
|
101 |
+
for idx in range(len(self.convs1)):
|
102 |
+
remove_weight_norm(self.convs1[idx])
|
103 |
+
remove_weight_norm(self.convs2[idx])
|
104 |
+
|
105 |
+
|
106 |
+
class SineGen(torch.nn.Module):
|
107 |
+
""" Definition of sine generator
|
108 |
+
SineGen(samp_rate, harmonic_num = 0,
|
109 |
+
sine_amp = 0.1, noise_std = 0.003,
|
110 |
+
voiced_threshold = 0,
|
111 |
+
flag_for_pulse=False)
|
112 |
+
samp_rate: sampling rate in Hz
|
113 |
+
harmonic_num: number of harmonic overtones (default 0)
|
114 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
115 |
+
noise_std: std of Gaussian noise (default 0.003)
|
116 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
117 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
118 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
119 |
+
segment is always sin(np.pi) or cos(0)
|
120 |
+
"""
|
121 |
+
|
122 |
+
def __init__(self, samp_rate, harmonic_num=0,
|
123 |
+
sine_amp=0.1, noise_std=0.003,
|
124 |
+
voiced_threshold=0):
|
125 |
+
super(SineGen, self).__init__()
|
126 |
+
self.sine_amp = sine_amp
|
127 |
+
self.noise_std = noise_std
|
128 |
+
self.harmonic_num = harmonic_num
|
129 |
+
self.sampling_rate = samp_rate
|
130 |
+
self.voiced_threshold = voiced_threshold
|
131 |
+
|
132 |
+
def _f02uv(self, f0):
|
133 |
+
# generate uv signal
|
134 |
+
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
135 |
+
return uv
|
136 |
+
|
137 |
+
@torch.no_grad()
|
138 |
+
def forward(self, f0):
|
139 |
+
"""
|
140 |
+
:param f0: [B, 1, sample_len], Hz
|
141 |
+
:return: [B, 1, sample_len]
|
142 |
+
"""
|
143 |
+
|
144 |
+
F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device)
|
145 |
+
for i in range(self.harmonic_num + 1):
|
146 |
+
F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate
|
147 |
+
|
148 |
+
theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1)
|
149 |
+
u_dist = Uniform(low=-np.pi, high=np.pi)
|
150 |
+
phase_vec = u_dist.sample(sample_shape=(f0.size(0), self.harmonic_num + 1, 1)).to(F_mat.device)
|
151 |
+
phase_vec[:, 0, :] = 0
|
152 |
+
|
153 |
+
# generate sine waveforms
|
154 |
+
sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec)
|
155 |
+
|
156 |
+
# generate uv signal
|
157 |
+
uv = self._f02uv(f0)
|
158 |
+
|
159 |
+
# noise: for unvoiced should be similar to sine_amp
|
160 |
+
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
161 |
+
# . for voiced regions is self.noise_std
|
162 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
163 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
164 |
+
|
165 |
+
# first: set the unvoiced part to 0 by uv
|
166 |
+
# then: additive noise
|
167 |
+
sine_waves = sine_waves * uv + noise
|
168 |
+
return sine_waves, uv, noise
|
169 |
+
|
170 |
+
|
171 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
172 |
+
""" SourceModule for hn-nsf
|
173 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
174 |
+
add_noise_std=0.003, voiced_threshod=0)
|
175 |
+
sampling_rate: sampling_rate in Hz
|
176 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
177 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
178 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
179 |
+
note that amplitude of noise in unvoiced is decided
|
180 |
+
by sine_amp
|
181 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
182 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
183 |
+
F0_sampled (batchsize, length, 1)
|
184 |
+
Sine_source (batchsize, length, 1)
|
185 |
+
noise_source (batchsize, length 1)
|
186 |
+
uv (batchsize, length, 1)
|
187 |
+
"""
|
188 |
+
|
189 |
+
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
190 |
+
add_noise_std=0.003, voiced_threshod=0):
|
191 |
+
super(SourceModuleHnNSF, self).__init__()
|
192 |
+
|
193 |
+
self.sine_amp = sine_amp
|
194 |
+
self.noise_std = add_noise_std
|
195 |
+
|
196 |
+
# to produce sine waveforms
|
197 |
+
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
|
198 |
+
sine_amp, add_noise_std, voiced_threshod)
|
199 |
+
|
200 |
+
# to merge source harmonics into a single excitation
|
201 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
202 |
+
self.l_tanh = torch.nn.Tanh()
|
203 |
+
|
204 |
+
def forward(self, x):
|
205 |
+
"""
|
206 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
207 |
+
F0_sampled (batchsize, length, 1)
|
208 |
+
Sine_source (batchsize, length, 1)
|
209 |
+
noise_source (batchsize, length 1)
|
210 |
+
"""
|
211 |
+
# source for harmonic branch
|
212 |
+
with torch.no_grad():
|
213 |
+
sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2))
|
214 |
+
sine_wavs = sine_wavs.transpose(1, 2)
|
215 |
+
uv = uv.transpose(1, 2)
|
216 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
217 |
+
|
218 |
+
# source for noise branch, in the same shape as uv
|
219 |
+
noise = torch.randn_like(uv) * self.sine_amp / 3
|
220 |
+
return sine_merge, noise, uv
|
221 |
+
|
222 |
+
|
223 |
+
class HiFTGenerator(nn.Module):
|
224 |
+
"""
|
225 |
+
HiFTNet Generator: Neural Source Filter + ISTFTNet
|
226 |
+
https://arxiv.org/abs/2309.09493
|
227 |
+
"""
|
228 |
+
def __init__(
|
229 |
+
self,
|
230 |
+
in_channels: int = 80,
|
231 |
+
base_channels: int = 512,
|
232 |
+
nb_harmonics: int = 8,
|
233 |
+
sampling_rate: int = 22050,
|
234 |
+
nsf_alpha: float = 0.1,
|
235 |
+
nsf_sigma: float = 0.003,
|
236 |
+
nsf_voiced_threshold: float = 10,
|
237 |
+
upsample_rates: List[int] = [8, 8],
|
238 |
+
upsample_kernel_sizes: List[int] = [16, 16],
|
239 |
+
istft_params: Dict[str, int] = {"n_fft": 16, "hop_len": 4},
|
240 |
+
resblock_kernel_sizes: List[int] = [3, 7, 11],
|
241 |
+
resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
242 |
+
source_resblock_kernel_sizes: List[int] = [7, 11],
|
243 |
+
source_resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5]],
|
244 |
+
lrelu_slope: float = 0.1,
|
245 |
+
audio_limit: float = 0.99,
|
246 |
+
f0_predictor: torch.nn.Module = None,
|
247 |
+
):
|
248 |
+
super(HiFTGenerator, self).__init__()
|
249 |
+
|
250 |
+
self.out_channels = 1
|
251 |
+
self.nb_harmonics = nb_harmonics
|
252 |
+
self.sampling_rate = sampling_rate
|
253 |
+
self.istft_params = istft_params
|
254 |
+
self.lrelu_slope = lrelu_slope
|
255 |
+
self.audio_limit = audio_limit
|
256 |
+
|
257 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
258 |
+
self.num_upsamples = len(upsample_rates)
|
259 |
+
self.m_source = SourceModuleHnNSF(
|
260 |
+
sampling_rate=sampling_rate,
|
261 |
+
upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
|
262 |
+
harmonic_num=nb_harmonics,
|
263 |
+
sine_amp=nsf_alpha,
|
264 |
+
add_noise_std=nsf_sigma,
|
265 |
+
voiced_threshod=nsf_voiced_threshold)
|
266 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
|
267 |
+
|
268 |
+
self.conv_pre = weight_norm(
|
269 |
+
Conv1d(in_channels, base_channels, 7, 1, padding=3)
|
270 |
+
)
|
271 |
+
|
272 |
+
# Up
|
273 |
+
self.ups = nn.ModuleList()
|
274 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
275 |
+
self.ups.append(
|
276 |
+
weight_norm(
|
277 |
+
ConvTranspose1d(
|
278 |
+
base_channels // (2**i),
|
279 |
+
base_channels // (2**(i + 1)),
|
280 |
+
k,
|
281 |
+
u,
|
282 |
+
padding=(k - u) // 2,
|
283 |
+
)
|
284 |
+
)
|
285 |
+
)
|
286 |
+
|
287 |
+
# Down
|
288 |
+
self.source_downs = nn.ModuleList()
|
289 |
+
self.source_resblocks = nn.ModuleList()
|
290 |
+
downsample_rates = [1] + upsample_rates[::-1][:-1]
|
291 |
+
downsample_cum_rates = np.cumprod(downsample_rates)
|
292 |
+
for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes, source_resblock_dilation_sizes)):
|
293 |
+
if u == 1:
|
294 |
+
self.source_downs.append(
|
295 |
+
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
|
296 |
+
)
|
297 |
+
else:
|
298 |
+
self.source_downs.append(
|
299 |
+
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2))
|
300 |
+
)
|
301 |
+
|
302 |
+
self.source_resblocks.append(
|
303 |
+
ResBlock(base_channels // (2 ** (i + 1)), k, d)
|
304 |
+
)
|
305 |
+
|
306 |
+
self.resblocks = nn.ModuleList()
|
307 |
+
for i in range(len(self.ups)):
|
308 |
+
ch = base_channels // (2**(i + 1))
|
309 |
+
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
310 |
+
self.resblocks.append(ResBlock(ch, k, d))
|
311 |
+
|
312 |
+
self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
|
313 |
+
self.ups.apply(init_weights)
|
314 |
+
self.conv_post.apply(init_weights)
|
315 |
+
self.reflection_pad = nn.ReflectionPad1d((1, 0))
|
316 |
+
self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
|
317 |
+
self.f0_predictor = f0_predictor
|
318 |
+
|
319 |
+
def remove_weight_norm(self):
|
320 |
+
print('Removing weight norm...')
|
321 |
+
for l in self.ups:
|
322 |
+
remove_weight_norm(l)
|
323 |
+
for l in self.resblocks:
|
324 |
+
l.remove_weight_norm()
|
325 |
+
remove_weight_norm(self.conv_pre)
|
326 |
+
remove_weight_norm(self.conv_post)
|
327 |
+
self.m_source.remove_weight_norm()
|
328 |
+
for l in self.source_downs:
|
329 |
+
remove_weight_norm(l)
|
330 |
+
for l in self.source_resblocks:
|
331 |
+
l.remove_weight_norm()
|
332 |
+
|
333 |
+
def _stft(self, x):
|
334 |
+
spec = torch.stft(
|
335 |
+
x,
|
336 |
+
self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device),
|
337 |
+
return_complex=True)
|
338 |
+
spec = torch.view_as_real(spec) # [B, F, TT, 2]
|
339 |
+
return spec[..., 0], spec[..., 1]
|
340 |
+
|
341 |
+
def _istft(self, magnitude, phase):
|
342 |
+
magnitude = torch.clip(magnitude, max=1e2)
|
343 |
+
real = magnitude * torch.cos(phase)
|
344 |
+
img = magnitude * torch.sin(phase)
|
345 |
+
inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"],
|
346 |
+
self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
|
347 |
+
return inverse_transform
|
348 |
+
|
349 |
+
def decode(self, x: torch.Tensor, s: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
|
350 |
+
s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
|
351 |
+
s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
|
352 |
+
|
353 |
+
x = self.conv_pre(x)
|
354 |
+
for i in range(self.num_upsamples):
|
355 |
+
x = F.leaky_relu(x, self.lrelu_slope)
|
356 |
+
x = self.ups[i](x)
|
357 |
+
|
358 |
+
if i == self.num_upsamples - 1:
|
359 |
+
x = self.reflection_pad(x)
|
360 |
+
|
361 |
+
# fusion
|
362 |
+
si = self.source_downs[i](s_stft)
|
363 |
+
si = self.source_resblocks[i](si)
|
364 |
+
x = x + si
|
365 |
+
|
366 |
+
xs = None
|
367 |
+
for j in range(self.num_kernels):
|
368 |
+
if xs is None:
|
369 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
370 |
+
else:
|
371 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
372 |
+
x = xs / self.num_kernels
|
373 |
+
|
374 |
+
x = F.leaky_relu(x)
|
375 |
+
x = self.conv_post(x)
|
376 |
+
magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
|
377 |
+
phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy
|
378 |
+
|
379 |
+
x = self._istft(magnitude, phase)
|
380 |
+
x = torch.clamp(x, -self.audio_limit, self.audio_limit)
|
381 |
+
return x
|
382 |
+
|
383 |
+
def forward(
|
384 |
+
self,
|
385 |
+
batch: dict,
|
386 |
+
device: torch.device,
|
387 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
388 |
+
speech_feat = batch['speech_feat'].transpose(1, 2).to(device)
|
389 |
+
# mel->f0
|
390 |
+
f0 = self.f0_predictor(speech_feat)
|
391 |
+
# f0->source
|
392 |
+
s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
393 |
+
s, _, _ = self.m_source(s)
|
394 |
+
s = s.transpose(1, 2)
|
395 |
+
# mel+source->speech
|
396 |
+
generated_speech = self.decode(x=speech_feat, s=s)
|
397 |
+
return generated_speech, f0
|
398 |
+
|
399 |
+
@torch.inference_mode()
|
400 |
+
def inference(self, speech_feat: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
|
401 |
+
# mel->f0
|
402 |
+
f0 = self.f0_predictor(speech_feat)
|
403 |
+
# f0->source
|
404 |
+
s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
405 |
+
s, _, _ = self.m_source(s)
|
406 |
+
s = s.transpose(1, 2)
|
407 |
+
# use cache_source to avoid glitch
|
408 |
+
if cache_source.shape[2] != 0:
|
409 |
+
s[:, :, :cache_source.shape[2]] = cache_source
|
410 |
+
generated_speech = self.decode(x=speech_feat, s=s)
|
411 |
+
return generated_speech, s
|
cosyvoice/llm/llm.py
ADDED
@@ -0,0 +1,434 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Dict, Optional, Callable, List, Generator
|
15 |
+
import torch
|
16 |
+
from torch import nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from transformers import Qwen2ForCausalLM
|
19 |
+
from torch.nn.utils.rnn import pad_sequence, unpad_sequence
|
20 |
+
from cosyvoice.utils.common import IGNORE_ID
|
21 |
+
from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
|
22 |
+
from cosyvoice.utils.common import th_accuracy
|
23 |
+
from cosyvoice.utils.file_utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
class TransformerLM(torch.nn.Module):
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
text_encoder_input_size: int,
|
30 |
+
llm_input_size: int,
|
31 |
+
llm_output_size: int,
|
32 |
+
text_token_size: int,
|
33 |
+
speech_token_size: int,
|
34 |
+
text_encoder: torch.nn.Module,
|
35 |
+
llm: torch.nn.Module,
|
36 |
+
sampling: Callable,
|
37 |
+
length_normalized_loss: bool = True,
|
38 |
+
lsm_weight: float = 0.0,
|
39 |
+
spk_embed_dim: int = 192,
|
40 |
+
):
|
41 |
+
super().__init__()
|
42 |
+
self.llm_input_size = llm_input_size
|
43 |
+
self.speech_token_size = speech_token_size
|
44 |
+
# 1. build text token inputs related modules
|
45 |
+
self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size)
|
46 |
+
self.text_encoder = text_encoder
|
47 |
+
self.text_encoder_affine_layer = nn.Linear(
|
48 |
+
self.text_encoder.output_size(),
|
49 |
+
llm_input_size
|
50 |
+
)
|
51 |
+
|
52 |
+
# 2. build speech token language model related modules
|
53 |
+
self.sos_eos = 0
|
54 |
+
self.task_id = 1
|
55 |
+
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
|
56 |
+
self.llm = llm
|
57 |
+
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1)
|
58 |
+
self.criterion_ce = LabelSmoothingLoss(
|
59 |
+
size=speech_token_size + 1,
|
60 |
+
padding_idx=IGNORE_ID,
|
61 |
+
smoothing=lsm_weight,
|
62 |
+
normalize_length=length_normalized_loss,
|
63 |
+
)
|
64 |
+
|
65 |
+
# 3. [Optional] build speech token related modules
|
66 |
+
self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size)
|
67 |
+
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size)
|
68 |
+
|
69 |
+
# 4. sampling method
|
70 |
+
self.sampling = sampling
|
71 |
+
|
72 |
+
def encode(
|
73 |
+
self,
|
74 |
+
text: torch.Tensor,
|
75 |
+
text_lengths: torch.Tensor,
|
76 |
+
):
|
77 |
+
encoder_out, encoder_mask = self.text_encoder(text, text_lengths, decoding_chunk_size=1, num_decoding_left_chunks=-1)
|
78 |
+
encoder_out_lens = encoder_mask.squeeze(1).sum(1)
|
79 |
+
encoder_out = self.text_encoder_affine_layer(encoder_out)
|
80 |
+
return encoder_out, encoder_out_lens
|
81 |
+
|
82 |
+
def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
|
83 |
+
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
|
84 |
+
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
85 |
+
lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0)
|
86 |
+
for i in range(len(text_token))]
|
87 |
+
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
|
88 |
+
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
|
89 |
+
return lm_input, lm_input_len
|
90 |
+
|
91 |
+
def forward(
|
92 |
+
self,
|
93 |
+
batch: dict,
|
94 |
+
device: torch.device,
|
95 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
96 |
+
"""
|
97 |
+
Args:
|
98 |
+
text: (B, L, D)
|
99 |
+
text_lengths: (B,)
|
100 |
+
audio: (B, T, N) or (B, T)
|
101 |
+
audio_lengths: (B,)
|
102 |
+
"""
|
103 |
+
text_token = batch['text_token'].to(device)
|
104 |
+
text_token_len = batch['text_token_len'].to(device)
|
105 |
+
speech_token = batch['speech_token'].to(device)
|
106 |
+
speech_token_len = batch['speech_token_len'].to(device)
|
107 |
+
embedding = batch['embedding'].to(device)
|
108 |
+
|
109 |
+
# 1. prepare llm_target
|
