Add files using upload-large-folder tool
Browse files- third_party/Matcha-TTS/configs/logger/csv.yaml +7 -0
- third_party/Matcha-TTS/configs/trainer/default.yaml +20 -0
- third_party/Matcha-TTS/matcha/app.py +357 -0
- third_party/Matcha-TTS/matcha/hifigan/README.md +101 -0
- third_party/Matcha-TTS/matcha/hifigan/__init__.py +0 -0
- third_party/Matcha-TTS/matcha/hifigan/config.py +28 -0
- third_party/Matcha-TTS/matcha/hifigan/denoiser.py +64 -0
- third_party/Matcha-TTS/matcha/hifigan/env.py +17 -0
- third_party/Matcha-TTS/matcha/hifigan/models.py +368 -0
- third_party/Matcha-TTS/matcha/models/__init__.py +0 -0
- third_party/Matcha-TTS/matcha/models/baselightningmodule.py +209 -0
- third_party/Matcha-TTS/matcha/models/components/__init__.py +0 -0
- third_party/Matcha-TTS/matcha/models/components/flow_matching.py +132 -0
- third_party/Matcha-TTS/matcha/models/matcha_tts.py +239 -0
- third_party/Matcha-TTS/matcha/onnx/__init__.py +0 -0
- third_party/Matcha-TTS/matcha/onnx/export.py +181 -0
- third_party/Matcha-TTS/matcha/text/cleaners.py +116 -0
- third_party/Matcha-TTS/matcha/utils/__init__.py +5 -0
- third_party/Matcha-TTS/matcha/utils/instantiators.py +56 -0
- third_party/Matcha-TTS/matcha/utils/model.py +90 -0
- third_party/Matcha-TTS/matcha/utils/monotonic_align/setup.py +7 -0
- third_party/Matcha-TTS/matcha/utils/rich_utils.py +101 -0
- third_party/Matcha-TTS/matcha/utils/utils.py +219 -0
third_party/Matcha-TTS/configs/logger/csv.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# csv logger built in lightning
|
2 |
+
|
3 |
+
csv:
|
4 |
+
_target_: lightning.pytorch.loggers.csv_logs.CSVLogger
|
5 |
+
save_dir: "${paths.output_dir}"
|
6 |
+
name: "csv/"
|
7 |
+
prefix: ""
|
third_party/Matcha-TTS/configs/trainer/default.yaml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_target_: lightning.pytorch.trainer.Trainer
|
2 |
+
|
3 |
+
default_root_dir: ${paths.output_dir}
|
4 |
+
|
5 |
+
max_epochs: -1
|
6 |
+
|
7 |
+
accelerator: gpu
|
8 |
+
devices: [0]
|
9 |
+
|
10 |
+
# mixed precision for extra speed-up
|
11 |
+
precision: 16-mixed
|
12 |
+
|
13 |
+
# perform a validation loop every N training epochs
|
14 |
+
check_val_every_n_epoch: 1
|
15 |
+
|
16 |
+
# set True to to ensure deterministic results
|
17 |
+
# makes training slower but gives more reproducibility than just setting seeds
|
18 |
+
deterministic: False
|
19 |
+
|
20 |
+
gradient_clip_val: 5.0
|
third_party/Matcha-TTS/matcha/app.py
ADDED
@@ -0,0 +1,357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tempfile
|
2 |
+
from argparse import Namespace
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import soundfile as sf
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from matcha.cli import (
|
10 |
+
MATCHA_URLS,
|
11 |
+
VOCODER_URLS,
|
12 |
+
assert_model_downloaded,
|
13 |
+
get_device,
|
14 |
+
load_matcha,
|
15 |
+
load_vocoder,
|
16 |
+
process_text,
|
17 |
+
to_waveform,
|
18 |
+
)
|
19 |
+
from matcha.utils.utils import get_user_data_dir, plot_tensor
|
20 |
+
|
21 |
+
LOCATION = Path(get_user_data_dir())
|
22 |
+
|
23 |
+