110 |
+
lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() +
|
111 |
+
[self.speech_token_size]) for i in range(text_token.size(0))]
|
112 |
+
lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)
|
113 |
+
|
114 |
+
# 1. encode text_token
|
115 |
+
text_token = self.text_embedding(text_token)
|
116 |
+
text_token, text_token_len = self.encode(text_token, text_token_len)
|
117 |
+
|
118 |
+
# 2. embedding projection
|
119 |
+
embedding = F.normalize(embedding, dim=1)
|
120 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
121 |
+
embedding = embedding.unsqueeze(1)
|
122 |
+
|
123 |
+
# 3. eos and task_id
|
124 |
+
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
125 |
+
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
126 |
+
|
127 |
+
# 4. encode speech_token
|
128 |
+
speech_token = self.speech_embedding(speech_token)
|
129 |
+
|
130 |
+
# 5. unpad and pad
|
131 |
+
lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len,
|
132 |
+
task_id_emb, speech_token, speech_token_len)
|
133 |
+
|
134 |
+
# 6. run lm forward
|
135 |
+
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
|
136 |
+
logits = self.llm_decoder(lm_output)
|
137 |
+
loss = self.criterion_ce(logits, lm_target)
|
138 |
+
acc = th_accuracy(logits.view(-1, self.speech_token_size + 1), lm_target, ignore_label=IGNORE_ID)
|
139 |
+
return {'loss': loss, 'acc': acc}
|
140 |
+
|
141 |
+
def sampling_ids(
|
142 |
+
self,
|
143 |
+
weighted_scores: torch.Tensor,
|
144 |
+
decoded_tokens: List,
|
145 |
+
sampling: int,
|
146 |
+
ignore_eos: bool = True,
|
147 |
+
):
|
148 |
+
num_trials, max_trials = 0, 100
|
149 |
+
while True:
|
150 |
+
top_ids = self.sampling(weighted_scores, decoded_tokens, sampling)
|
151 |
+
if (not ignore_eos) or (self.speech_token_size not in top_ids):
|
152 |
+
break
|
153 |
+
num_trials += 1
|
154 |
+
if num_trials > max_trials:
|
155 |
+
raise RuntimeError('sampling reaches max_trials {} and still get eos when ignore_eos is True, check your input!'.format(max_trials))
|
156 |
+
return top_ids
|
157 |
+
|
158 |
+
@torch.inference_mode()
|
159 |
+
def inference(
|
160 |
+
self,
|
161 |
+
text: torch.Tensor,
|
162 |
+
text_len: torch.Tensor,
|
163 |
+
prompt_text: torch.Tensor,
|
164 |
+
prompt_text_len: torch.Tensor,
|
165 |
+
prompt_speech_token: torch.Tensor,
|
166 |
+
prompt_speech_token_len: torch.Tensor,
|
167 |
+
embedding: torch.Tensor,
|
168 |
+
sampling: int = 25,
|
169 |
+
max_token_text_ratio: float = 20,
|
170 |
+
min_token_text_ratio: float = 2,
|
171 |
+
) -> Generator[torch.Tensor, None, None]:
|
172 |
+
if self.fp16 is True:
|
173 |
+
embedding = embedding.half()
|
174 |
+
|
175 |
+
device = text.device
|
176 |
+
text = torch.concat([prompt_text, text], dim=1)
|
177 |
+
text_len += prompt_text_len
|
178 |
+
text = self.text_embedding(text)
|
179 |
+
|
180 |
+
# 1. encode text
|
181 |
+
text, text_len = self.encode(text, text_len)
|
182 |
+
|
183 |
+
# 2. encode embedding
|
184 |
+
if embedding.shape[0] != 0:
|
185 |
+
embedding = F.normalize(embedding, dim=1)
|
186 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
187 |
+
embedding = embedding.unsqueeze(dim=1)
|
188 |
+
else:
|
189 |
+
embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device).to(text.dtype)
|
190 |
+
|
191 |
+
# 3. concat llm_input
|
192 |
+
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
193 |
+
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
194 |
+
if prompt_speech_token_len != 0:
|
195 |
+
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
196 |
+
else:
|
197 |
+
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
198 |
+
lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
199 |
+
|
200 |
+
# 4. cal min/max_length
|
201 |
+
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
202 |
+
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
|
203 |
+
|
204 |
+
# 5. step by step decode
|
205 |
+
out_tokens = []
|
206 |
+
offset = 0
|
207 |
+
att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device)
|
208 |
+
for i in range(max_len):
|
209 |
+
y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=offset, required_cache_size=-1,
|
210 |
+
att_cache=att_cache, cnn_cache=cnn_cache,
|
211 |
+
att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]),
|
212 |
+
device=lm_input.device)).to(torch.bool))
|
213 |
+
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
214 |
+
# force continue decode first token
|
215 |
+
if i == 0:
|
216 |
+
logp[:, self.speech_token_size] = -float('inf')
|
217 |
+
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
|
218 |
+
if top_ids == self.speech_token_size:
|
219 |
+
break
|
220 |
+
# in stream mode, yield token one by one
|
221 |
+
yield top_ids
|
222 |
+
out_tokens.append(top_ids)
|
223 |
+
offset += lm_input.size(1)
|
224 |
+
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
225 |
+
|
226 |
+
|
227 |
+
class Qwen2Encoder(torch.nn.Module):
|
228 |
+
def __init__(self, pretrain_path):
|
229 |
+
super().__init__()
|
230 |
+
self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path)
|
231 |
+
|
232 |
+
def forward_one_step(self, xs, masks, cache=None):
|
233 |
+
input_masks = masks[:, -1, :]
|
234 |
+
outs = self.model(
|
235 |
+
inputs_embeds=xs,
|
236 |
+
attention_mask=input_masks,
|
237 |
+
output_hidden_states=True,
|
238 |
+
return_dict=True,
|
239 |
+
use_cache=True,
|
240 |
+
past_key_values=cache,
|
241 |
+
)
|
242 |
+
xs = outs.hidden_states[-1]
|
243 |
+
new_cache = outs.past_key_values
|
244 |
+
return xs, new_cache
|
245 |
+
|
246 |
+
|
247 |
+
class Qwen2LM(TransformerLM):
|
248 |
+
def __init__(
|
249 |
+
self,
|
250 |
+
llm_input_size: int,
|
251 |
+
llm_output_size: int,
|
252 |
+
speech_token_size: int,
|
253 |
+
llm: torch.nn.Module,
|
254 |
+
sampling: Callable,
|
255 |
+
length_normalized_loss: bool = True,
|
256 |
+
lsm_weight: float = 0.0,
|
257 |
+
mix_ratio: List[int] = [5, 15],
|
258 |
+
):
|
259 |
+
torch.nn.Module.__init__(self)
|
260 |
+
self.llm_input_size = llm_input_size
|
261 |
+
self.llm_output_size = llm_output_size
|
262 |
+
self.speech_token_size = speech_token_size
|
263 |
+
|
264 |
+
# 2. build speech token language model related modules
|
265 |
+
self.sos_eos = 0
|
266 |
+
self.task_id = 1
|
267 |
+
self.fill_token = 2
|
268 |
+
|
269 |
+
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
|
270 |
+
self.llm = llm
|
271 |
+
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 3)
|
272 |
+
self.criterion_ce = LabelSmoothingLoss(
|
273 |
+
size=speech_token_size + 3,
|
274 |
+
padding_idx=IGNORE_ID,
|
275 |
+
smoothing=lsm_weight,
|
276 |
+
normalize_length=length_normalized_loss,
|
277 |
+
)
|
278 |
+
|
279 |
+
# 3. [Optional] build speech token related modules
|
280 |
+
self.speech_embedding = torch.nn.Embedding(speech_token_size + 3, llm_input_size)
|
281 |
+
|
282 |
+
# 4. sampling method
|
283 |
+
self.sampling = sampling
|
284 |
+
self.mix_ratio = mix_ratio
|
285 |
+
|
286 |
+
@torch.inference_mode()
|
287 |
+
def inference(
|
288 |
+
self,
|
289 |
+
text: torch.Tensor,
|
290 |
+
text_len: torch.Tensor,
|
291 |
+
prompt_text: torch.Tensor,
|
292 |
+
prompt_text_len: torch.Tensor,
|
293 |
+
prompt_speech_token: torch.Tensor,
|
294 |
+
prompt_speech_token_len: torch.Tensor,
|
295 |
+
embedding: torch.Tensor,
|
296 |
+
sampling: int = 25,
|
297 |
+
max_token_text_ratio: float = 20,
|
298 |
+
min_token_text_ratio: float = 2,
|
299 |
+
) -> Generator[torch.Tensor, None, None]:
|
300 |
+
device = text.device
|
301 |
+
text = torch.concat([prompt_text, text], dim=1)
|
302 |
+
text_len += prompt_text_len
|
303 |
+
text = self.llm.model.model.embed_tokens(text)
|
304 |
+
|
305 |
+
# 3. concat llm_input
|
306 |
+
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
307 |
+
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
308 |
+
if prompt_speech_token_len != 0:
|
309 |
+
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
310 |
+
else:
|
311 |
+
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
312 |
+
lm_input = torch.concat([sos_eos_emb, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
313 |
+
|
314 |
+
# 4. cal min/max_length
|
315 |
+
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
316 |
+
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
|
317 |
+
|
318 |
+
# 5. step by step decode
|
319 |
+
out_tokens = []
|
320 |
+
cache = None
|
321 |
+
for i in range(max_len):
|
322 |
+
y_pred, cache = self.llm.forward_one_step(lm_input,
|
323 |
+
masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool),
|
324 |
+
cache=cache)
|
325 |
+
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
326 |
+
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
|
327 |
+
if top_ids == self.speech_token_size:
|
328 |
+
break
|
329 |
+
if top_ids > self.speech_token_size:
|
330 |
+
continue
|
331 |
+
# in stream mode, yield token one by one
|
332 |
+
yield top_ids
|
333 |
+
out_tokens.append(top_ids)
|
334 |
+
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
335 |
+
|
336 |
+
@torch.inference_mode()
|
337 |
+
def inference_bistream(
|
338 |
+
self,
|
339 |
+
text: Generator,
|
340 |
+
prompt_text: torch.Tensor,
|
341 |
+
prompt_text_len: torch.Tensor,
|
342 |
+
prompt_speech_token: torch.Tensor,
|
343 |
+
prompt_speech_token_len: torch.Tensor,
|
344 |
+
embedding: torch.Tensor,
|
345 |
+
sampling: int = 25,
|
346 |
+
max_token_text_ratio: float = 20,
|
347 |
+
min_token_text_ratio: float = 2,
|
348 |
+
) -> Generator[torch.Tensor, None, None]:
|
349 |
+
|
350 |
+
device = prompt_text.device
|
351 |
+
# 1. prepare input
|
352 |
+
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
353 |
+
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
354 |
+
if prompt_speech_token_len != 0:
|
355 |
+
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
356 |
+
else:
|
357 |
+
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=prompt_text.dtype).to(device)
|
358 |
+
lm_input = torch.concat([sos_eos_emb], dim=1)
|
359 |
+
|
360 |
+
# 2. iterate text
|
361 |
+
out_tokens = []
|
362 |
+
cache = None
|
363 |
+
# NOTE init prompt_text as text_cache as it is basically impossible prompt_speech_token/prompt_text < 15/5
|
364 |
+
text_cache = self.llm.model.model.embed_tokens(prompt_text)
|
365 |
+
next_fill_index = -1
|
366 |
+
for this_text in text:
|
367 |
+
text_cache = torch.concat([text_cache, self.llm.model.model.embed_tokens(this_text)], dim=1)
|
368 |
+
# prompt_speech_token_emb not empty, try append to lm_input
|
369 |
+
while prompt_speech_token_emb.size(1) != 0:
|
370 |
+
if text_cache.size(1) >= self.mix_ratio[0]:
|
371 |
+
lm_input_text, lm_input_speech = text_cache[:, :self.mix_ratio[0]], prompt_speech_token_emb[:, :self.mix_ratio[1]]
|
372 |
+
logging.info('append {} text token {} speech token'.format(lm_input_text.size(1), lm_input_speech.size(1)))
|
373 |
+
lm_input = torch.concat([lm_input, lm_input_text, lm_input_speech], dim=1)
|
374 |
+
text_cache, prompt_speech_token_emb = text_cache[:, self.mix_ratio[0]:], prompt_speech_token_emb[:, self.mix_ratio[1]:]
|
375 |
+
else:
|
376 |
+
logging.info('not enough text token to decode, wait for more')
|
377 |
+
break
|
378 |
+
# no prompt_speech_token_emb remain, can decode some speech token
|
379 |
+
if prompt_speech_token_emb.size(1) == 0:
|
380 |
+
if (len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2) or (len(out_tokens) == 0 and lm_input.size(1) == 1):
|
381 |
+
logging.info('get fill token, need to append more text token')
|
382 |
+
if text_cache.size(1) >= self.mix_ratio[0]:
|
383 |
+
lm_input_text = text_cache[:, :self.mix_ratio[0]]
|
384 |
+
logging.info('append {} text token'.format(lm_input_text.size(1)))
|
385 |
+
if len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2:
|
386 |
+
lm_input = lm_input_text
|
387 |
+
else:
|
388 |
+
lm_input = torch.concat([lm_input, lm_input_text], dim=1)
|
389 |
+
text_cache = text_cache[:, self.mix_ratio[0]:]
|
390 |
+
else:
|
391 |
+
logging.info('not enough text token to decode, wait for more')
|
392 |
+
continue
|
393 |
+
while True:
|
394 |
+
seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
|
395 |
+
y_pred, cache = self.llm.forward_one_step(lm_input,
|
396 |
+
masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
|
397 |
+
cache=cache)
|
398 |
+
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
399 |
+
if next_fill_index != -1 and len(out_tokens) == next_fill_index:
|
400 |
+
top_ids = self.speech_token_size + 2
|
401 |
+
next_fill_index += (self.mix_ratio[1] + 1)
|
402 |
+
else:
|
403 |
+
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True).item()
|
404 |
+
if top_ids == self.speech_token_size + 2:
|
405 |
+
next_fill_index = len(out_tokens) + self.mix_ratio[1] + 1
|
406 |
+
logging.info('fill_token index {} next fill_token index {}'.format(len(out_tokens), next_fill_index))
|
407 |
+
out_tokens.append(top_ids)
|
408 |
+
if top_ids >= self.speech_token_size:
|
409 |
+
if top_ids == self.speech_token_size + 2:
|
410 |
+
break
|
411 |
+
else:
|
412 |
+
raise ValueError('should not get token {}'.format(top_ids))
|
413 |
+
yield top_ids
|
414 |
+
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
415 |
+
|
416 |
+
# 3. final decode
|
417 |
+
lm_input = torch.concat([lm_input, text_cache, task_id_emb], dim=1)
|
418 |
+
logging.info('no more text token, decode until met eos')
|
419 |
+
while True:
|
420 |
+
seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
|
421 |
+
y_pred, cache = self.llm.forward_one_step(lm_input,
|
422 |
+
masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
|
423 |
+
cache=cache)
|
424 |
+
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
425 |
+
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=False).item()
|
426 |
+
out_tokens.append(top_ids)
|
427 |
+
if top_ids >= self.speech_token_size:
|
428 |
+
if top_ids == self.speech_token_size:
|
429 |
+
break
|
430 |
+
else:
|
431 |
+
raise ValueError('should not get token {}'.format(top_ids))
|
432 |
+
# in stream mode, yield token one by one
|
433 |
+
yield top_ids
|
434 |
+
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
cosyvoice/transformer/__init__.py
ADDED
File without changes
|
cosyvoice/transformer/attention.py
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019 Shigeki Karita
|
2 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
3 |
+
# 2022 Xingchen Song ([email protected])
|
4 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
"""Multi-Head Attention layer definition."""
|
18 |
+
|
19 |
+
import math
|
20 |
+
from typing import Tuple
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from torch import nn
|
24 |
+
|
25 |
+
|
26 |
+
class MultiHeadedAttention(nn.Module):
|
27 |
+
"""Multi-Head Attention layer.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
n_head (int): The number of heads.
|
31 |
+
n_feat (int): The number of features.
|
32 |
+
dropout_rate (float): Dropout rate.
|
33 |
+
|
34 |
+
"""
|
35 |
+
|
36 |
+
def __init__(self,
|
37 |
+
n_head: int,
|
38 |
+
n_feat: int,
|
39 |
+
dropout_rate: float,
|
40 |
+
key_bias: bool = True):
|
41 |
+
"""Construct an MultiHeadedAttention object."""
|
42 |
+
super().__init__()
|
43 |
+
assert n_feat % n_head == 0
|
44 |
+
# We assume d_v always equals d_k
|
45 |
+
self.d_k = n_feat // n_head
|
46 |
+
self.h = n_head
|
47 |
+
self.linear_q = nn.Linear(n_feat, n_feat)
|
48 |
+
self.linear_k = nn.Linear(n_feat, n_feat, bias=key_bias)
|
49 |
+
self.linear_v = nn.Linear(n_feat, n_feat)
|
50 |
+
self.linear_out = nn.Linear(n_feat, n_feat)
|
51 |
+
self.dropout = nn.Dropout(p=dropout_rate)
|
52 |
+
|
53 |
+
def forward_qkv(
|
54 |
+
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
|
55 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
56 |
+
"""Transform query, key and value.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
query (torch.Tensor): Query tensor (#batch, time1, size).
|
60 |
+
key (torch.Tensor): Key tensor (#batch, time2, size).
|
61 |
+
value (torch.Tensor): Value tensor (#batch, time2, size).
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
torch.Tensor: Transformed query tensor, size
|
65 |
+
(#batch, n_head, time1, d_k).
|
66 |
+
torch.Tensor: Transformed key tensor, size
|
67 |
+
(#batch, n_head, time2, d_k).
|
68 |
+
torch.Tensor: Transformed value tensor, size
|
69 |
+
(#batch, n_head, time2, d_k).
|
70 |
+
|
71 |
+
"""
|
72 |
+
n_batch = query.size(0)
|
73 |
+
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
|
74 |
+
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
|
75 |
+
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
|
76 |
+
q = q.transpose(1, 2) # (batch, head, time1, d_k)
|
77 |
+
k = k.transpose(1, 2) # (batch, head, time2, d_k)
|
78 |
+
v = v.transpose(1, 2) # (batch, head, time2, d_k)
|
79 |
+
|
80 |
+
return q, k, v
|
81 |
+
|
82 |
+
def forward_attention(
|
83 |
+
self,
|
84 |
+
value: torch.Tensor,
|
85 |
+
scores: torch.Tensor,
|
86 |
+
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool)
|
87 |
+
) -> torch.Tensor:
|
88 |
+
"""Compute attention context vector.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
value (torch.Tensor): Transformed value, size
|
92 |
+
(#batch, n_head, time2, d_k).
|
93 |
+
scores (torch.Tensor): Attention score, size
|
94 |
+
(#batch, n_head, time1, time2).
|
95 |
+
mask (torch.Tensor): Mask, size (#batch, 1, time2) or
|
96 |
+
(#batch, time1, time2), (0, 0, 0) means fake mask.
|
97 |
+
|
98 |
+
Returns:
|
99 |
+
torch.Tensor: Transformed value (#batch, time1, d_model)
|
100 |
+
weighted by the attention score (#batch, time1, time2).
|
101 |
+
|
102 |
+
"""
|
103 |
+
n_batch = value.size(0)
|
104 |
+
# NOTE(xcsong): When will `if mask.size(2) > 0` be True?
|
105 |
+
# 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the
|
106 |
+
# 1st chunk to ease the onnx export.]
|
107 |
+
# 2. pytorch training
|
108 |
+
if mask.size(2) > 0: # time2 > 0
|
109 |
+
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
|
110 |
+
# For last chunk, time2 might be larger than scores.size(-1)
|
111 |
+
mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2)
|
112 |
+
scores = scores.masked_fill(mask, -float('inf'))
|
113 |
+
attn = torch.softmax(scores, dim=-1).masked_fill(
|
114 |
+
mask, 0.0) # (batch, head, time1, time2)
|
115 |
+
# NOTE(xcsong): When will `if mask.size(2) > 0` be False?
|
116 |
+
# 1. onnx(16/-1, -1/-1, 16/0)
|
117 |
+
# 2. jit (16/-1, -1/-1, 16/0, 16/4)
|
118 |
+
else:
|
119 |
+
attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
|
120 |
+
|
121 |
+
p_attn = self.dropout(attn)
|
122 |
+
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
|
123 |
+
x = (x.transpose(1, 2).contiguous().view(n_batch, -1,
|
124 |
+
self.h * self.d_k)
|
125 |
+
) # (batch, time1, d_model)
|
126 |
+
|
127 |
+
return self.linear_out(x) # (batch, time1, d_model)
|
128 |
+
|
129 |
+
def forward(
|
130 |
+
self,
|
131 |
+
query: torch.Tensor,
|
132 |
+
key: torch.Tensor,
|
133 |
+
value: torch.Tensor,
|
134 |
+
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
135 |
+
pos_emb: torch.Tensor = torch.empty(0),
|
136 |
+
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
|
137 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
138 |
+
"""Compute scaled dot product attention.
|
139 |
+
|
140 |
+
Args:
|
141 |
+
query (torch.Tensor): Query tensor (#batch, time1, size).
|
142 |
+
key (torch.Tensor): Key tensor (#batch, time2, size).
|
143 |
+
value (torch.Tensor): Value tensor (#batch, time2, size).
|
144 |
+
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
145 |
+
(#batch, time1, time2).
|
146 |
+
1.When applying cross attention between decoder and encoder,
|
147 |
+
the batch padding mask for input is in (#batch, 1, T) shape.
|
148 |
+
2.When applying self attention of encoder,
|
149 |
+
the mask is in (#batch, T, T) shape.
|
150 |
+
3.When applying self attention of decoder,
|
151 |
+
the mask is in (#batch, L, L) shape.
|
152 |
+
4.If the different position in decoder see different block
|
153 |
+
of the encoder, such as Mocha, the passed in mask could be
|
154 |
+
in (#batch, L, T) shape. But there is no such case in current
|
155 |
+
CosyVoice.
|
156 |
+
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
|
157 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
158 |
+
and `head * d_k == size`
|
159 |
+
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
torch.Tensor: Output tensor (#batch, time1, d_model).
|
163 |
+
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
|
164 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
165 |
+
and `head * d_k == size`
|
166 |
+
|
167 |
+
"""
|
168 |
+
q, k, v = self.forward_qkv(query, key, value)
|
169 |
+
|
170 |
+
# NOTE(xcsong):
|
171 |
+
# when export onnx model, for 1st chunk, we feed
|
172 |
+
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
|
173 |
+
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
|
174 |
+
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
|
175 |
+
# and we will always do splitting and
|
176 |
+
# concatnation(this will simplify onnx export). Note that
|
177 |
+
# it's OK to concat & split zero-shaped tensors(see code below).
|
178 |
+
# when export jit model, for 1st chunk, we always feed
|
179 |
+
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
|
180 |
+
# >>> a = torch.ones((1, 2, 0, 4))
|
181 |
+
# >>> b = torch.ones((1, 2, 3, 4))
|
182 |
+
# >>> c = torch.cat((a, b), dim=2)
|
183 |
+
# >>> torch.equal(b, c) # True
|
184 |
+
# >>> d = torch.split(a, 2, dim=-1)
|
185 |
+
# >>> torch.equal(d[0], d[1]) # True
|
186 |
+
if cache.size(0) > 0:
|
187 |
+
key_cache, value_cache = torch.split(cache,
|
188 |
+
cache.size(-1) // 2,
|
189 |
+
dim=-1)
|
190 |
+
k = torch.cat([key_cache, k], dim=2)
|
191 |
+
v = torch.cat([value_cache, v], dim=2)
|
192 |
+
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
|
193 |
+
# non-trivial to calculate `next_cache_start` here.
|
194 |
+
new_cache = torch.cat((k, v), dim=-1)
|
195 |
+
|
196 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
|
197 |
+
return self.forward_attention(v, scores, mask), new_cache
|
198 |
+
|
199 |
+
|
200 |
+
class RelPositionMultiHeadedAttention(MultiHeadedAttention):
|
201 |
+
"""Multi-Head Attention layer with relative position encoding.
|
202 |
+
Paper: https://arxiv.org/abs/1901.02860
|
203 |
+
Args:
|
204 |
+
n_head (int): The number of heads.
|
205 |
+
n_feat (int): The number of features.
|
206 |
+
dropout_rate (float): Dropout rate.
|
207 |
+
"""
|
208 |
+
|
209 |
+
def __init__(self,
|
210 |
+
n_head: int,
|
211 |
+
n_feat: int,
|
212 |
+
dropout_rate: float,
|
213 |
+
key_bias: bool = True):
|
214 |
+
"""Construct an RelPositionMultiHeadedAttention object."""
|
215 |
+
super().__init__(n_head, n_feat, dropout_rate, key_bias)
|
216 |
+
# linear transformation for positional encoding
|
217 |
+
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
|
218 |
+
# these two learnable bias are used in matrix c and matrix d
|
219 |
+
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
220 |
+
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
221 |
+
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
222 |
+
torch.nn.init.xavier_uniform_(self.pos_bias_u)
|
223 |
+
torch.nn.init.xavier_uniform_(self.pos_bias_v)
|
224 |
+
|
225 |
+
def rel_shift(self, x: torch.Tensor) -> torch.Tensor:
|
226 |
+
"""Compute relative positional encoding.
|
227 |
+
|
228 |
+
Args:
|
229 |
+
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
|
230 |
+
time1 means the length of query vector.
|
231 |
+
|
232 |
+
Returns:
|
233 |
+
torch.Tensor: Output tensor.
|
234 |
+
|
235 |
+
"""
|
236 |
+
zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1),
|
237 |
+
device=x.device,
|
238 |
+
dtype=x.dtype)
|
239 |
+
x_padded = torch.cat([zero_pad, x], dim=-1)
|
240 |
+
|
241 |
+
x_padded = x_padded.view(x.size()[0],
|
242 |
+
x.size()[1],
|
243 |
+
x.size(3) + 1, x.size(2))
|
244 |
+
x = x_padded[:, :, 1:].view_as(x)[
|
245 |
+
:, :, :, : x.size(-1) // 2 + 1
|
246 |
+
] # only keep the positions from 0 to time2
|
247 |
+
return x
|
248 |
+
|
249 |
+
def forward(
|
250 |
+
self,
|
251 |
+
query: torch.Tensor,
|
252 |
+
key: torch.Tensor,
|
253 |
+
value: torch.Tensor,
|
254 |
+
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
255 |
+
pos_emb: torch.Tensor = torch.empty(0),
|
256 |
+
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
|
257 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
258 |
+
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
|
259 |
+
Args:
|
260 |
+
query (torch.Tensor): Query tensor (#batch, time1, size).
|
261 |
+
key (torch.Tensor): Key tensor (#batch, time2, size).
|
262 |
+
value (torch.Tensor): Value tensor (#batch, time2, size).
|
263 |
+
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
264 |
+
(#batch, time1, time2), (0, 0, 0) means fake mask.
|
265 |
+
pos_emb (torch.Tensor): Positional embedding tensor
|
266 |
+
(#batch, time2, size).
|
267 |
+
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
|
268 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
269 |
+
and `head * d_k == size`
|
270 |
+
Returns:
|
271 |
+
torch.Tensor: Output tensor (#batch, time1, d_model).
|
272 |
+
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
|
273 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
274 |
+
and `head * d_k == size`
|
275 |
+
"""
|
276 |
+
q, k, v = self.forward_qkv(query, key, value)
|
277 |
+
q = q.transpose(1, 2) # (batch, time1, head, d_k)
|
278 |
+
|
279 |
+
# NOTE(xcsong):
|
280 |
+
# when export onnx model, for 1st chunk, we feed
|
281 |
+
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
|
282 |
+
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
|
283 |
+
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
|
284 |
+
# and we will always do splitting and
|
285 |
+
# concatnation(this will simplify onnx export). Note that
|
286 |
+
# it's OK to concat & split zero-shaped tensors(see code below).
|
287 |
+
# when export jit model, for 1st chunk, we always feed
|
288 |
+
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
|
289 |
+
# >>> a = torch.ones((1, 2, 0, 4))
|
290 |
+
# >>> b = torch.ones((1, 2, 3, 4))
|
291 |
+
# >>> c = torch.cat((a, b), dim=2)
|
292 |
+
# >>> torch.equal(b, c) # True
|
293 |
+
# >>> d = torch.split(a, 2, dim=-1)
|
294 |
+
# >>> torch.equal(d[0], d[1]) # True
|
295 |
+
if cache.size(0) > 0:
|
296 |
+
key_cache, value_cache = torch.split(cache,
|
297 |
+
cache.size(-1) // 2,
|
298 |
+
dim=-1)
|
299 |
+
k = torch.cat([key_cache, k], dim=2)
|
300 |
+
v = torch.cat([value_cache, v], dim=2)
|
301 |
+
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
|
302 |
+
# non-trivial to calculate `next_cache_start` here.
|
303 |
+
new_cache = torch.cat((k, v), dim=-1)
|
304 |
+
|
305 |
+
n_batch_pos = pos_emb.size(0)
|
306 |
+
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
|
307 |
+
p = p.transpose(1, 2) # (batch, head, time1, d_k)
|
308 |
+
|
309 |
+
# (batch, head, time1, d_k)
|
310 |
+
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
|
311 |
+
# (batch, head, time1, d_k)
|
312 |
+
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
|
313 |
+
|
314 |
+
# compute attention score
|
315 |
+
# first compute matrix a and matrix c
|
316 |
+
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
317 |
+
# (batch, head, time1, time2)
|
318 |
+
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
|
319 |
+
|
320 |
+
# compute matrix b and matrix d
|
321 |
+
# (batch, head, time1, time2)
|
322 |
+
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
|
323 |
+
# NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used
|
324 |
+
if matrix_ac.shape != matrix_bd.shape:
|
325 |
+
matrix_bd = self.rel_shift(matrix_bd)
|
326 |
+
|
327 |
+
scores = (matrix_ac + matrix_bd) / math.sqrt(
|
328 |
+
self.d_k) # (batch, head, time1, time2)
|
329 |
+
|
330 |
+
return self.forward_attention(v, scores, mask), new_cache
|
cosyvoice/transformer/convolution.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
|
2 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""ConvolutionModule definition."""
|
17 |
+
|
18 |
+
from typing import Tuple
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from torch import nn
|
22 |
+
|
23 |
+
|
24 |
+
class ConvolutionModule(nn.Module):
|
25 |
+
"""ConvolutionModule in Conformer model."""
|
26 |
+
|
27 |
+
def __init__(self,
|
28 |
+
channels: int,
|
29 |
+
kernel_size: int = 15,
|
30 |
+
activation: nn.Module = nn.ReLU(),
|
31 |
+
norm: str = "batch_norm",
|
32 |
+
causal: bool = False,
|
33 |
+
bias: bool = True):
|
34 |
+
"""Construct an ConvolutionModule object.
|
35 |
+
Args:
|
36 |
+
channels (int): The number of channels of conv layers.
|
37 |
+
kernel_size (int): Kernel size of conv layers.
|
38 |
+
causal (int): Whether use causal convolution or not
|
39 |
+
"""
|
40 |
+
super().__init__()
|
41 |
+
|
42 |
+
self.pointwise_conv1 = nn.Conv1d(
|
43 |
+
channels,
|
44 |
+
2 * channels,
|
45 |
+
kernel_size=1,
|
46 |
+
stride=1,
|
47 |
+
padding=0,
|
48 |
+
bias=bias,
|
49 |
+
)
|
50 |
+
# self.lorder is used to distinguish if it's a causal convolution,
|
51 |
+
# if self.lorder > 0: it's a causal convolution, the input will be
|
52 |
+
# padded with self.lorder frames on the left in forward.
|
53 |
+
# else: it's a symmetrical convolution
|
54 |
+
if causal:
|
55 |
+
padding = 0
|
56 |
+
self.lorder = kernel_size - 1
|
57 |
+
else:
|
58 |
+
# kernel_size should be an odd number for none causal convolution
|
59 |
+
assert (kernel_size - 1) % 2 == 0
|
60 |
+
padding = (kernel_size - 1) // 2
|
61 |
+
self.lorder = 0
|
62 |
+
self.depthwise_conv = nn.Conv1d(
|
63 |
+
channels,
|
64 |
+
channels,
|
65 |
+
kernel_size,
|
66 |
+
stride=1,
|
67 |
+
padding=padding,
|
68 |
+
groups=channels,
|
69 |
+
bias=bias,
|
70 |
+
)
|
71 |
+
|
72 |
+
assert norm in ['batch_norm', 'layer_norm']
|
73 |
+
if norm == "batch_norm":
|
74 |
+
self.use_layer_norm = False
|
75 |
+
self.norm = nn.BatchNorm1d(channels)
|
76 |
+
else:
|
77 |
+
self.use_layer_norm = True
|
78 |
+
self.norm = nn.LayerNorm(channels)
|
79 |
+
|
80 |
+
self.pointwise_conv2 = nn.Conv1d(
|
81 |
+
channels,
|
82 |
+
channels,
|
83 |
+
kernel_size=1,
|
84 |
+
stride=1,
|
85 |
+
padding=0,
|
86 |
+
bias=bias,
|
87 |
+
)
|
88 |
+
self.activation = activation
|
89 |
+
|
90 |
+
def forward(
|
91 |
+
self,
|
92 |
+
x: torch.Tensor,
|
93 |
+
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
94 |
+
cache: torch.Tensor = torch.zeros((0, 0, 0)),
|
95 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
96 |
+
"""Compute convolution module.