args = Namespace(
|
24 |
+
cpu=False,
|
25 |
+
model="matcha_vctk",
|
26 |
+
vocoder="hifigan_univ_v1",
|
27 |
+
spk=0,
|
28 |
+
)
|
29 |
+
|
30 |
+
CURRENTLY_LOADED_MODEL = args.model
|
31 |
+
|
32 |
+
|
33 |
+
def MATCHA_TTS_LOC(x):
|
34 |
+
return LOCATION / f"{x}.ckpt"
|
35 |
+
|
36 |
+
|
37 |
+
def VOCODER_LOC(x):
|
38 |
+
return LOCATION / f"{x}"
|
39 |
+
|
40 |
+
|
41 |
+
LOGO_URL = "https://shivammehta25.github.io/Matcha-TTS/images/logo.png"
|
42 |
+
RADIO_OPTIONS = {
|
43 |
+
"Multi Speaker (VCTK)": {
|
44 |
+
"model": "matcha_vctk",
|
45 |
+
"vocoder": "hifigan_univ_v1",
|
46 |
+
},
|
47 |
+
"Single Speaker (LJ Speech)": {
|
48 |
+
"model": "matcha_ljspeech",
|
49 |
+
"vocoder": "hifigan_T2_v1",
|
50 |
+
},
|
51 |
+
}
|
52 |
+
|
53 |
+
# Ensure all the required models are downloaded
|
54 |
+
assert_model_downloaded(MATCHA_TTS_LOC("matcha_ljspeech"), MATCHA_URLS["matcha_ljspeech"])
|
55 |
+
assert_model_downloaded(VOCODER_LOC("hifigan_T2_v1"), VOCODER_URLS["hifigan_T2_v1"])
|
56 |
+
assert_model_downloaded(MATCHA_TTS_LOC("matcha_vctk"), MATCHA_URLS["matcha_vctk"])
|
57 |
+
assert_model_downloaded(VOCODER_LOC("hifigan_univ_v1"), VOCODER_URLS["hifigan_univ_v1"])
|
58 |
+
|
59 |
+
device = get_device(args)
|
60 |
+
|
61 |
+
# Load default model
|
62 |
+
model = load_matcha(args.model, MATCHA_TTS_LOC(args.model), device)
|
63 |
+
vocoder, denoiser = load_vocoder(args.vocoder, VOCODER_LOC(args.vocoder), device)
|
64 |
+
|
65 |
+
|
66 |
+
def load_model(model_name, vocoder_name):
|
67 |
+
model = load_matcha(model_name, MATCHA_TTS_LOC(model_name), device)
|
68 |
+
vocoder, denoiser = load_vocoder(vocoder_name, VOCODER_LOC(vocoder_name), device)
|
69 |
+
return model, vocoder, denoiser
|
70 |
+
|
71 |
+
|
72 |
+
def load_model_ui(model_type, textbox):
|
73 |
+
model_name, vocoder_name = RADIO_OPTIONS[model_type]["model"], RADIO_OPTIONS[model_type]["vocoder"]
|
74 |
+
|
75 |
+
global model, vocoder, denoiser, CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
|
76 |
+
if CURRENTLY_LOADED_MODEL != model_name:
|
77 |
+
model, vocoder, denoiser = load_model(model_name, vocoder_name)
|
78 |
+
CURRENTLY_LOADED_MODEL = model_name
|
79 |
+
|
80 |
+
if model_name == "matcha_ljspeech":
|
81 |
+
spk_slider = gr.update(visible=False, value=-1)
|
82 |
+
single_speaker_examples = gr.update(visible=True)
|
83 |
+
multi_speaker_examples = gr.update(visible=False)
|
84 |
+
length_scale = gr.update(value=0.95)
|
85 |
+
else:
|
86 |
+
spk_slider = gr.update(visible=True, value=0)
|
87 |
+
single_speaker_examples = gr.update(visible=False)
|
88 |
+
multi_speaker_examples = gr.update(visible=True)
|
89 |
+
length_scale = gr.update(value=0.85)
|
90 |
+
|
91 |
+
return (
|
92 |
+
textbox,
|
93 |
+
gr.update(interactive=True),
|
94 |
+
spk_slider,
|
95 |
+
single_speaker_examples,
|
96 |
+
multi_speaker_examples,
|
97 |
+
length_scale,
|
98 |
+
)
|
99 |
+
|
100 |
+
|
101 |
+
@torch.inference_mode()
|
102 |
+
def process_text_gradio(text):
|
103 |
+
output = process_text(1, text, device)
|
104 |
+