|
97 |
+
Args:
|
98 |
+
x (torch.Tensor): Input tensor (#batch, time, channels).
|
99 |
+
mask_pad (torch.Tensor): used for batch padding (#batch, 1, time),
|
100 |
+
(0, 0, 0) means fake mask.
|
101 |
+
cache (torch.Tensor): left context cache, it is only
|
102 |
+
used in causal convolution (#batch, channels, cache_t),
|
103 |
+
(0, 0, 0) meas fake cache.
|
104 |
+
Returns:
|
105 |
+
torch.Tensor: Output tensor (#batch, time, channels).
|
106 |
+
"""
|
107 |
+
# exchange the temporal dimension and the feature dimension
|
108 |
+
x = x.transpose(1, 2) # (#batch, channels, time)
|
109 |
+
|
110 |
+
# mask batch padding
|
111 |
+
if mask_pad.size(2) > 0: # time > 0
|
112 |
+
x.masked_fill_(~mask_pad, 0.0)
|
113 |
+
|
114 |
+
if self.lorder > 0:
|
115 |
+
if cache.size(2) == 0: # cache_t == 0
|
116 |
+
x = nn.functional.pad(x, (self.lorder, 0), 'constant', 0.0)
|
117 |
+
else:
|
118 |
+
assert cache.size(0) == x.size(0) # equal batch
|
119 |
+
assert cache.size(1) == x.size(1) # equal channel
|
120 |
+
x = torch.cat((cache, x), dim=2)
|
121 |
+
assert (x.size(2) > self.lorder)
|
122 |
+
new_cache = x[:, :, -self.lorder:]
|
123 |
+
else:
|
124 |
+
# It's better we just return None if no cache is required,
|
125 |
+
# However, for JIT export, here we just fake one tensor instead of
|
126 |
+
# None.
|
127 |
+
new_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
|
128 |
+
|
129 |
+
# GLU mechanism
|
130 |
+
x = self.pointwise_conv1(x) # (batch, 2*channel, dim)
|
131 |
+
x = nn.functional.glu(x, dim=1) # (batch, channel, dim)
|
132 |
+
|
133 |
+
# 1D Depthwise Conv
|
134 |
+
x = self.depthwise_conv(x)
|
135 |
+
if self.use_layer_norm:
|
136 |
+
x = x.transpose(1, 2)
|
137 |
+
x = self.activation(self.norm(x))
|
138 |
+
if self.use_layer_norm:
|
139 |
+
x = x.transpose(1, 2)
|
140 |
+
x = self.pointwise_conv2(x)
|
141 |
+
# mask batch padding
|
142 |
+
if mask_pad.size(2) > 0: # time > 0
|
143 |
+
x.masked_fill_(~mask_pad, 0.0)
|
144 |
+
|
145 |
+
return x.transpose(1, 2), new_cache
|
cosyvoice/transformer/decoder.py
ADDED
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
|
2 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""Decoder definition."""
|
17 |
+
from typing import Tuple, List, Optional
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.utils.checkpoint as ckpt
|
21 |
+
import logging
|
22 |
+
|
23 |
+
from cosyvoice.transformer.decoder_layer import DecoderLayer
|
24 |
+
from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
|
25 |
+
from cosyvoice.utils.class_utils import (
|
26 |
+
COSYVOICE_EMB_CLASSES,
|
27 |
+
COSYVOICE_ATTENTION_CLASSES,
|
28 |
+
COSYVOICE_ACTIVATION_CLASSES,
|
29 |
+
)
|
30 |
+
from cosyvoice.utils.mask import (subsequent_mask, make_pad_mask)
|
31 |
+
|
32 |
+
|
33 |
+
class TransformerDecoder(torch.nn.Module):
|
34 |
+
"""Base class of Transfomer decoder module.
|
35 |
+
Args:
|
36 |
+
vocab_size: output dim
|
37 |
+
encoder_output_size: dimension of attention
|
38 |
+
attention_heads: the number of heads of multi head attention
|
39 |
+
linear_units: the hidden units number of position-wise feedforward
|
40 |
+
num_blocks: the number of decoder blocks
|
41 |
+
dropout_rate: dropout rate
|
42 |
+
self_attention_dropout_rate: dropout rate for attention
|
43 |
+
input_layer: input layer type
|
44 |
+
use_output_layer: whether to use output layer
|
45 |
+
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
|
46 |
+
normalize_before:
|
47 |
+
True: use layer_norm before each sub-block of a layer.
|
48 |
+
False: use layer_norm after each sub-block of a layer.
|
49 |
+
src_attention: if false, encoder-decoder cross attention is not
|
50 |
+
applied, such as CIF model
|
51 |
+
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
52 |
+
gradient_checkpointing: rerunning a forward-pass segment for each
|
53 |
+
checkpointed segment during backward.
|
54 |
+
tie_word_embedding: Tie or clone module weights depending of whether we are
|
55 |
+
using TorchScript or not
|
56 |
+
"""
|
57 |
+
|
58 |
+
def __init__(
|
59 |
+
self,
|
60 |
+
vocab_size: int,
|
61 |
+
encoder_output_size: int,
|
62 |
+
attention_heads: int = 4,
|
63 |
+
linear_units: int = 2048,
|
64 |
+
num_blocks: int = 6,
|
65 |
+
dropout_rate: float = 0.1,
|
66 |
+
positional_dropout_rate: float = 0.1,
|
67 |
+
self_attention_dropout_rate: float = 0.0,
|
68 |
+
src_attention_dropout_rate: float = 0.0,
|
69 |
+
input_layer: str = "embed",
|
70 |
+
use_output_layer: bool = True,
|
71 |
+
normalize_before: bool = True,
|
72 |
+
src_attention: bool = True,
|
73 |
+
key_bias: bool = True,
|
74 |
+
activation_type: str = "relu",
|
75 |
+
gradient_checkpointing: bool = False,
|
76 |
+
tie_word_embedding: bool = False,
|
77 |
+
):
|
78 |
+
super().__init__()
|
79 |
+
attention_dim = encoder_output_size
|
80 |
+
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
81 |
+
|
82 |
+
self.embed = torch.nn.Sequential(
|
83 |
+
torch.nn.Identity() if input_layer == "no_pos" else
|
84 |
+
torch.nn.Embedding(vocab_size, attention_dim),
|
85 |
+
COSYVOICE_EMB_CLASSES[input_layer](attention_dim,
|
86 |
+
positional_dropout_rate),
|
87 |
+
)
|
88 |
+
|
89 |
+
self.normalize_before = normalize_before
|
90 |
+
self.after_norm = torch.nn.LayerNorm(attention_dim, eps=1e-5)
|
91 |
+
self.use_output_layer = use_output_layer
|
92 |
+
if use_output_layer:
|
93 |
+
self.output_layer = torch.nn.Linear(attention_dim, vocab_size)
|
94 |
+
else:
|
95 |
+
self.output_layer = torch.nn.Identity()
|
96 |
+
self.num_blocks = num_blocks
|
97 |
+
self.decoders = torch.nn.ModuleList([
|
98 |
+
DecoderLayer(
|
99 |
+
attention_dim,
|
100 |
+
COSYVOICE_ATTENTION_CLASSES["selfattn"](
|
101 |
+
attention_heads, attention_dim,
|
102 |
+
self_attention_dropout_rate, key_bias),
|
103 |
+
COSYVOICE_ATTENTION_CLASSES["selfattn"](
|
104 |
+
attention_heads, attention_dim, src_attention_dropout_rate,
|
105 |
+
key_bias) if src_attention else None,
|
106 |
+
PositionwiseFeedForward(attention_dim, linear_units,
|
107 |
+
dropout_rate, activation),
|
108 |
+
dropout_rate,
|
109 |
+
normalize_before,
|
110 |
+
) for _ in range(self.num_blocks)
|
111 |
+
])
|
112 |
+
|
113 |
+
self.gradient_checkpointing = gradient_checkpointing
|
114 |
+
self.tie_word_embedding = tie_word_embedding
|
115 |
+
|
116 |
+
def forward(
|
117 |
+
self,
|
118 |
+
memory: torch.Tensor,
|
119 |
+
memory_mask: torch.Tensor,
|
120 |
+
ys_in_pad: torch.Tensor,
|
121 |
+
ys_in_lens: torch.Tensor,
|
122 |
+
r_ys_in_pad: torch.Tensor = torch.empty(0),
|
123 |
+
reverse_weight: float = 0.0,
|
124 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
125 |
+
"""Forward decoder.
|
126 |
+
Args:
|
127 |
+
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
128 |
+
memory_mask: encoder memory mask, (batch, 1, maxlen_in)
|
129 |
+
ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
|
130 |
+
ys_in_lens: input lengths of this batch (batch)
|
131 |
+
r_ys_in_pad: not used in transformer decoder, in order to unify api
|
132 |
+
with bidirectional decoder
|
133 |
+
reverse_weight: not used in transformer decoder, in order to unify
|
134 |
+
api with bidirectional decode
|
135 |
+
Returns:
|
136 |
+
(tuple): tuple containing:
|
137 |
+
x: decoded token score before softmax (batch, maxlen_out,
|
138 |
+
vocab_size) if use_output_layer is True,
|
139 |
+
torch.tensor(0.0), in order to unify api with bidirectional decoder
|
140 |
+
olens: (batch, )
|
141 |
+
NOTE(xcsong):
|
142 |
+
We pass the `__call__` method of the modules instead of `forward` to the
|
143 |
+
checkpointing API because `__call__` attaches all the hooks of the module.
|
144 |
+
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
145 |
+
"""
|
146 |
+
tgt = ys_in_pad
|
147 |
+
maxlen = tgt.size(1)
|
148 |
+
# tgt_mask: (B, 1, L)
|
149 |
+
tgt_mask = ~make_pad_mask(ys_in_lens, maxlen).unsqueeze(1)
|
150 |
+
tgt_mask = tgt_mask.to(tgt.device)
|
151 |
+
# m: (1, L, L)
|
152 |
+
m = subsequent_mask(tgt_mask.size(-1),
|
153 |
+
device=tgt_mask.device).unsqueeze(0)
|
154 |
+
# tgt_mask: (B, L, L)
|
155 |
+
tgt_mask = tgt_mask & m
|
156 |
+
x, _ = self.embed(tgt)
|
157 |
+
if self.gradient_checkpointing and self.training:
|
158 |
+
x = self.forward_layers_checkpointed(x, tgt_mask, memory,
|
159 |
+
memory_mask)
|
160 |
+
else:
|
161 |
+
x = self.forward_layers(x, tgt_mask, memory, memory_mask)
|
162 |
+
if self.normalize_before:
|
163 |
+
x = self.after_norm(x)
|
164 |
+
if self.use_output_layer:
|
165 |
+
x = self.output_layer(x)
|
166 |
+
olens = tgt_mask.sum(1)
|
167 |
+
return x, torch.tensor(0.0), olens
|
168 |
+
|
169 |
+
def forward_layers(self, x: torch.Tensor, tgt_mask: torch.Tensor,
|
170 |
+
memory: torch.Tensor,
|
171 |
+
memory_mask: torch.Tensor) -> torch.Tensor:
|
172 |
+
for layer in self.decoders:
|
173 |
+
x, tgt_mask, memory, memory_mask = layer(x, tgt_mask, memory,
|
174 |
+
memory_mask)
|
175 |
+
return x
|
176 |
+
|
177 |
+
@torch.jit.unused
|
178 |
+
def forward_layers_checkpointed(self, x: torch.Tensor,
|
179 |
+
tgt_mask: torch.Tensor,
|
180 |
+
memory: torch.Tensor,
|
181 |
+
memory_mask: torch.Tensor) -> torch.Tensor:
|
182 |
+
for layer in self.decoders:
|
183 |
+
x, tgt_mask, memory, memory_mask = ckpt.checkpoint(
|
184 |
+
layer.__call__, x, tgt_mask, memory, memory_mask)
|
185 |
+
return x
|
186 |
+
|
187 |
+
def forward_one_step(
|
188 |
+
self,
|
189 |
+
memory: torch.Tensor,
|
190 |
+
memory_mask: torch.Tensor,
|
191 |
+
tgt: torch.Tensor,
|
192 |
+
tgt_mask: torch.Tensor,
|
193 |
+
cache: Optional[List[torch.Tensor]] = None,
|
194 |
+
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
195 |
+
"""Forward one step.
|
196 |
+
This is only used for decoding.
|
197 |
+
Args:
|
198 |
+
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
199 |
+
memory_mask: encoded memory mask, (batch, 1, maxlen_in)
|
200 |
+
tgt: input token ids, int64 (batch, maxlen_out)
|
201 |
+
tgt_mask: input token mask, (batch, maxlen_out)
|
202 |
+
dtype=torch.uint8 in PyTorch 1.2-
|
203 |
+
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
|
204 |
+
cache: cached output list of (batch, max_time_out-1, size)
|
205 |
+
Returns:
|
206 |
+
y, cache: NN output value and cache per `self.decoders`.
|
207 |
+
y.shape` is (batch, maxlen_out, token)
|
208 |
+
"""
|
209 |
+
x, _ = self.embed(tgt)
|
210 |
+
new_cache = []
|
211 |
+
for i, decoder in enumerate(self.decoders):
|
212 |
+
if cache is None:
|
213 |
+
c = None
|
214 |
+
else:
|
215 |
+
c = cache[i]
|
216 |
+
x, tgt_mask, memory, memory_mask = decoder(x,
|
217 |
+
tgt_mask,
|
218 |
+
memory,
|
219 |
+
memory_mask,
|
220 |
+
cache=c)
|
221 |
+
new_cache.append(x)
|
222 |
+
if self.normalize_before:
|
223 |
+
y = self.after_norm(x[:, -1])
|
224 |
+
else:
|
225 |
+
y = x[:, -1]
|
226 |
+
if self.use_output_layer:
|
227 |
+
y = torch.log_softmax(self.output_layer(y), dim=-1)
|
228 |
+
return y, new_cache
|
229 |
+
|
230 |
+
def tie_or_clone_weights(self, jit_mode: bool = True):
|
231 |
+
"""Tie or clone module weights (between word_emb and output_layer)
|
232 |
+
depending of whether we are using TorchScript or not"""
|
233 |
+
if not self.use_output_layer:
|
234 |
+
return
|
235 |
+
if jit_mode:
|
236 |
+
logging.info("clone emb.weight to output.weight")
|
237 |
+
self.output_layer.weight = torch.nn.Parameter(
|
238 |
+
self.embed[0].weight.clone())
|
239 |
+
else:
|
240 |
+
logging.info("tie emb.weight with output.weight")
|
241 |
+
self.output_layer.weight = self.embed[0].weight
|
242 |
+
|
243 |
+
if getattr(self.output_layer, "bias", None) is not None:
|
244 |
+
self.output_layer.bias.data = torch.nn.functional.pad(
|
245 |
+
self.output_layer.bias.data,
|
246 |
+
(
|
247 |
+
0,
|
248 |
+
self.output_layer.weight.shape[0] -
|
249 |
+
self.output_layer.bias.shape[0],
|
250 |
+
),
|
251 |
+
"constant",
|
252 |
+
0,
|
253 |
+
)
|
254 |
+
|
255 |
+
|
256 |
+
class BiTransformerDecoder(torch.nn.Module):
|
257 |
+
"""Base class of Transfomer decoder module.
|
258 |
+
Args:
|
259 |
+
vocab_size: output dim
|
260 |
+
encoder_output_size: dimension of attention
|
261 |
+
attention_heads: the number of heads of multi head attention
|
262 |
+
linear_units: the hidden units number of position-wise feedforward
|
263 |
+
num_blocks: the number of decoder blocks
|
264 |
+
r_num_blocks: the number of right to left decoder blocks
|
265 |
+
dropout_rate: dropout rate
|
266 |
+
self_attention_dropout_rate: dropout rate for attention
|
267 |
+
input_layer: input layer type
|
268 |
+
use_output_layer: whether to use output layer
|
269 |
+
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
|
270 |
+
normalize_before:
|
271 |
+
True: use layer_norm before each sub-block of a layer.
|
272 |
+
False: use layer_norm after each sub-block of a layer.