return output["x_phones"][1::2], output["x"], output["x_lengths"]
|
105 |
+
|
106 |
+
|
107 |
+
@torch.inference_mode()
|
108 |
+
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale, spk):
|
109 |
+
spk = torch.tensor([spk], device=device, dtype=torch.long) if spk >= 0 else None
|
110 |
+
output = model.synthesise(
|
111 |
+
text,
|
112 |
+
text_length,
|
113 |
+
n_timesteps=n_timesteps,
|
114 |
+
temperature=temperature,
|
115 |
+
spks=spk,
|
116 |
+
length_scale=length_scale,
|
117 |
+
)
|
118 |
+
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
|
119 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
|
120 |
+
sf.write(fp.name, output["waveform"], 22050, "PCM_24")
|
121 |
+
|
122 |
+
return fp.name, plot_tensor(output["mel"].squeeze().cpu().numpy())
|
123 |
+
|
124 |
+
|
125 |
+
def multispeaker_example_cacher(text, n_timesteps, mel_temp, length_scale, spk):
|
126 |
+
global CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
|
127 |
+
if CURRENTLY_LOADED_MODEL != "matcha_vctk":
|
128 |
+
global model, vocoder, denoiser # pylint: disable=global-statement
|
129 |
+
model, vocoder, denoiser = load_model("matcha_vctk", "hifigan_univ_v1")
|
130 |
+
CURRENTLY_LOADED_MODEL = "matcha_vctk"
|
131 |
+
|
132 |
+
phones, text, text_lengths = process_text_gradio(text)
|
133 |
+
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
|
134 |
+
return phones, audio, mel_spectrogram
|
135 |
+
|
136 |
+
|
137 |
+
def ljspeech_example_cacher(text, n_timesteps, mel_temp, length_scale, spk=-1):
|
138 |
+
global CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
|
139 |
+
if CURRENTLY_LOADED_MODEL != "matcha_ljspeech":
|
140 |
+
global model, vocoder, denoiser # pylint: disable=global-statement
|
141 |
+
model, vocoder, denoiser = load_model("matcha_ljspeech", "hifigan_T2_v1")
|
142 |
+
CURRENTLY_LOADED_MODEL = "matcha_ljspeech"
|
143 |
+
|
144 |
+
phones, text, text_lengths = process_text_gradio(text)
|
145 |
+
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
|
146 |
+
return phones, audio, mel_spectrogram
|
147 |
+
|
148 |
+
|
149 |
+
def main():
|
150 |
+
description = """# 🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching
|
151 |
+
### [Shivam Mehta](https://www.kth.se/profile/smehta), [Ruibo Tu](https://www.kth.se/profile/ruibo), [Jonas Beskow](https://www.kth.se/profile/beskow), [Éva Székely](https://www.kth.se/profile/szekely), and [Gustav Eje Henter](https://people.kth.se/~ghe/)
|
152 |
+
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up ODE-based speech synthesis. Our method:
|
153 |
+
|
154 |
+
|
155 |
+
* Is probabilistic
|
156 |
+
* Has compact memory footprint
|
157 |
+
* Sounds highly natural
|
158 |
+
* Is very fast to synthesise from
|
159 |
+
|
160 |
+
|
161 |
+
Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS). Read our [arXiv preprint for more details](https://arxiv.org/abs/2309.03199).
|
162 |
+
Code is available in our [GitHub repository](https://github.com/shivammehta25/Matcha-TTS), along with pre-trained models.
|
163 |
+
|
164 |
+
Cached examples are available at the bottom of the page.