|
273 |
+
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
274 |
+
"""
|
275 |
+
|
276 |
+
def __init__(
|
277 |
+
self,
|
278 |
+
vocab_size: int,
|
279 |
+
encoder_output_size: int,
|
280 |
+
attention_heads: int = 4,
|
281 |
+
linear_units: int = 2048,
|
282 |
+
num_blocks: int = 6,
|
283 |
+
r_num_blocks: int = 0,
|
284 |
+
dropout_rate: float = 0.1,
|
285 |
+
positional_dropout_rate: float = 0.1,
|
286 |
+
self_attention_dropout_rate: float = 0.0,
|
287 |
+
src_attention_dropout_rate: float = 0.0,
|
288 |
+
input_layer: str = "embed",
|
289 |
+
use_output_layer: bool = True,
|
290 |
+
normalize_before: bool = True,
|
291 |
+
key_bias: bool = True,
|
292 |
+
gradient_checkpointing: bool = False,
|
293 |
+
tie_word_embedding: bool = False,
|
294 |
+
):
|
295 |
+
|
296 |
+
super().__init__()
|
297 |
+
self.tie_word_embedding = tie_word_embedding
|
298 |
+
self.left_decoder = TransformerDecoder(
|
299 |
+
vocab_size,
|
300 |
+
encoder_output_size,
|
301 |
+
attention_heads,
|
302 |
+
linear_units,
|
303 |
+
num_blocks,
|
304 |
+
dropout_rate,
|
305 |
+
positional_dropout_rate,
|
306 |
+
self_attention_dropout_rate,
|
307 |
+
src_attention_dropout_rate,
|
308 |
+
input_layer,
|
309 |
+
use_output_layer,
|
310 |
+
normalize_before,
|
311 |
+
key_bias=key_bias,
|
312 |
+
gradient_checkpointing=gradient_checkpointing,
|
313 |
+
tie_word_embedding=tie_word_embedding)
|
314 |
+
|
315 |
+
self.right_decoder = TransformerDecoder(
|
316 |
+
vocab_size,
|
317 |
+
encoder_output_size,
|
318 |
+
attention_heads,
|
319 |
+
linear_units,
|
320 |
+
r_num_blocks,
|
321 |
+
dropout_rate,
|
322 |
+
positional_dropout_rate,
|
323 |
+
self_attention_dropout_rate,
|
324 |
+
src_attention_dropout_rate,
|
325 |
+
input_layer,
|
326 |
+
use_output_layer,
|
327 |
+
normalize_before,
|
328 |
+
key_bias=key_bias,
|
329 |
+
gradient_checkpointing=gradient_checkpointing,
|
330 |
+
tie_word_embedding=tie_word_embedding)
|
331 |
+
|
332 |
+
def forward(
|
333 |
+
self,
|
334 |
+
memory: torch.Tensor,
|
335 |
+
memory_mask: torch.Tensor,
|
336 |
+
ys_in_pad: torch.Tensor,
|
337 |
+
ys_in_lens: torch.Tensor,
|
338 |
+
r_ys_in_pad: torch.Tensor,
|
339 |
+
reverse_weight: float = 0.0,
|
340 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
341 |
+
"""Forward decoder.
|
342 |
+
Args:
|
343 |
+
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
344 |
+
memory_mask: encoder memory mask, (batch, 1, maxlen_in)
|
345 |
+
ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
|
346 |
+
ys_in_lens: input lengths of this batch (batch)
|
347 |
+
r_ys_in_pad: padded input token ids, int64 (batch, maxlen_out),
|
348 |
+
used for right to left decoder
|
349 |
+
reverse_weight: used for right to left decoder
|
350 |
+
Returns:
|
351 |
+
(tuple): tuple containing:
|
352 |
+
x: decoded token score before softmax (batch, maxlen_out,
|
353 |
+
vocab_size) if use_output_layer is True,
|
354 |
+
r_x: x: decoded token score (right to left decoder)
|
355 |
+
before softmax (batch, maxlen_out, vocab_size)
|
356 |
+
if use_output_layer is True,
|
357 |
+
olens: (batch, )
|
358 |
+
"""
|
359 |
+
l_x, _, olens = self.left_decoder(memory, memory_mask, ys_in_pad,
|
360 |
+
ys_in_lens)
|
361 |
+
r_x = torch.tensor(0.0)
|
362 |
+
if reverse_weight > 0.0:
|
363 |
+
r_x, _, olens = self.right_decoder(memory, memory_mask,
|
364 |
+
r_ys_in_pad, ys_in_lens)
|
365 |
+
return l_x, r_x, olens
|
366 |
+
|
367 |
+
def forward_one_step(
|
368 |
+
self,
|
369 |
+
memory: torch.Tensor,
|
370 |
+
memory_mask: torch.Tensor,
|
371 |
+
tgt: torch.Tensor,
|
372 |
+
tgt_mask: torch.Tensor,
|
373 |
+
cache: Optional[List[torch.Tensor]] = None,
|
374 |
+
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
375 |
+
"""Forward one step.
|
376 |
+
This is only used for decoding.
|
377 |
+
Args:
|
378 |
+
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
379 |
+
memory_mask: encoded memory mask, (batch, 1, maxlen_in)
|
380 |
+
tgt: input token ids, int64 (batch, maxlen_out)
|
381 |
+
tgt_mask: input token mask, (batch, maxlen_out)
|
382 |
+
dtype=torch.uint8 in PyTorch 1.2-
|
383 |
+
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
|
384 |
+
cache: cached output list of (batch, max_time_out-1, size)
|
385 |
+
Returns:
|
386 |
+
y, cache: NN output value and cache per `self.decoders`.
|
387 |
+
y.shape` is (batch, maxlen_out, token)
|
388 |
+
"""
|
389 |
+
return self.left_decoder.forward_one_step(memory, memory_mask, tgt,
|
390 |
+
tgt_mask, cache)
|
391 |
+
|
392 |
+
def tie_or_clone_weights(self, jit_mode: bool = True):
|
393 |
+
"""Tie or clone module weights (between word_emb and output_layer)
|
394 |
+
depending of whether we are using TorchScript or not"""
|
395 |
+
self.left_decoder.tie_or_clone_weights(jit_mode)
|
396 |
+
self.right_decoder.tie_or_clone_weights(jit_mode)
|
cosyvoice/transformer/decoder_layer.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019 Shigeki Karita
|
2 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Decoder self-attention layer definition."""
|
16 |
+
from typing import Optional, Tuple
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
|
22 |
+
class DecoderLayer(nn.Module):
|
23 |
+
"""Single decoder layer module.
|
24 |
+
|
25 |
+
Args:
|
26 |
+
size (int): Input dimension.
|
27 |
+
self_attn (torch.nn.Module): Self-attention module instance.
|
28 |
+
`MultiHeadedAttention` instance can be used as the argument.
|
29 |
+
src_attn (torch.nn.Module): Inter-attention module instance.
|
30 |
+
`MultiHeadedAttention` instance can be used as the argument.
|
31 |
+
If `None` is passed, Inter-attention is not used, such as
|
32 |
+
CIF, GPT, and other decoder only model.
|
33 |
+
feed_forward (torch.nn.Module): Feed-forward module instance.
|
34 |
+
`PositionwiseFeedForward` instance can be used as the argument.
|
35 |
+
dropout_rate (float): Dropout rate.
|
36 |
+
normalize_before (bool):
|
37 |
+
True: use layer_norm before each sub-block.
|
38 |
+
False: to use layer_norm after each sub-block.
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
size: int,
|
44 |
+
self_attn: nn.Module,
|
45 |
+
src_attn: Optional[nn.Module],
|
46 |
+
feed_forward: nn.Module,
|
47 |
+
dropout_rate: float,
|
48 |
+
normalize_before: bool = True,
|
49 |
+
):
|
50 |
+
"""Construct an DecoderLayer object."""
|
51 |
+
super().__init__()
|
52 |
+
self.size = size
|
53 |
+
self.self_attn = self_attn
|
54 |
+
self.src_attn = src_attn
|
55 |
+
self.feed_forward = feed_forward
|
56 |
+
self.norm1 = nn.LayerNorm(size, eps=1e-5)
|
57 |
+
self.norm2 = nn.LayerNorm(size, eps=1e-5)
|
58 |
+
self.norm3 = nn.LayerNorm(size, eps=1e-5)
|
59 |
+
self.dropout = nn.Dropout(dropout_rate)
|
60 |
+
self.normalize_before = normalize_before
|
61 |
+
|
62 |
+
def forward(
|
63 |
+
self,
|
64 |
+
tgt: torch.Tensor,
|
65 |
+
tgt_mask: torch.Tensor,
|
66 |
+
memory: torch.Tensor,
|
67 |
+
memory_mask: torch.Tensor,
|
68 |
+
cache: Optional[torch.Tensor] = None
|
69 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
70 |
+
"""Compute decoded features.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
|
74 |
+
tgt_mask (torch.Tensor): Mask for input tensor
|
75 |
+
(#batch, maxlen_out).
|
76 |
+
memory (torch.Tensor): Encoded memory
|
77 |
+
(#batch, maxlen_in, size).
|
78 |
+
memory_mask (torch.Tensor): Encoded memory mask
|
79 |
+
(#batch, maxlen_in).
|
80 |
+
cache (torch.Tensor): cached tensors.
|
81 |
+
(#batch, maxlen_out - 1, size).
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
torch.Tensor: Output tensor (#batch, maxlen_out, size).
|
85 |
+
torch.Tensor: Mask for output tensor (#batch, maxlen_out).
|
86 |
+
torch.Tensor: Encoded memory (#batch, maxlen_in, size).
|
87 |
+
torch.Tensor: Encoded memory mask (#batch, maxlen_in).
|
88 |
+
|
89 |
+
"""
|
90 |
+
residual = tgt
|
91 |
+
if self.normalize_before:
|
92 |
+
tgt = self.norm1(tgt)
|
93 |
+
|
94 |
+
if cache is None:
|
95 |
+
tgt_q = tgt
|
96 |
+
tgt_q_mask = tgt_mask
|
97 |
+
else:
|
98 |
+
# compute only the last frame query keeping dim: max_time_out -> 1
|
99 |
+
assert cache.shape == (
|
100 |
+
tgt.shape[0],
|
101 |
+
tgt.shape[1] - 1,
|
102 |
+
self.size,
|
103 |
+
), "{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}"
|
104 |
+
tgt_q = tgt[:, -1:, :]
|
105 |
+
residual = residual[:, -1:, :]
|
106 |
+
tgt_q_mask = tgt_mask[:, -1:, :]
|
107 |
+
|
108 |
+
x = residual + self.dropout(
|
109 |
+
self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)[0])
|
110 |
+
if not self.normalize_before:
|
111 |
+
x = self.norm1(x)
|
112 |
+
|
113 |
+
if self.src_attn is not None:
|
114 |
+
residual = x
|
115 |
+
if self.normalize_before:
|
116 |
+
x = self.norm2(x)
|
117 |
+
x = residual + self.dropout(
|
118 |
+
self.src_attn(x, memory, memory, memory_mask)[0])
|
119 |
+
if not self.normalize_before:
|
120 |
+
x = self.norm2(x)
|
121 |
+
|
122 |
+
residual = x
|
123 |
+
if self.normalize_before:
|
124 |
+
x = self.norm3(x)
|
125 |
+
x = residual + self.dropout(self.feed_forward(x))
|
126 |
+
if not self.normalize_before:
|
127 |
+
x = self.norm3(x)
|
128 |
+
|
129 |
+
if cache is not None:
|
130 |
+
x = torch.cat([cache, x], dim=1)
|
131 |
+
|
132 |
+
return x, tgt_mask, memory, memory_mask
|
cosyvoice/utils/__init__.py
ADDED
File without changes
|
cosyvoice/utils/class_utils.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright [2023-11-28] <[email protected], Xingchen Song>
|
2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import torch
|
16 |
+
|
17 |
+
from cosyvoice.transformer.activation import Swish
|
18 |
+
from cosyvoice.transformer.subsampling import (
|
19 |
+
LinearNoSubsampling,
|
20 |
+
EmbedinigNoSubsampling,
|
21 |
+
Conv1dSubsampling2,
|
22 |
+
Conv2dSubsampling4,
|
23 |
+
Conv2dSubsampling6,
|
24 |
+
Conv2dSubsampling8,
|
25 |
+
)
|
26 |
+
from cosyvoice.transformer.embedding import (PositionalEncoding,
|
27 |
+
RelPositionalEncoding,
|
28 |
+
WhisperPositionalEncoding,
|
29 |
+
LearnablePositionalEncoding,
|
30 |
+
NoPositionalEncoding)
|
31 |
+
from cosyvoice.transformer.attention import (MultiHeadedAttention,
|
32 |
+
RelPositionMultiHeadedAttention)
|
33 |
+
from cosyvoice.transformer.embedding import EspnetRelPositionalEncoding
|
34 |
+
from cosyvoice.transformer.subsampling import LegacyLinearNoSubsampling
|
35 |
+
from cosyvoice.llm.llm import TransformerLM, Qwen2LM
|
36 |
+
from cosyvoice.flow.flow import MaskedDiffWithXvec, CausalMaskedDiffWithXvec
|
37 |
+
from cosyvoice.hifigan.generator import HiFTGenerator
|
38 |
+
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
|
39 |
+
|
40 |
+
|
41 |
+
COSYVOICE_ACTIVATION_CLASSES = {
|
42 |
+
"hardtanh": torch.nn.Hardtanh,
|
43 |
+
"tanh": torch.nn.Tanh,
|
44 |
+
"relu": torch.nn.ReLU,
|
45 |
+
"selu": torch.nn.SELU,
|
46 |
+
"swish": getattr(torch.nn, "SiLU", Swish),
|
47 |
+
"gelu": torch.nn.GELU,
|
48 |
+
}
|
49 |
+
|
50 |
+
COSYVOICE_SUBSAMPLE_CLASSES = {
|
51 |
+
"linear": LinearNoSubsampling,
|
52 |
+
"linear_legacy": LegacyLinearNoSubsampling,
|
53 |
+
"embed": EmbedinigNoSubsampling,
|
54 |
+
"conv1d2": Conv1dSubsampling2,
|
55 |
+
"conv2d": Conv2dSubsampling4,
|
56 |
+
"conv2d6": Conv2dSubsampling6,
|
57 |
+
"conv2d8": Conv2dSubsampling8,
|
58 |
+
'paraformer_dummy': torch.nn.Identity
|
59 |
+
}
|
60 |
+
|
61 |
+
COSYVOICE_EMB_CLASSES = {
|
62 |
+
"embed": PositionalEncoding,
|
63 |
+
"abs_pos": PositionalEncoding,
|
64 |
+
"rel_pos": RelPositionalEncoding,
|
65 |
+
"rel_pos_espnet": EspnetRelPositionalEncoding,
|
66 |
+
"no_pos": NoPositionalEncoding,
|
67 |
+
"abs_pos_whisper": WhisperPositionalEncoding,
|
68 |
+
"embed_learnable_pe": LearnablePositionalEncoding,
|
69 |
+
}
|
70 |
+
|
71 |
+
COSYVOICE_ATTENTION_CLASSES = {
|
72 |
+
"selfattn": MultiHeadedAttention,
|
73 |
+
"rel_selfattn": RelPositionMultiHeadedAttention,
|
74 |
+
}
|
75 |
+
|
76 |
+
|
77 |
+
def get_model_type(configs):
|
78 |
+
# NOTE CosyVoice2Model inherits CosyVoiceModel
|
79 |
+
if isinstance(configs['llm'], TransformerLM) and isinstance(configs['flow'], MaskedDiffWithXvec) and isinstance(configs['hift'], HiFTGenerator):
|
80 |
+
return CosyVoiceModel
|
81 |
+
if isinstance(configs['llm'], Qwen2LM) and isinstance(configs['flow'], CausalMaskedDiffWithXvec) and isinstance(configs['hift'], HiFTGenerator):
|
82 |
+
return CosyVoice2Model
|
83 |
+
raise TypeError('No valid model type found!')
|
cosyvoice/utils/scheduler.py
ADDED
@@ -0,0 +1,738 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
|
2 |
+
# 2022 Ximalaya Inc (Yuguang Yang)
|
3 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
17 |
+
# NeMo(https://github.com/NVIDIA/NeMo)
|
18 |
+
|
19 |
+
from typing import Union
|
20 |
+
|
21 |
+
import math
|
22 |
+
import warnings
|
23 |
+
import torch
|
24 |
+
from torch.optim.lr_scheduler import _LRScheduler
|
25 |
+
|
26 |
+
|
27 |
+
class WarmupLR(_LRScheduler):
|
28 |
+
"""The WarmupLR scheduler
|
29 |
+
|
30 |
+
This scheduler is almost same as NoamLR Scheduler except for following
|
31 |
+
difference:
|
32 |
+
|
33 |
+
NoamLR:
|
34 |
+
lr = optimizer.lr * model_size ** -0.5
|
35 |
+
* min(step ** -0.5, step * warmup_step ** -1.5)
|
36 |
+
WarmupLR:
|
37 |
+
lr = optimizer.lr * warmup_step ** 0.5
|
38 |
+
* min(step ** -0.5, step * warmup_step ** -1.5)
|
39 |
+
|
40 |
+
Note that the maximum lr equals to optimizer.lr in this scheduler.
|
41 |
+
|
42 |
+
"""
|
43 |
+
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
optimizer: torch.optim.Optimizer,
|
47 |
+
warmup_steps: Union[int, float] = 25000,
|
48 |
+
last_epoch: int = -1,
|
49 |
+
):
|
50 |
+
self.warmup_steps = warmup_steps
|
51 |
+
|
52 |
+
# __init__() must be invoked before setting field
|
53 |
+
# because step() is also invoked in __init__()
|
54 |
+
super().__init__(optimizer, last_epoch)
|
55 |
+
|
56 |
+
def __repr__(self):
|
57 |
+
return f"{self.__class__.__name__}(warmup_steps={self.warmup_steps})"
|
58 |
+
|
59 |
+
def get_lr(self):
|
60 |
+
step_num = self.last_epoch + 1
|
61 |
+
if self.warmup_steps == 0:
|
62 |
+
return [lr * step_num**-0.5 for lr in self.base_lrs]
|
63 |
+
else:
|
64 |
+
return [
|
65 |
+
lr * self.warmup_steps**0.5 *
|
66 |
+
min(step_num**-0.5, step_num * self.warmup_steps**-1.5)
|
67 |
+
for lr in self.base_lrs
|
68 |
+
]
|
69 |
+
|
70 |
+
def set_step(self, step: int):
|
71 |
+
self.last_epoch = step
|
72 |
+
|
73 |
+
|
74 |
+
class WarmupPolicy(_LRScheduler):
|
75 |
+
"""Adds warmup kwargs and warmup logic to lr policy.