|
165 |
+
"""
|
166 |
+
|
167 |
+
with gr.Blocks(title="🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching") as demo:
|
168 |
+
processed_text = gr.State(value=None)
|
169 |
+
processed_text_len = gr.State(value=None)
|
170 |
+
|
171 |
+
with gr.Box():
|
172 |
+
with gr.Row():
|
173 |
+
gr.Markdown(description, scale=3)
|
174 |
+
with gr.Column():
|
175 |
+
gr.Image(LOGO_URL, label="Matcha-TTS logo", height=50, width=50, scale=1, show_label=False)
|
176 |
+
html = '<br><iframe width="560" height="315" src="https://www.youtube.com/embed/xmvJkz3bqw0?si=jN7ILyDsbPwJCGoa" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>'
|
177 |
+
gr.HTML(html)
|
178 |
+
|
179 |
+
with gr.Box():
|
180 |
+
radio_options = list(RADIO_OPTIONS.keys())
|
181 |
+
model_type = gr.Radio(
|
182 |
+
radio_options, value=radio_options[0], label="Choose a Model", interactive=True, container=False
|
183 |
+
)
|
184 |
+
|
185 |
+
with gr.Row():
|
186 |
+
gr.Markdown("# Text Input")
|
187 |
+
with gr.Row():
|
188 |
+
text = gr.Textbox(value="", lines=2, label="Text to synthesise", scale=3)
|
189 |
+
spk_slider = gr.Slider(
|
190 |
+
minimum=0, maximum=107, step=1, value=args.spk, label="Speaker ID", interactive=True, scale=1
|
191 |
+
)
|
192 |
+
|
193 |
+
with gr.Row():
|
194 |
+
gr.Markdown("### Hyper parameters")
|
195 |
+
with gr.Row():
|
196 |
+
n_timesteps = gr.Slider(
|
197 |
+
label="Number of ODE steps",
|
198 |
+
minimum=1,
|
199 |
+
maximum=100,
|
200 |
+
step=1,
|
201 |
+
value=10,
|
202 |
+
interactive=True,
|
203 |
+
)
|
204 |
+
length_scale = gr.Slider(
|
205 |
+
label="Length scale (Speaking rate)",
|
206 |
+
minimum=0.5,
|
207 |
+
maximum=1.5,
|
208 |
+
step=0.05,
|
209 |
+
value=1.0,
|
210 |
+
interactive=True,
|
211 |
+
)
|
212 |
+
mel_temp = gr.Slider(
|
213 |
+
label="Sampling temperature",
|
214 |
+
minimum=0.00,
|
215 |
+
maximum=2.001,
|
216 |
+
step=0.16675,
|
217 |
+
value=0.667,
|
218 |
+
interactive=True,
|
219 |
+
)
|
220 |
+
|
221 |
+
synth_btn = gr.Button("Synthesise")
|
222 |
+
|
223 |
+
with gr.Box():
|
224 |
+
with gr.Row():
|
225 |
+
gr.Markdown("### Phonetised text")
|
226 |
+
phonetised_text = gr.Textbox(interactive=False, scale=10, label="Phonetised text")
|
227 |
+
|
228 |
+
with gr.Box():
|
229 |
+
with gr.Row():
|
230 |
+
mel_spectrogram = gr.Image(interactive=False, label="mel spectrogram")
|
231 |
+
|
232 |
+
# with gr.Row():
|
233 |
+
audio = gr.Audio(interactive=False, label="Audio")
|
234 |
+
|
235 |
+
with gr.Row(visible=False) as example_row_lj_speech:
|
236 |
+
examples = gr.Examples( # pylint: disable=unused-variable
|
237 |
+
examples=[
|
238 |
+
[
|
239 |
+
"We propose Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up O D E-based speech synthesis.",
|
240 |
+
50,
|
241 |
+
0.677,
|
242 |
+
0.95,
|
243 |
+
],
|
244 |
+
[
|
245 |
+
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
246 |
+
2,
|
247 |
+
0.677,
|
248 |
+
0.95,
|
249 |
+
],
|
250 |
+
[
|
251 |
+
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
252 |
+
4,
|
253 |
+
0.677,
|
254 |
+
0.95,
|
255 |
+
],
|
256 |
+
[
|
257 |
+
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
258 |
+
10,
|
259 |
+
0.677,
|
260 |
+
0.95,
|
261 |
+
],
|
262 |
+
[
|
263 |
+
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
264 |
+
50,
|
265 |
+
0.677,
|
266 |
+
0.95,
|
267 |
+
],
|
268 |
+
[
|
269 |
+
"The narrative of these events is based largely on the recollections of the participants.",
|
270 |
+
10,
|
271 |
+
0.677,
|
272 |
+
0.95,
|
273 |
+
],
|
274 |
+
[
|
275 |
+
"The jury did not believe him, and the verdict was for the defendants.",
|
276 |
+
10,
|
277 |
+
0.677,
|
278 |
+
0.95,
|
279 |
+
],
|
280 |
+
],
|
281 |
+
fn=ljspeech_example_cacher,
|
282 |
+
inputs=[text, n_timesteps, mel_temp, length_scale],
|
283 |
+
outputs=[phonetised_text, audio, mel_spectrogram],
|
284 |
+
cache_examples=True,
|
285 |
+
)
|
286 |
+
|
287 |
+
with gr.Row() as example_row_multispeaker:
|
288 |
+
multi_speaker_examples = gr.Examples( # pylint: disable=unused-variable
|
289 |
+
examples=[
|
290 |
+
[
|
291 |
+
"Hello everyone! I am speaker 0 and I am here to tell you that Matcha-TTS is amazing!",
|
292 |
+
10,
|
293 |
+
0.677,
|
294 |
+
0.85,
|
295 |
+
0,
|
296 |
+
],
|
297 |
+
[
|
298 |
+
"Hello everyone! I am speaker 16 and I am here to tell you that Matcha-TTS is amazing!",
|
299 |
+
10,
|
300 |
+
0.677,
|
301 |
+
0.85,
|
302 |
+
16,
|
303 |
+
],
|
304 |
+
[
|
305 |
+
"Hello everyone! I am speaker 44 and I am here to tell you that Matcha-TTS is amazing!",
|
306 |
+
50,
|
307 |
+
0.677,
|
308 |
+
0.85,
|
309 |
+
44,
|
310 |
+
],
|
311 |
+
[
|
312 |
+
"Hello everyone! I am speaker 45 and I am here to tell you that Matcha-TTS is amazing!",
|
313 |
+
50,
|
314 |
+
0.677,
|
315 |
+
0.85,
|
316 |
+
45,
|
317 |
+
],
|
318 |
+
[
|
319 |
+
"Hello everyone! I am speaker 58 and I am here to tell you that Matcha-TTS is amazing!",
|
320 |
+
4,
|
321 |
+
0.677,
|
322 |
+
0.85,
|
323 |
+
58,
|
324 |
+
],
|
325 |
+
],
|
326 |
+
fn=multispeaker_example_cacher,
|
327 |
+
inputs=[text, n_timesteps, mel_temp, length_scale, spk_slider],
|
328 |
+
outputs=[phonetised_text, audio, mel_spectrogram],
|
329 |
+
cache_examples=True,
|
330 |
+
label="Multi Speaker Examples",
|
331 |
+
)
|
332 |
+
|
333 |
+
model_type.change(lambda x: gr.update(interactive=False), inputs=[synth_btn], outputs=[synth_btn]).then(
|
334 |
+
load_model_ui,
|
335 |
+
inputs=[model_type, text],
|
336 |
+
outputs=[text, synth_btn, spk_slider, example_row_lj_speech, example_row_multispeaker, length_scale],
|
337 |
+
)
|
338 |
+
|
339 |
+
synth_btn.click(
|
340 |
+
fn=process_text_gradio,
|
341 |
+
inputs=[
|
342 |
+
text,
|
343 |
+
],
|
344 |
+
outputs=[phonetised_text, processed_text, processed_text_len],
|
345 |
+
api_name="matcha_tts",
|
346 |
+
queue=True,
|
347 |
+
).then(
|
348 |
+
fn=synthesise_mel,
|
349 |
+
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale, spk_slider],
|
350 |
+
outputs=[audio, mel_spectrogram],
|
351 |
+
)
|
352 |
+
|
353 |
+
demo.queue().launch(share=True)
|
354 |
+
|
355 |
+
|
356 |
+
if __name__ == "__main__":
|
357 |
+
main()
|
third_party/Matcha-TTS/matcha/hifigan/README.md
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis
|
2 |
+
|
3 |
+
### Jungil Kong, Jaehyeon Kim, Jaekyoung Bae
|
4 |
+
|
5 |
+
In our [paper](https://arxiv.org/abs/2010.05646),
|
6 |
+
we proposed HiFi-GAN: a GAN-based model capable of generating high fidelity speech efficiently.<br/>
|
7 |
+
We provide our implementation and pretrained models as open source in this repository.
|
8 |
+
|
9 |
+
**Abstract :**
|
10 |
+
Several recent work on speech synthesis have employed generative adversarial networks (GANs) to produce raw waveforms.
|
11 |
+
Although such methods improve the sampling efficiency and memory usage,
|
12 |
+
their sample quality has not yet reached that of autoregressive and flow-based generative models.
|
13 |
+
In this work, we propose HiFi-GAN, which achieves both efficient and high-fidelity speech synthesis.
|
14 |
+
As speech audio consists of sinusoidal signals with various periods,
|
15 |
+
we demonstrate that modeling periodic patterns of an audio is crucial for enhancing sample quality.