|
76 |
+
All arguments should be passed as kwargs for clarity,
|
77 |
+
Args:
|
78 |
+
warmup_steps: Number of training steps in warmup stage
|
79 |
+
warmup_ratio: Ratio of warmup steps to total steps
|
80 |
+
max_steps: Total number of steps while training or `None` for
|
81 |
+
infinite training
|
82 |
+
"""
|
83 |
+
|
84 |
+
def __init__(self,
|
85 |
+
optimizer,
|
86 |
+
*,
|
87 |
+
warmup_steps=None,
|
88 |
+
warmup_ratio=None,
|
89 |
+
max_steps=None,
|
90 |
+
min_lr=0.0,
|
91 |
+
last_epoch=-1):
|
92 |
+
assert not (warmup_steps is not None and warmup_ratio is not None),\
|
93 |
+
"Either use particular number of step or ratio"
|
94 |
+
assert warmup_ratio is None or max_steps is not None, \
|
95 |
+
"If there is a ratio, there should be a total steps"
|
96 |
+
|
97 |
+
# It is necessary to assign all attributes *before* __init__,
|
98 |
+
# as class is wrapped by an inner class.
|
99 |
+
self.max_steps = max_steps
|
100 |
+
if warmup_steps is not None:
|
101 |
+
self.warmup_steps = warmup_steps
|
102 |
+
elif warmup_ratio is not None:
|
103 |
+
self.warmup_steps = int(warmup_ratio * max_steps)
|
104 |
+
else:
|
105 |
+
self.warmup_steps = 0
|
106 |
+
|
107 |
+
self.min_lr = min_lr
|
108 |
+
super().__init__(optimizer, last_epoch)
|
109 |
+
|
110 |
+
def get_lr(self):
|
111 |
+
if not self._get_lr_called_within_step:
|
112 |
+
warnings.warn(
|
113 |
+
"To get the last learning rate computed "
|
114 |
+
"by the scheduler, please use `get_last_lr()`.",
|
115 |
+
UserWarning,
|
116 |
+
stacklevel=2)
|
117 |
+
|
118 |
+
step = self.last_epoch
|
119 |
+
|
120 |
+
if step <= self.warmup_steps and self.warmup_steps > 0:
|
121 |
+
return self._get_warmup_lr(step)
|
122 |
+
|
123 |
+
if step > self.max_steps:
|
124 |
+
return [self.min_lr for _ in self.base_lrs]
|
125 |
+
|
126 |
+
return self._get_lr(step)
|
127 |
+
|
128 |
+
def _get_warmup_lr(self, step):
|
129 |
+
lr_val = (step + 1) / (self.warmup_steps + 1)
|
130 |
+
return [initial_lr * lr_val for initial_lr in self.base_lrs]
|
131 |
+
|
132 |
+
def _get_lr(self, step):
|
133 |
+
"""Simple const lr policy"""
|
134 |
+
return self.base_lrs
|
135 |
+
|
136 |
+
|
137 |
+
class SquareRootConstantPolicy(_LRScheduler):
|
138 |
+
"""Adds warmup kwargs and warmup logic to lr policy.
|
139 |
+
All arguments should be passed as kwargs for clarity,
|
140 |
+
Args:
|
141 |
+
warmup_steps: Number of training steps in warmup stage
|
142 |
+
warmup_ratio: Ratio of warmup steps to total steps
|
143 |
+
max_steps: Total number of steps while training or `None` for
|
144 |
+
infinite training
|
145 |
+
"""
|
146 |
+
|
147 |
+
def __init__(self,
|
148 |
+
optimizer,
|
149 |
+
*,
|
150 |
+
constant_steps=None,
|
151 |
+
constant_ratio=None,
|
152 |
+
max_steps=None,
|
153 |
+
min_lr=0.0,
|
154 |
+
last_epoch=-1):
|
155 |
+
assert not (constant_steps is not None
|
156 |
+
and constant_ratio is not None), \
|
157 |
+
"Either use particular number of step or ratio"
|
158 |
+
assert constant_ratio is None or max_steps is not None, \
|
159 |
+
"If there is a ratio, there should be a total steps"
|
160 |
+
|
161 |
+
# It is necessary to assign all attributes *before* __init__,
|
162 |
+
# as class is wrapped by an inner class.
|
163 |
+
self.max_steps = max_steps
|
164 |
+
if constant_steps is not None:
|
165 |
+
self.constant_steps = constant_steps
|
166 |
+
elif constant_ratio is not None:
|
167 |
+
self.constant_steps = int(constant_ratio * max_steps)
|
168 |
+
else:
|
169 |
+
self.constant_steps = 0
|
170 |
+
|
171 |
+
self.constant_lr = 1 / (constant_steps**0.5)
|
172 |
+
self.min_lr = min_lr
|
173 |
+
super().__init__(optimizer, last_epoch)
|
174 |
+
|
175 |
+
def get_lr(self):
|
176 |
+
if not self._get_lr_called_within_step:
|
177 |
+
warnings.warn(
|
178 |
+
"To get the last learning rate computed "
|
179 |
+
"by the scheduler, please use `get_last_lr()`.",
|
180 |
+
UserWarning,
|
181 |
+
stacklevel=2)
|
182 |
+
|
183 |
+
step = self.last_epoch
|
184 |
+
|
185 |
+
if step <= self.constant_steps:
|
186 |
+
return [self.constant_lr for _ in self.base_lrs]
|
187 |
+
|
188 |
+
if step > self.max_steps:
|
189 |
+
return [self.min_lr for _ in self.base_lrs]
|
190 |
+
|
191 |
+
return self._get_lr(step)
|
192 |
+
|
193 |
+
def _get_lr(self, step):
|
194 |
+
"""Simple const lr policy"""
|
195 |
+
return self.base_lrs
|
196 |
+
|
197 |
+
|
198 |
+
class WarmupHoldPolicy(WarmupPolicy):
|
199 |
+
"""Variant of WarmupPolicy which maintains high
|
200 |
+
learning rate for a defined number of steps.
|
201 |
+
All arguments should be passed as kwargs for clarity,
|
202 |
+
Args:
|
203 |
+
warmup_steps: Number of training steps in warmup stage
|
204 |
+
warmup_ratio: Ratio of warmup steps to total steps
|
205 |
+
hold_steps: Number of training steps to
|
206 |
+
hold the learning rate after warm up
|
207 |
+
hold_ratio: Ratio of hold steps to total steps
|
208 |
+
max_steps: Total number of steps while training or `None` for
|
209 |
+
infinite training
|
210 |
+
"""
|
211 |
+
|
212 |
+
def __init__(
|
213 |
+
self,
|
214 |
+
optimizer,
|
215 |
+
*,
|
216 |
+
warmup_steps=None,
|
217 |
+
warmup_ratio=None,
|
218 |
+
hold_steps=None,
|
219 |
+
hold_ratio=None,
|
220 |
+
max_steps=None,
|
221 |
+
min_lr=0.0,
|
222 |
+
last_epoch=-1,
|
223 |
+
):
|
224 |
+
assert not (hold_steps is not None and hold_ratio is not None), \
|
225 |
+
"Either use particular number of step or ratio"
|
226 |
+
assert hold_ratio is None or max_steps is not None, \
|
227 |
+
"If there is a ratio, there should be a total steps"
|
228 |
+
|
229 |
+
self.min_lr = min_lr
|
230 |
+
self._last_warmup_lr = 0.0
|
231 |
+
|
232 |
+
# Necessary to duplicate as class attributes are hidden in inner class
|
233 |
+
self.max_steps = max_steps
|
234 |
+
if warmup_steps is not None:
|
235 |
+
self.warmup_steps = warmup_steps
|
236 |
+
elif warmup_ratio is not None:
|
237 |
+
self.warmup_steps = int(warmup_ratio * max_steps)
|
238 |
+
else:
|
239 |
+
self.warmup_steps = 0
|
240 |
+
|
241 |
+
if hold_steps is not None:
|
242 |
+
self.hold_steps = hold_steps + self.warmup_steps
|
243 |
+
elif hold_ratio is not None:
|
244 |
+
self.hold_steps = int(hold_ratio * max_steps) + self.warmup_steps
|
245 |
+
else:
|
246 |
+
self.hold_steps = 0
|
247 |
+
|
248 |
+
super().__init__(
|
249 |
+
optimizer,
|
250 |
+
warmup_steps=warmup_steps,
|
251 |
+
warmup_ratio=warmup_ratio,
|
252 |
+
max_steps=max_steps,
|
253 |
+
last_epoch=last_epoch,
|
254 |
+
min_lr=min_lr,
|
255 |
+
)
|
256 |
+
|
257 |
+
def get_lr(self):
|
258 |
+
if not self._get_lr_called_within_step:
|
259 |
+
warnings.warn(
|
260 |
+
"To get the last learning rate computed by the scheduler,"
|
261 |
+
" "
|
262 |
+
"please use `get_last_lr()`.",
|
263 |
+
UserWarning,
|
264 |
+
stacklevel=2)
|
265 |
+
|
266 |
+
step = self.last_epoch
|
267 |
+
|
268 |
+
# Warmup phase
|
269 |
+
if step <= self.warmup_steps and self.warmup_steps > 0:
|
270 |
+
return self._get_warmup_lr(step)
|
271 |
+
|
272 |
+
# Hold phase
|
273 |
+
if (step >= self.warmup_steps) and (step < self.hold_steps):
|
274 |
+
return self.base_lrs
|
275 |
+
|
276 |
+
if step > self.max_steps:
|
277 |
+
return [self.min_lr for _ in self.base_lrs]
|
278 |
+
|
279 |
+
return self._get_lr(step)
|
280 |
+
|
281 |
+
|
282 |
+
class WarmupAnnealHoldPolicy(_LRScheduler):
|
283 |
+
"""Adds warmup kwargs and warmup logic to lr policy.
|
284 |
+
All arguments should be passed as kwargs for clarity,
|
285 |
+
Args:
|
286 |
+
warmup_steps: Number of training steps in warmup stage
|
287 |
+
warmup_ratio: Ratio of warmup steps to total steps
|
288 |
+
max_steps: Total number of steps while training or `None` for
|
289 |
+
infinite training
|
290 |
+
min_lr: Minimum lr to hold the learning rate after decay at.
|
291 |
+
constant_steps: Number of steps to keep lr constant at.
|
292 |
+
constant_ratio: Ratio of steps to keep lr constant.
|
293 |
+
"""
|
294 |
+
|
295 |
+
def __init__(
|
296 |
+
self,
|
297 |
+
optimizer,
|
298 |
+
*,
|
299 |
+
warmup_steps=None,
|
300 |
+
warmup_ratio=None,
|
301 |
+
constant_steps=None,
|
302 |
+
constant_ratio=None,
|
303 |
+
max_steps=None,
|
304 |
+
min_lr=0.0,
|
305 |
+
last_epoch=-1,
|
306 |
+
):
|
307 |
+
assert not (warmup_steps is not None
|
308 |
+
and warmup_ratio is not None), \
|
309 |
+
"Either use particular number of step or ratio"
|
310 |
+
assert not (constant_steps is not None
|
311 |
+
and constant_ratio is not None), \
|
312 |
+
"Either use constant_steps or constant_ratio"
|
313 |
+
assert warmup_ratio is None or max_steps is not None, \
|
314 |
+
"If there is a ratio, there should be a total steps"
|
315 |
+
|
316 |
+
# It is necessary to assign all attributes *before* __init__,
|
317 |
+
# as class is wrapped by an inner class.
|
318 |
+
self.max_steps = max_steps
|
319 |
+
|
320 |
+
if warmup_steps is not None:
|
321 |
+
self.warmup_steps = warmup_steps
|
322 |
+
elif warmup_ratio is not None:
|
323 |
+
self.warmup_steps = int(warmup_ratio * max_steps)
|
324 |
+
else:
|
325 |
+
self.warmup_steps = 0
|
326 |
+
|
327 |
+
if constant_steps is not None:
|
328 |
+
self.constant_steps = constant_steps
|
329 |
+
elif constant_ratio is not None:
|
330 |
+
self.constant_steps = int(constant_ratio * max_steps)
|
331 |
+
else:
|
332 |
+
self.constant_steps = 0
|
333 |
+
|
334 |
+
self.decay_steps = max_steps - (self.constant_steps +
|
335 |
+
self.warmup_steps)
|
336 |
+
|
337 |
+
self.min_lr = min_lr
|
338 |
+
super().__init__(optimizer, last_epoch)
|
339 |
+
|
340 |
+
def get_lr(self):
|
341 |
+
if not self._get_lr_called_within_step:
|
342 |
+
warnings.warn(
|
343 |
+
"To get the last learning rate computed "
|
344 |
+
"by the scheduler, please use `get_last_lr()`.",
|
345 |
+
UserWarning,
|
346 |
+
stacklevel=2)
|
347 |
+
|
348 |
+
step = self.last_epoch
|
349 |
+
|
350 |
+
# Warmup steps
|
351 |
+
if self.warmup_steps > 0 and step <= self.warmup_steps:
|
352 |
+
return self._get_warmup_lr(step)
|
353 |
+
|
354 |
+
# Constant steps after warmup and decay
|
355 |
+
if self.constant_steps > 0 and (
|
356 |
+
self.warmup_steps + self.decay_steps) < step <= self.max_steps:
|
357 |
+
return self._get_constant_lr(step)
|
358 |
+
|
359 |
+
# Min lr after max steps of updates
|
360 |
+
if step > self.max_steps:
|
361 |
+
return [self.min_lr for _ in self.base_lrs]
|
362 |
+
|
363 |
+
return self._get_lr(step)
|
364 |
+
|
365 |
+
def _get_warmup_lr(self, step):
|
366 |
+
lr_val = (step + 1) / (self.warmup_steps + 1)
|
367 |
+
return [initial_lr * lr_val for initial_lr in self.base_lrs]
|
368 |
+
|
369 |
+
def _get_constant_lr(self, step):
|
370 |
+
return [self.min_lr for _ in self.base_lrs]
|
371 |
+
|
372 |
+
def _get_lr(self, step):
|
373 |
+
"""Simple const lr policy"""
|
374 |
+
return self.base_lrs
|
375 |
+
|
376 |
+
|
377 |
+
def _squareroot_annealing(initial_lr, step, max_steps, min_lr):
|
378 |
+
mult = ((max_steps - step) / max_steps)**0.5
|
379 |
+
out_lr = initial_lr * mult
|
380 |
+
out_lr = max(out_lr, min_lr)
|
381 |
+
return out_lr
|
382 |
+
|
383 |
+
|
384 |
+
def _square_annealing(initial_lr, step, max_steps, min_lr):
|
385 |
+
mult = ((max_steps - step) / max_steps)**2
|
386 |
+
out_lr = initial_lr * mult
|
387 |
+
out_lr = max(out_lr, min_lr)
|
388 |
+
return out_lr
|
389 |
+
|
390 |
+
|
391 |
+
def _cosine_annealing(initial_lr, step, max_steps, min_lr):
|
392 |
+
mult = 0.5 * (1 + math.cos(math.pi * step / max_steps))
|
393 |
+
out_lr = (initial_lr - min_lr) * mult + min_lr
|
394 |
+
return out_lr
|
395 |
+
|
396 |
+
|
397 |
+
def _linear_warmup_with_cosine_annealing(max_lr, warmup_steps, step,
|
398 |
+
decay_steps, min_lr):
|
399 |
+
assert max_lr > min_lr
|
400 |
+
# Use linear warmup for the initial part.
|
401 |
+
if warmup_steps > 0 and step <= warmup_steps:
|
402 |
+
return max_lr * float(step) / float(warmup_steps)
|
403 |
+
|
404 |
+
# For any steps larger than `decay_steps`, use `min_lr`.
|
405 |
+
if step > warmup_steps + decay_steps:
|
406 |
+
return min_lr
|
407 |
+
|
408 |
+
# If we are done with the warmup period, use the decay style.
|
409 |
+
num_steps_ = step - warmup_steps
|
410 |
+
decay_steps_ = decay_steps
|
411 |
+
decay_ratio = float(num_steps_) / float(decay_steps_)
|
412 |
+
assert decay_ratio >= 0.0
|
413 |
+
assert decay_ratio <= 1.0
|
414 |
+
delta_lr = max_lr - min_lr
|
415 |
+
|
416 |
+
coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0)
|
417 |
+
|
418 |
+
return min_lr + coeff * delta_lr
|
419 |
+
|
420 |
+
|
421 |
+
def _poly_decay(initial_lr, step, decay_steps, power, min_lr, cycle):
|
422 |
+
if cycle:
|
423 |
+
multiplier = 1.0 if step == 0 else math.ceil(step / decay_steps)
|
424 |
+
decay_steps *= multiplier
|
425 |
+
else:
|
426 |
+
step = min(step, decay_steps)
|
427 |
+
p = step / decay_steps
|
428 |
+
lr = (initial_lr - min_lr) * math.pow(1.0 - p, power)
|
429 |
+
lr += min_lr
|
430 |
+
return lr
|
431 |
+
|
432 |
+
|
433 |
+
def _noam_hold_annealing(initial_lr, step, warmup_steps, hold_steps,
|
434 |
+
decay_rate, min_lr):