|
16 |
+
A subjective human evaluation (mean opinion score, MOS) of a single speaker dataset indicates that our proposed method
|
17 |
+
demonstrates similarity to human quality while generating 22.05 kHz high-fidelity audio 167.9 times faster than
|
18 |
+
real-time on a single V100 GPU. We further show the generality of HiFi-GAN to the mel-spectrogram inversion of unseen
|
19 |
+
speakers and end-to-end speech synthesis. Finally, a small footprint version of HiFi-GAN generates samples 13.4 times
|
20 |
+
faster than real-time on CPU with comparable quality to an autoregressive counterpart.
|
21 |
+
|
22 |
+
Visit our [demo website](https://jik876.github.io/hifi-gan-demo/) for audio samples.
|
23 |
+
|
24 |
+
## Pre-requisites
|
25 |
+
|
26 |
+
1. Python >= 3.6
|
27 |
+
2. Clone this repository.
|
28 |
+
3. Install python requirements. Please refer [requirements.txt](requirements.txt)
|
29 |
+
4. Download and extract the [LJ Speech dataset](https://keithito.com/LJ-Speech-Dataset/).
|
30 |
+
And move all wav files to `LJSpeech-1.1/wavs`
|
31 |
+
|
32 |
+
## Training
|
33 |
+
|
34 |
+
```
|
35 |
+
python train.py --config config_v1.json
|
36 |
+
```
|
37 |
+
|
38 |
+
To train V2 or V3 Generator, replace `config_v1.json` with `config_v2.json` or `config_v3.json`.<br>
|
39 |
+
Checkpoints and copy of the configuration file are saved in `cp_hifigan` directory by default.<br>
|
40 |
+
You can change the path by adding `--checkpoint_path` option.
|
41 |
+
|
42 |
+
Validation loss during training with V1 generator.<br>
|
43 |
+

|
44 |
+
|
45 |
+
## Pretrained Model
|
46 |
+
|
47 |
+
You can also use pretrained models we provide.<br/>
|
48 |
+
[Download pretrained models](https://drive.google.com/drive/folders/1-eEYTB5Av9jNql0WGBlRoi-WH2J7bp5Y?usp=sharing)<br/>
|
49 |
+
Details of each folder are as in follows:
|
50 |
+
|
51 |
+
| Folder Name | Generator | Dataset | Fine-Tuned |
|
52 |
+
| ------------ | --------- | --------- | ------------------------------------------------------ |
|
53 |
+
| LJ_V1 | V1 | LJSpeech | No |
|
54 |
+
| LJ_V2 | V2 | LJSpeech | No |
|
55 |
+
| LJ_V3 | V3 | LJSpeech | No |
|
56 |
+
| LJ_FT_T2_V1 | V1 | LJSpeech | Yes ([Tacotron2](https://github.com/NVIDIA/tacotron2)) |
|
57 |
+
| LJ_FT_T2_V2 | V2 | LJSpeech | Yes ([Tacotron2](https://github.com/NVIDIA/tacotron2)) |
|
58 |
+
| LJ_FT_T2_V3 | V3 | LJSpeech | Yes ([Tacotron2](https://github.com/NVIDIA/tacotron2)) |
|
59 |
+
| VCTK_V1 | V1 | VCTK | No |
|
60 |
+
| VCTK_V2 | V2 | VCTK | No |
|
61 |
+
| VCTK_V3 | V3 | VCTK | No |
|
62 |
+
| UNIVERSAL_V1 | V1 | Universal | No |
|
63 |
+
|
64 |
+
We provide the universal model with discriminator weights that can be used as a base for transfer learning to other datasets.
|
65 |
+
|
66 |
+
## Fine-Tuning
|
67 |
+
|
68 |
+
1. Generate mel-spectrograms in numpy format using [Tacotron2](https://github.com/NVIDIA/tacotron2) with teacher-forcing.<br/>
|
69 |
+
The file name of the generated mel-spectrogram should match the audio file and the extension should be `.npy`.<br/>
|
70 |
+
Example:
|
71 |
+
` Audio File : LJ001-0001.wav
|
72 |
+
Mel-Spectrogram File : LJ001-0001.npy`
|
73 |
+
2. Create `ft_dataset` folder and copy the generated mel-spectrogram files into it.<br/>
|
74 |
+
3. Run the following command.
|
75 |
+
```
|
76 |
+
python train.py --fine_tuning True --config config_v1.json
|
77 |
+
```
|
78 |
+
For other command line options, please refer to the training section.
|
79 |
+
|
80 |
+
## Inference from wav file
|
81 |
+
|
82 |
+
1. Make `test_files` directory and copy wav files into the directory.
|
83 |
+
2. Run the following command.
|
84 |
+
` python inference.py --checkpoint_file [generator checkpoint file path]`
|
85 |
+
Generated wav files are saved in `generated_files` by default.<br>
|
86 |
+
You can change the path by adding `--output_dir` option.
|
87 |
+
|
88 |
+
## Inference for end-to-end speech synthesis
|
89 |
+
|
90 |
+
1. Make `test_mel_files` directory and copy generated mel-spectrogram files into the directory.<br>
|
91 |
+
You can generate mel-spectrograms using [Tacotron2](https://github.com/NVIDIA/tacotron2),
|
92 |
+
[Glow-TTS](https://github.com/jaywalnut310/glow-tts) and so forth.
|
93 |
+
2. Run the following command.
|
94 |
+
` python inference_e2e.py --checkpoint_file [generator checkpoint file path]`
|
95 |
+
Generated wav files are saved in `generated_files_from_mel` by default.<br>
|
96 |
+
You can change the path by adding `--output_dir` option.
|
97 |
+
|
98 |
+
## Acknowledgements
|
99 |
+
|
100 |
+
We referred to [WaveGlow](https://github.com/NVIDIA/waveglow), [MelGAN](https://github.com/descriptinc/melgan-neurips)
|
101 |
+
and [Tacotron2](https://github.com/NVIDIA/tacotron2) to implement this.
|
third_party/Matcha-TTS/matcha/hifigan/__init__.py
ADDED
File without changes
|
third_party/Matcha-TTS/matcha/hifigan/config.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
v1 = {
|
2 |
+
"resblock": "1",
|
3 |
+
"num_gpus": 0,
|
4 |
+
"batch_size": 16,
|
5 |
+
"learning_rate": 0.0004,
|
6 |
+
"adam_b1": 0.8,
|
7 |
+
"adam_b2": 0.99,
|
8 |
+
"lr_decay": 0.999,
|
9 |
+
"seed": 1234,
|
10 |
+
"upsample_rates": [8, 8, 2, 2],
|
11 |
+
"upsample_kernel_sizes": [16, 16, 4, 4],
|
12 |
+
"upsample_initial_channel": 512,
|
13 |
+
"resblock_kernel_sizes": [3, 7, 11],
|
14 |
+
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
15 |
+
"resblock_initial_channel": 256,
|
16 |
+
"segment_size": 8192,
|
17 |
+
"num_mels": 80,
|
18 |
+
"num_freq": 1025,
|
19 |
+
"n_fft": 1024,
|
20 |
+
"hop_size": 256,
|
21 |
+
"win_size": 1024,
|
22 |
+
"sampling_rate": 22050,
|
23 |
+
"fmin": 0,
|
24 |
+
"fmax": 8000,
|
25 |
+
"fmax_loss": None,
|
26 |
+
"num_workers": 4,
|
27 |
+
"dist_config": {"dist_backend": "nccl", "dist_url": "tcp://localhost:54321", "world_size": 1},
|
28 |
+
}
|
third_party/Matcha-TTS/matcha/hifigan/denoiser.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Code modified from Rafael Valle's implementation https://github.com/NVIDIA/waveglow/blob/5bc2a53e20b3b533362f974cfa1ea0267ae1c2b1/denoiser.py
|
2 |
+
|
3 |
+
"""Waveglow style denoiser can be used to remove the artifacts from the HiFiGAN generated audio."""