|
435 |
+
# hold_steps = total number of steps
|
436 |
+
# to hold the LR, not the warmup + hold steps.
|
437 |
+
T_warmup_decay = max(1, warmup_steps**decay_rate)
|
438 |
+
T_hold_decay = max(1, (step - hold_steps)**decay_rate)
|
439 |
+
lr = (initial_lr * T_warmup_decay) / T_hold_decay
|
440 |
+
lr = max(lr, min_lr)
|
441 |
+
return lr
|
442 |
+
|
443 |
+
|
444 |
+
class SquareAnnealing(WarmupPolicy):
|
445 |
+
|
446 |
+
def __init__(self,
|
447 |
+
optimizer,
|
448 |
+
*,
|
449 |
+
max_steps,
|
450 |
+
min_lr=1e-5,
|
451 |
+
last_epoch=-1,
|
452 |
+
**kwargs):
|
453 |
+
super().__init__(optimizer=optimizer,
|
454 |
+
max_steps=max_steps,
|
455 |
+
last_epoch=last_epoch,
|
456 |
+
min_lr=min_lr,
|
457 |
+
**kwargs)
|
458 |
+
|
459 |
+
def _get_lr(self, step):
|
460 |
+
new_lrs = [
|
461 |
+
_square_annealing(
|
462 |
+
initial_lr=initial_lr,
|
463 |
+
step=step - self.warmup_steps,
|
464 |
+
max_steps=self.max_steps - self.warmup_steps,
|
465 |
+
min_lr=self.min_lr,
|
466 |
+
) for initial_lr in self.base_lrs
|
467 |
+
]
|
468 |
+
return new_lrs
|
469 |
+
|
470 |
+
|
471 |
+
class SquareRootAnnealing(WarmupPolicy):
|
472 |
+
|
473 |
+
def __init__(self,
|
474 |
+
optimizer,
|
475 |
+
*,
|
476 |
+
max_steps,
|
477 |
+
min_lr=0,
|
478 |
+
last_epoch=-1,
|
479 |
+
**kwargs):
|
480 |
+
super().__init__(optimizer=optimizer,
|
481 |
+
max_steps=max_steps,
|
482 |
+
last_epoch=last_epoch,
|
483 |
+
min_lr=min_lr,
|
484 |
+
**kwargs)
|
485 |
+
|
486 |
+
def _get_lr(self, step):
|
487 |
+
new_lrs = [
|
488 |
+
_squareroot_annealing(initial_lr=initial_lr,
|
489 |
+
step=step,
|
490 |
+
max_steps=self.max_steps,
|
491 |
+
min_lr=self.min_lr)
|
492 |
+
for initial_lr in self.base_lrs
|
493 |
+
]
|
494 |
+
return new_lrs
|
495 |
+
|
496 |
+
|
497 |
+
class CosineAnnealing(WarmupAnnealHoldPolicy):
|
498 |
+
|
499 |
+
def __init__(self,
|
500 |
+
optimizer,
|
501 |
+
*,
|
502 |
+
max_steps,
|
503 |
+
min_lr=0,
|
504 |
+
last_epoch=-1,
|
505 |
+
**kwargs):
|
506 |
+
super().__init__(optimizer=optimizer,
|
507 |
+
max_steps=max_steps,
|
508 |
+
last_epoch=last_epoch,
|
509 |
+
min_lr=min_lr,
|
510 |
+
**kwargs)
|
511 |
+
|
512 |
+
def _get_lr(self, step):
|
513 |
+
for initial_lr in self.base_lrs:
|
514 |
+
if initial_lr < self.min_lr:
|
515 |
+
raise ValueError(
|
516 |
+
f"{self} received an initial learning rate "
|
517 |
+
f"that was lower than the minimum learning rate.")
|
518 |
+
|
519 |
+
if self.constant_steps is None or self.constant_steps == 0:
|
520 |
+
new_lrs = [
|
521 |
+
_cosine_annealing(
|
522 |
+
initial_lr=initial_lr,
|
523 |
+
step=step - self.warmup_steps,
|
524 |
+
max_steps=self.max_steps - self.warmup_steps,
|
525 |
+
min_lr=self.min_lr,
|
526 |
+
) for initial_lr in self.base_lrs
|
527 |
+
]
|
528 |
+
else:
|
529 |
+
new_lrs = self._get_linear_warmup_with_cosine_annealing_lr(step)
|
530 |
+
return new_lrs
|
531 |
+
|
532 |
+
def _get_warmup_lr(self, step):
|
533 |
+
if self.constant_steps is None or self.constant_steps == 0:
|
534 |
+
return super()._get_warmup_lr(step)
|
535 |
+
else:
|
536 |
+
# Use linear warmup for the initial part.
|
537 |
+
return self._get_linear_warmup_with_cosine_annealing_lr(step)
|
538 |
+
|
539 |
+
def _get_constant_lr(self, step):
|
540 |
+
# Only called when `constant_steps` > 0.
|
541 |
+
return self._get_linear_warmup_with_cosine_annealing_lr(step)
|
542 |
+
|
543 |
+
def _get_linear_warmup_with_cosine_annealing_lr(self, step):
|
544 |
+
# Cosine Schedule for Megatron LM,
|
545 |
+
# slightly different warmup schedule + constant LR at the end.
|
546 |
+
new_lrs = [
|
547 |
+
_linear_warmup_with_cosine_annealing(
|
548 |
+
max_lr=self.base_lrs[0],
|
549 |
+
warmup_steps=self.warmup_steps,
|
550 |
+
step=step,
|
551 |
+
decay_steps=self.decay_steps,
|
552 |
+
min_lr=self.min_lr,
|
553 |
+
) for _ in self.base_lrs
|
554 |
+
]
|
555 |
+
return new_lrs
|
556 |
+
|
557 |
+
|
558 |
+
class NoamAnnealing(_LRScheduler):
|
559 |
+
|
560 |
+
def __init__(self,
|
561 |
+
optimizer,
|
562 |
+
*,
|
563 |
+
d_model,
|
564 |
+
warmup_steps=None,
|
565 |
+
warmup_ratio=None,
|
566 |
+
max_steps=None,
|
567 |
+
min_lr=0.0,
|
568 |
+
last_epoch=-1):
|
569 |
+
self._normalize = d_model**(-0.5)
|
570 |
+
assert not (warmup_steps is not None and warmup_ratio is not None), \
|
571 |
+
"Either use particular number of step or ratio"
|
572 |
+
assert warmup_ratio is None or max_steps is not None, \
|
573 |
+
"If there is a ratio, there should be a total steps"
|
574 |
+
|
575 |
+
# It is necessary to assign all attributes *before* __init__,
|
576 |
+
# as class is wrapped by an inner class.
|
577 |
+
self.max_steps = max_steps
|
578 |
+
if warmup_steps is not None:
|
579 |
+
self.warmup_steps = warmup_steps
|
580 |
+
elif warmup_ratio is not None:
|
581 |
+
self.warmup_steps = int(warmup_ratio * max_steps)
|
582 |
+
else:
|
583 |
+
self.warmup_steps = 0
|
584 |
+
|
585 |
+
self.min_lr = min_lr
|
586 |
+
super().__init__(optimizer, last_epoch)
|
587 |
+
|
588 |
+
def get_lr(self):
|
589 |
+
if not self._get_lr_called_within_step:
|
590 |
+
warnings.warn(
|
591 |
+
"To get the last learning rate computed "
|
592 |
+
"by the scheduler, please use `get_last_lr()`.",
|
593 |
+
UserWarning,
|
594 |
+
stacklevel=2)
|
595 |
+
|
596 |
+
step = max(1, self.last_epoch)
|
597 |
+
|
598 |
+
for initial_lr in self.base_lrs:
|
599 |
+
if initial_lr < self.min_lr:
|
600 |
+
raise ValueError(
|
601 |
+
f"{self} received an initial learning rate "
|
602 |
+
f"that was lower than the minimum learning rate.")
|
603 |
+
|
604 |
+
new_lrs = [
|
605 |
+
self._noam_annealing(initial_lr=initial_lr, step=step)
|
606 |
+
for initial_lr in self.base_lrs
|
607 |
+
]
|
608 |
+
return new_lrs
|
609 |
+
|
610 |
+
def _noam_annealing(self, initial_lr, step):
|
611 |
+
if self.warmup_steps > 0:
|
612 |
+
mult = self._normalize * min(step**(-0.5),
|
613 |
+
step * (self.warmup_steps**(-1.5)))
|
614 |
+
else:
|
615 |
+
mult = self._normalize * step**(-0.5)
|
616 |
+
|
617 |
+
out_lr = initial_lr * mult
|
618 |
+
if step > self.warmup_steps:
|
619 |
+
out_lr = max(out_lr, self.min_lr)
|
620 |
+
return out_lr
|
621 |
+
|
622 |
+
|
623 |
+
class NoamHoldAnnealing(WarmupHoldPolicy):
|
624 |
+
|
625 |
+
def __init__(self,
|
626 |
+
optimizer,
|
627 |
+
*,
|
628 |
+
max_steps,
|
629 |
+
decay_rate=0.5,
|
630 |
+
min_lr=0.0,
|
631 |
+
last_epoch=-1,
|
632 |
+
**kwargs):
|
633 |
+
"""
|
634 |
+
From Nemo:
|
635 |
+
Implementation of the Noam Hold Annealing policy
|
636 |
+
from the SqueezeFormer paper.
|
637 |
+
|
638 |
+
Unlike NoamAnnealing, the peak learning rate
|
639 |
+
can be explicitly set for this scheduler.
|
640 |
+
The schedule first performs linear warmup,
|
641 |
+
then holds the peak LR, then decays with some schedule for
|
642 |
+
the remainder of the steps.
|
643 |
+
Therefore the min-lr is still dependent
|
644 |
+
on the hyper parameters selected.
|
645 |
+
|
646 |
+
It's schedule is determined by three factors-
|
647 |
+
|
648 |
+
Warmup Steps: Initial stage, where linear warmup
|
649 |
+
occurs uptil the peak LR is reached. Unlike NoamAnnealing,
|
650 |
+
the peak LR is explicitly stated here instead of a scaling factor.
|
651 |
+
|
652 |
+
Hold Steps: Intermediate stage, where the peak LR
|
653 |
+
is maintained for some number of steps. In this region,
|
654 |
+
the high peak LR allows the model to converge faster
|
655 |
+
if training is stable. However the high LR
|
656 |
+
may also cause instability during training.
|
657 |
+
Should usually be a significant fraction of training
|
658 |
+
steps (around 30-40% of the entire training steps).
|
659 |
+
|
660 |
+
Decay Steps: Final stage, where the LR rapidly decays
|
661 |
+
with some scaling rate (set by decay rate).
|
662 |
+
To attain Noam decay, use 0.5,
|
663 |
+
for Squeezeformer recommended decay, use 1.0.
|
664 |
+
The fast decay after prolonged high LR during
|
665 |
+
hold phase allows for rapid convergence.
|
666 |
+
|
667 |
+
References:
|
668 |
+
- [Squeezeformer:
|
669 |
+
An Efficient Transformer for Automatic Speech Recognition]
|
670 |
+
(https://arxiv.org/abs/2206.00888)
|
671 |
+
|
672 |
+
Args:
|
673 |
+
optimizer: Pytorch compatible Optimizer object.
|
674 |
+
warmup_steps: Number of training steps in warmup stage
|
675 |
+
warmup_ratio: Ratio of warmup steps to total steps
|
676 |
+
hold_steps: Number of training steps to
|
677 |
+
hold the learning rate after warm up
|
678 |
+
hold_ratio: Ratio of hold steps to total steps
|
679 |
+
max_steps: Total number of steps while training or `None` for
|
680 |
+
infinite training
|
681 |
+
decay_rate: Float value describing the polynomial decay
|
682 |
+
after the hold period. Default value
|
683 |
+
of 0.5 corresponds to Noam decay.
|
684 |
+
min_lr: Minimum learning rate.
|
685 |
+
"""
|
686 |
+
self.decay_rate = decay_rate
|
687 |
+
super().__init__(optimizer=optimizer,
|
688 |
+
max_steps=max_steps,
|
689 |
+
last_epoch=last_epoch,
|
690 |
+
min_lr=min_lr,
|
691 |
+
**kwargs)
|
692 |
+
|
693 |
+
def _get_lr(self, step):
|
694 |
+
if self.warmup_steps is None or self.warmup_steps == 0:
|
695 |
+
raise ValueError(
|
696 |
+
"Noam scheduler cannot be used without warmup steps")
|
697 |
+
|
698 |
+
if self.hold_steps > 0:
|
699 |
+
hold_steps = self.hold_steps - self.warmup_steps
|
700 |
+
else:
|
701 |
+
hold_steps = 0
|
702 |
+
|
703 |
+
new_lrs = [
|
704 |
+
_noam_hold_annealing(
|
705 |
+
initial_lr,
|
706 |
+
step=step,
|
707 |
+
warmup_steps=self.warmup_steps,
|
708 |
+
hold_steps=hold_steps,
|
709 |
+
decay_rate=self.decay_rate,
|
710 |
+
min_lr=self.min_lr,
|
711 |
+
) for initial_lr in self.base_lrs
|
712 |
+
]
|
713 |
+
return new_lrs
|
714 |
+
|
715 |
+
def set_step(self, step: int):
|
716 |
+
self.last_epoch = step
|
717 |
+
|
718 |
+
|
719 |
+
class ConstantLR(_LRScheduler):
|
720 |
+
"""The ConstantLR scheduler
|
721 |
+
|
722 |
+
This scheduler keeps a constant lr
|
723 |
+
|
724 |
+
"""
|
725 |
+
|
726 |
+
def __init__(
|
727 |
+
self,
|
728 |
+
optimizer: torch.optim.Optimizer,
|
729 |
+
):
|
730 |
+
# __init__() must be invoked before setting field
|
731 |
+
# because step() is also invoked in __init__()
|
732 |
+
super().__init__(optimizer)
|
733 |
+
|
734 |
+
def get_lr(self):
|
735 |
+
return self.base_lrs
|
736 |
+
|
737 |
+
def set_step(self, step: int):
|
738 |
+
self.last_epoch = step
|
examples/libritts/cosyvoice/local/prepare_data.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import logging
|
3 |
+
import glob
|
4 |
+
import os
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
|
8 |
+
logger = logging.getLogger()
|
9 |
+
|
10 |
+
|
11 |
+
def main():
|
12 |
+
wavs = list(glob.glob('{}/*/*/*wav'.format(args.src_dir)))
|
13 |
+
|
14 |
+
utt2wav, utt2text, utt2spk, spk2utt = {}, {}, {}, {}
|
15 |
+
for wav in tqdm(wavs):
|
16 |
+
txt = wav.replace('.wav', '.normalized.txt')
|
17 |
+
if not os.path.exists(txt):
|
18 |
+
logger.warning('{} do not exsist'.format(txt))
|
19 |
+
continue
|
20 |
+
with open(txt) as f:
|
21 |
+
content = ''.join(l.replace('\n', '') for l in f.readline())
|
22 |
+
utt = os.path.basename(wav).replace('.wav', '')
|
23 |
+
spk = utt.split('_')[0]
|
24 |
+
utt2wav[utt] = wav
|
25 |
+
utt2text[utt] = content
|
26 |
+
utt2spk[utt] = spk
|
27 |
+
if spk not in spk2utt:
|
28 |
+
spk2utt[spk] = []
|
29 |
+
spk2utt[spk].append(utt)
|
30 |
+
|
31 |
+
with open('{}/wav.scp'.format(args.des_dir), 'w') as f:
|
32 |
+
for k, v in utt2wav.items():
|
33 |
+
f.write('{} {}\n'.format(k, v))
|
34 |
+
with open('{}/text'.format(args.des_dir), 'w') as f:
|
35 |
+
for k, v in utt2text.items():
|
36 |
+
f.write('{} {}\n'.format(k, v))
|
37 |
+
with open('{}/utt2spk'.format(args.des_dir), 'w') as f:
|
38 |
+
for k, v in utt2spk.items():
|
39 |
+
f.write('{} {}\n'.format(k, v))
|
40 |
+
with open('{}/spk2utt'.format(args.des_dir), 'w') as f:
|
41 |
+
for k, v in spk2utt.items():
|
42 |
+
f.write('{} {}\n'.format(k, ' '.join(v)))
|
43 |
+
return
|
44 |
+
|
45 |
+
|
46 |
+
if __name__ == "__main__":
|
47 |
+
parser = argparse.ArgumentParser()
|
48 |
+
parser.add_argument('--src_dir',
|
49 |
+
type=str)
|
50 |
+
parser.add_argument('--des_dir',
|
51 |
+
type=str)
|
52 |
+
args = parser.parse_args()
|
53 |
+
main()
|
examples/libritts/cosyvoice/path.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# NOTE(kan-bayashi): Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
|
2 |
+
export PYTHONIOENCODING=UTF-8
|
3 |
+
export PYTHONPATH=../../../:../../../third_party/Matcha-TTS:$PYTHONPATH
|
requirements.txt
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu121
|
2 |
+
--extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/ # https://github.com/microsoft/onnxruntime/issues/21684
|
3 |
+
conformer==0.3.2
|
4 |
+
diffusers==0.29.0
|
5 |
+
gdown==5.1.0
|
6 |
+
gradio==5.4.0
|
7 |
+
grpcio==1.57.0
|
8 |
+
grpcio-tools==1.57.0
|
9 |
+
hydra-core==1.3.2
|
10 |
+
HyperPyYAML==1.2.2
|
11 |
+
inflect==7.3.1
|
12 |
+
librosa==0.10.2
|
13 |
+
lightning==2.2.4
|
14 |
+
matplotlib==3.7.5
|
15 |
+
modelscope==1.15.0
|
16 |
+
networkx==3.1
|
17 |
+
omegaconf==2.3.0
|
18 |
+
onnx==1.16.0
|
19 |
+
onnxruntime-gpu==1.18.0; sys_platform == 'linux'
|
20 |
+
onnxruntime==1.18.0; sys_platform == 'darwin' or sys_platform == 'windows'
|
21 |
+
openai-whisper==20231117
|
22 |
+
protobuf==4.25
|
23 |
+
pydantic==2.7.0
|
24 |
+
pyworld==0.3.4
|
25 |
+
rich==13.7.1
|
26 |
+
soundfile==0.12.1
|
27 |
+
tensorboard==2.14.0
|
28 |
+
tensorrt-cu12==10.0.1; sys_platform == 'linux'
|
29 |
+
tensorrt-cu12-bindings==10.0.1; sys_platform == 'linux'
|
30 |
+
tensorrt-cu12-libs==10.0.1; sys_platform == 'linux'
|
31 |
+
torch==2.3.1
|
32 |
+
torchaudio==2.3.1
|
33 |
+
transformers==4.40.1
|
34 |
+
uvicorn==0.30.0
|
35 |
+
wget==3.2
|
36 |
+
fastapi==0.115.6
|
37 |
+
fastapi-cli==0.0.4
|
38 |
+
WeTextProcessing==1.0.3
|
runtime/python/Dockerfile
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM pytorch/pytorch:2.0.1-cuda11.7-cudnn8-runtime
|
2 |
+
ENV DEBIAN_FRONTEND=noninteractive
|
3 |
+
|
4 |
+
WORKDIR /opt/CosyVoice
|
5 |
+
|
6 |
+
RUN sed -i s@/archive.ubuntu.com/@/mirrors.aliyun.com/@g /etc/apt/sources.list
|
7 |
+
RUN apt-get update -y
|
8 |
+
RUN apt-get -y install git unzip git-lfs
|
9 |
+
RUN git lfs install
|
10 |
+
RUN git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
|
11 |
+
# here we use python==3.10 because we cannot find an image which have both python3.8 and torch2.0.1-cu118 installed
|
12 |
+
RUN cd CosyVoice && pip3 install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
|
13 |
+
RUN cd CosyVoice/runtime/python/grpc && python3 -m grpc_tools.protoc -I. --python_out=. --grpc_python_out=. cosyvoice.proto
|
runtime/python/grpc/cosyvoice.proto
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
syntax = "proto3";
|
2 |
+
|
3 |
+
package cosyvoice;
|
4 |
+
option go_package = "protos/";
|
5 |
+
|
6 |
+
service CosyVoice{
|
7 |
+
rpc Inference(Request) returns (stream Response) {}
|
8 |
+
}
|
9 |
+
|
10 |
+
message Request{
|
11 |
+
oneof RequestPayload {
|
12 |
+
sftRequest sft_request = 1;
|
13 |
+
zeroshotRequest zero_shot_request = 2;
|
14 |
+
crosslingualRequest cross_lingual_request = 3;
|
15 |
+
instructRequest instruct_request = 4;
|
16 |
+
}
|
17 |
+
}
|
18 |
+
|
19 |
+
message sftRequest{
|
20 |
+
string spk_id = 1;
|
21 |
+
string tts_text = 2;
|
22 |
+
}
|
23 |
+
|
24 |
+
message zeroshotRequest{
|
25 |
+
string tts_text = 1;
|
26 |
+
string prompt_text = 2;
|
27 |
+
bytes prompt_audio = 3;
|
28 |
+
}
|
29 |
+
|
30 |
+
message crosslingualRequest{
|
31 |
+
string tts_text = 1;
|
32 |
+
bytes prompt_audio = 2;
|
33 |
+
}
|
34 |
+
|
35 |
+
message instructRequest{
|
36 |
+
string tts_text = 1;
|
37 |
+
string spk_id = 2;
|
38 |
+
string instruct_text = 3;
|
39 |
+
}
|
40 |
+
|
41 |
+
message Response{
|
42 |
+
bytes tts_audio = 1;
|
43 |
+
}
|
webui.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Liu Yue)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import os
|
15 |
+
import sys
|
16 |
+
import argparse
|
17 |
+
import gradio as gr
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
import torchaudio
|
21 |
+
import random
|
22 |
+
import librosa
|
23 |
+
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
24 |
+
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))
|
25 |
+
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
26 |
+
from cosyvoice.utils.file_utils import load_wav, logging
|
27 |
+
from cosyvoice.utils.common import set_all_random_seed
|
28 |
+
|
29 |
+
inference_mode_list = ['预训练音色', '3s极速复刻', '跨语种复刻', '自然语言控制']
|
30 |
+
instruct_dict = {'预训练音色': '1. 选择预训练音色\n2. 点击生成音频按钮',
|
31 |
+
'3s极速复刻': '1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n2. 输入prompt文本\n3. 点击生成音频按钮',
|
32 |
+
'跨语种复刻': '1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n2. 点击生成音频按钮',
|
33 |
+
'自然语言控制': '1. 选择预训练音色\n2. 输入instruct文本\n3. 点击生成音频按钮'}
|
34 |
+
stream_mode_list = [('否', False), ('是', True)]
|
35 |
+
max_val = 0.8
|
36 |
+
|
37 |
+
|
38 |
+
def generate_seed():
|
39 |
+
seed = random.randint(1, 100000000)
|
40 |
+
return {
|
41 |
+
"__type__": "update",
|
42 |
+
"value": seed
|
43 |
+
}
|
44 |
+
|
45 |
+
|
46 |
+
def postprocess(speech, top_db=60, hop_length=220, win_length=440):
|
47 |
+
speech, _ = librosa.effects.trim(
|
48 |
+
speech, top_db=top_db,
|
49 |
+
frame_length=win_length,
|
50 |
+
hop_length=hop_length
|
51 |
+
)
|
52 |
+
if speech.abs().max() > max_val:
|
53 |
+
speech = speech / speech.abs().max() * max_val
|
54 |
+
speech = torch.concat([speech, torch.zeros(1, int(cosyvoice.sample_rate * 0.2))], dim=1)
|
55 |
+
return speech
|
56 |
+
|
57 |
+
|
58 |
+
def change_instruction(mode_checkbox_group):
|
59 |
+
return instruct_dict[mode_checkbox_group]
|
60 |
+
|
61 |
+
|
62 |
+
def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text,
|
63 |
+
seed, stream, speed):
|
64 |
+
if prompt_wav_upload is not None:
|
65 |
+
prompt_wav = prompt_wav_upload
|
66 |
+
elif prompt_wav_record is not None:
|
67 |
+
prompt_wav = prompt_wav_record
|
68 |
+
else:
|
69 |
+
prompt_wav = None
|
70 |
+
# if instruct mode, please make sure that model is iic/CosyVoice-300M-Instruct and not cross_lingual mode
|
71 |
+
if mode_checkbox_group in ['自然语言控制']:
|
72 |
+
if cosyvoice.instruct is False:
|
73 |
+
gr.Warning('您正在使用自然语言控制模式, {}模型不支持此模式, 请使用iic/CosyVoice-300M-Instruct模型'.format(args.model_dir))
|
74 |
+
yield (cosyvoice.sample_rate, default_data)
|
75 |
+
if instruct_text == '':
|
76 |
+
gr.Warning('您正在使用自然语言控制模式, 请输入instruct文本')
|
77 |
+
yield (cosyvoice.sample_rate, default_data)
|
78 |
+
if prompt_wav is not None or prompt_text != '':
|
79 |
+
gr.Info('您正在使用自然语言控制模式, prompt音频/prompt文本会被忽略')
|
80 |
+
# if cross_lingual mode, please make sure that model is iic/CosyVoice-300M and tts_text prompt_text are different language
|
81 |
+
if mode_checkbox_group in ['跨语种复刻']:
|
82 |
+
if cosyvoice.instruct is True:
|
83 |
+
gr.Warning('您正在使用跨语种复刻模式, {}模型不支持此模式, 请使用iic/CosyVoice-300M模型'.format(args.model_dir))
|
84 |
+
yield (cosyvoice.sample_rate, default_data)
|
85 |
+
if instruct_text != '':
|
86 |
+
gr.Info('您正在使用跨语种复刻模式, instruct文本会被忽略')
|
87 |
+
if prompt_wav is None:
|
88 |
+
gr.Warning('您正在使用跨语种复刻模式, 请提供prompt音频')
|
89 |
+
yield (cosyvoice.sample_rate, default_data)
|
90 |
+
gr.Info('您正在使用跨语种复刻模式, 请确保合成文本和prompt文本为不同语言')
|
91 |
+
# if in zero_shot cross_lingual, please make sure that prompt_text and prompt_wav meets requirements
|
92 |
+
if mode_checkbox_group in ['3s极速复刻', '跨语种复刻']:
|
93 |
+
if prompt_wav is None:
|
94 |
+
gr.Warning('prompt音频为空,您是否忘记输入prompt音频?')
|
95 |
+
yield (cosyvoice.sample_rate, default_data)
|
96 |
+
if torchaudio.info(prompt_wav).sample_rate < prompt_sr:
|
97 |
+
gr.Warning('prompt音频采样率{}低于{}'.format(torchaudio.info(prompt_wav).sample_rate, prompt_sr))
|
98 |
+
yield (cosyvoice.sample_rate, default_data)
|
99 |
+
# sft mode only use sft_dropdown
|
100 |
+
if mode_checkbox_group in ['预训练音色']:
|
101 |
+
if instruct_text != '' or prompt_wav is not None or prompt_text != '':
|
102 |
+
gr.Info('您正在使用预训练音色模式,prompt文本/prompt音频/instruct文本会被忽略!')
|
103 |
+
if sft_dropdown == '':
|
104 |
+
gr.Warning('没有可用的预训练音色!')
|
105 |
+
yield (cosyvoice.sample_rate, default_data)
|
106 |
+
# zero_shot mode only use prompt_wav prompt text
|
107 |
+
if mode_checkbox_group in ['3s极速复刻']:
|
108 |
+
if prompt_text == '':
|
109 |
+
gr.Warning('prompt文本为空,您是否忘记输入prompt文本?')
|
110 |
+
yield (cosyvoice.sample_rate, default_data)
|
111 |
+
if instruct_text != '':
|
112 |
+
gr.Info('您正在使用3s极速复刻模式,预训练音色/instruct文本会被忽略!')
|
113 |
+
|
114 |
+
if mode_checkbox_group == '预训练音色':
|
115 |
+
logging.info('get sft inference request')
|
116 |
+
set_all_random_seed(seed)
|
117 |
+
for i in cosyvoice.inference_sft(tts_text, sft_dropdown, stream=stream, speed=speed):
|
118 |
+
yield (cosyvoice.sample_rate, i['tts_speech'].numpy().flatten())
|
119 |
+
elif mode_checkbox_group == '3s极速复刻':
|
120 |
+
logging.info('get zero_shot inference request')
|
121 |
+
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
|
122 |
+
set_all_random_seed(seed)
|
123 |
+
for i in cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k, stream=stream, speed=speed):
|
124 |
+
yield (cosyvoice.sample_rate, i['tts_speech'].numpy().flatten())
|
125 |
+
elif mode_checkbox_group == '跨语种复刻':
|
126 |
+
logging.info('get cross_lingual inference request')
|
127 |
+
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
|
128 |
+
set_all_random_seed(seed)
|
129 |
+
for i in cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k, stream=stream, speed=speed):
|
130 |
+
yield (cosyvoice.sample_rate, i['tts_speech'].numpy().flatten())
|
131 |
+
else:
|
132 |
+
logging.info('get instruct inference request')
|
133 |
+
set_all_random_seed(seed)
|
134 |
+
for i in cosyvoice.inference_instruct(tts_text, sft_dropdown, instruct_text, stream=stream, speed=speed):
|
135 |
+
yield (cosyvoice.sample_rate, i['tts_speech'].numpy().flatten())
|
136 |
+
|
137 |
+
|
138 |
+
def main():
|
139 |
+
with gr.Blocks() as demo:
|
140 |
+
gr.Markdown("### 代码库 [CosyVoice](https://github.com/FunAudioLLM/CosyVoice) \
|
141 |
+
预训练模型 [CosyVoice-300M](https://www.modelscope.cn/models/iic/CosyVoice-300M) \
|
142 |
+
[CosyVoice-300M-Instruct](https://www.modelscope.cn/models/iic/CosyVoice-300M-Instruct) \
|
143 |
+
[CosyVoice-300M-SFT](https://www.modelscope.cn/models/iic/CosyVoice-300M-SFT)")
|
144 |
+
gr.Markdown("#### 请输入需要合成的文本,选择推理模式,并按照提示步骤进行操作")
|
145 |
+
|
146 |
+
tts_text = gr.Textbox(label="输入合成文本", lines=1, value="我是通义实验室语音团队全新推出的生成式语音大模型,提供舒适自然的语音合成能力。")
|
147 |
+
with gr.Row():
|
148 |
+
mode_checkbox_group = gr.Radio(choices=inference_mode_list, label='选择推理模式', value=inference_mode_list[0])
|
149 |
+
instruction_text = gr.Text(label="操作步骤", value=instruct_dict[inference_mode_list[0]], scale=0.5)
|
150 |
+
sft_dropdown = gr.Dropdown(choices=sft_spk, label='选择预训练音色', value=sft_spk[0], scale=0.25)
|
151 |
+
stream = gr.Radio(choices=stream_mode_list, label='是否流式推理', value=stream_mode_list[0][1])
|
152 |
+
speed = gr.Number(value=1, label="速度调节(仅支持非流式推理)", minimum=0.5, maximum=2.0, step=0.1)
|
153 |
+
with gr.Column(scale=0.25):
|
154 |
+
seed_button = gr.Button(value="\U0001F3B2")
|
155 |
+
seed = gr.Number(value=0, label="随机推理种子")
|
156 |
+
|
157 |
+
with gr.Row():
|
158 |
+
prompt_wav_upload = gr.Audio(sources='upload', type='filepath', label='选择prompt音频文件,注意采样率不低于16khz')
|
159 |
+
prompt_wav_record = gr.Audio(sources='microphone', type='filepath', label='录制prompt音频文件')
|
160 |
+
prompt_text = gr.Textbox(label="输入prompt文本", lines=1, placeholder="请输入prompt文本,需与prompt音频内容一致,暂时不支持自动识别...", value='')
|
161 |
+
instruct_text = gr.Textbox(label="输入instruct文本", lines=1, placeholder="请输入instruct文本.", value='')
|
162 |
+
|
163 |
+
generate_button = gr.Button("生成音频")
|
164 |
+
|
165 |
+
audio_output = gr.Audio(label="合成音频", autoplay=True, streaming=True)
|
166 |
+
|
167 |
+
seed_button.click(generate_seed, inputs=[], outputs=seed)
|
168 |
+
generate_button.click(generate_audio,
|
169 |
+
inputs=[tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text,
|
170 |
+
seed, stream, speed],
|
171 |
+
outputs=[audio_output])
|
172 |
+
mode_checkbox_group.change(fn=change_instruction, inputs=[mode_checkbox_group], outputs=[instruction_text])
|
173 |
+
demo.queue(max_size=4, default_concurrency_limit=2)
|
174 |
+
demo.launch(share=True,server_name='0.0.0.0', server_port=args.port)
|
175 |
+
|
176 |
+
|
177 |
+
if __name__ == '__main__':
|
178 |
+
parser = argparse.ArgumentParser()
|
179 |
+
parser.add_argument('--port',
|
180 |
+
type=int,
|
181 |
+
default=8000)
|
182 |
+
parser.add_argument('--model_dir',
|
183 |
+
type=str,
|
184 |
+
default='pretrained_models/CosyVoice2-0.5B',
|
185 |
+
help='local path or modelscope repo id')
|
186 |
+
args = parser.parse_args()
|
187 |
+
try:
|
188 |
+
cosyvoice = CosyVoice(args.model_dir)
|
189 |
+
except Exception:
|
190 |
+
try:
|
191 |
+
cosyvoice = CosyVoice2(args.model_dir)
|
192 |
+
except Exception:
|
193 |
+
raise TypeError('no valid model_type!')
|
194 |
+
|
195 |
+
sft_spk = cosyvoice.list_available_spks()
|
196 |
+
if len(sft_spk) == 0:
|
197 |
+
sft_spk = ['']
|
198 |
+
prompt_sr = 16000
|
199 |
+
default_data = np.zeros(cosyvoice.sample_rate)
|
200 |
+
main()
|