|
4 |
+
import torch
|
5 |
+
|
6 |
+
|
7 |
+
class Denoiser(torch.nn.Module):
|
8 |
+
"""Removes model bias from audio produced with waveglow"""
|
9 |
+
|
10 |
+
def __init__(self, vocoder, filter_length=1024, n_overlap=4, win_length=1024, mode="zeros"):
|
11 |
+
super().__init__()
|
12 |
+
self.filter_length = filter_length
|
13 |
+
self.hop_length = int(filter_length / n_overlap)
|
14 |
+
self.win_length = win_length
|
15 |
+
|
16 |
+
dtype, device = next(vocoder.parameters()).dtype, next(vocoder.parameters()).device
|
17 |
+
self.device = device
|
18 |
+
if mode == "zeros":
|
19 |
+
mel_input = torch.zeros((1, 80, 88), dtype=dtype, device=device)
|
20 |
+
elif mode == "normal":
|
21 |
+
mel_input = torch.randn((1, 80, 88), dtype=dtype, device=device)
|
22 |
+
else:
|
23 |
+
raise Exception(f"Mode {mode} if not supported")
|
24 |
+
|
25 |
+
def stft_fn(audio, n_fft, hop_length, win_length, window):
|
26 |
+
spec = torch.stft(
|
27 |
+
audio,
|
28 |
+
n_fft=n_fft,
|
29 |
+
hop_length=hop_length,
|
30 |
+
win_length=win_length,
|
31 |
+
window=window,
|
32 |
+
return_complex=True,
|
33 |
+
)
|
34 |
+
spec = torch.view_as_real(spec)
|
35 |
+
return torch.sqrt(spec.pow(2).sum(-1)), torch.atan2(spec[..., -1], spec[..., 0])
|
36 |
+
|
37 |
+
self.stft = lambda x: stft_fn(
|
38 |
+
audio=x,
|
39 |
+
n_fft=self.filter_length,
|
40 |
+
hop_length=self.hop_length,
|
41 |
+
win_length=self.win_length,
|
42 |
+
window=torch.hann_window(self.win_length, device=device),
|
43 |
+
)
|
44 |
+
self.istft = lambda x, y: torch.istft(
|
45 |
+
torch.complex(x * torch.cos(y), x * torch.sin(y)),
|
46 |
+
n_fft=self.filter_length,
|
47 |
+
hop_length=self.hop_length,
|
48 |
+
win_length=self.win_length,
|
49 |
+
window=torch.hann_window(self.win_length, device=device),
|
50 |
+
)
|
51 |
+
|
52 |
+
with torch.no_grad():
|
53 |
+
bias_audio = vocoder(mel_input).float().squeeze(0)
|
54 |
+
bias_spec, _ = self.stft(bias_audio)
|
55 |
+
|
56 |
+
self.register_buffer("bias_spec", bias_spec[:, :, 0][:, :, None])
|
57 |
+
|
58 |
+
@torch.inference_mode()
|
59 |
+
def forward(self, audio, strength=0.0005):
|
60 |
+
audio_spec, audio_angles = self.stft(audio)
|
61 |
+
audio_spec_denoised = audio_spec - self.bias_spec.to(audio.device) * strength
|
62 |
+
audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0)
|
63 |
+
audio_denoised = self.istft(audio_spec_denoised, audio_angles)
|
64 |
+
return audio_denoised
|
third_party/Matcha-TTS/matcha/hifigan/env.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/jik876/hifi-gan """
|
2 |
+
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
|
6 |
+
|
7 |
+
class AttrDict(dict):
|
8 |
+
def __init__(self, *args, **kwargs):
|
9 |
+
super().__init__(*args, **kwargs)
|
10 |
+
self.__dict__ = self
|
11 |
+
|
12 |
+
|
13 |
+
def build_env(config, config_name, path):
|
14 |
+
t_path = os.path.join(path, config_name)
|
15 |
+
if config != t_path:
|
16 |
+
os.makedirs(path, exist_ok=True)
|
17 |
+
shutil.copyfile(config, os.path.join(path, config_name))
|
third_party/Matcha-TTS/matcha/hifigan/models.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/jik876/hifi-gan """
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
|
7 |
+
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
8 |
+
|
9 |
+
from .xutils import get_padding, init_weights
|
10 |
+
|
11 |
+
LRELU_SLOPE = 0.1
|
12 |
+
|
13 |
+
|
14 |
+
class ResBlock1(torch.nn.Module):
|
15 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
|
16 |
+
super().__init__()
|
17 |
+
self.h = h
|
18 |
+
self.convs1 = nn.ModuleList(
|
19 |
+
[
|
20 |
+
weight_norm(
|
21 |
+
Conv1d(
|
22 |
+
channels,
|
23 |
+
channels,
|
24 |
+
kernel_size,
|
25 |
+
1,
|
26 |
+
dilation=dilation[0],
|
27 |
+
padding=get_padding(kernel_size, dilation[0]),
|
28 |
+
)
|
29 |
+
),
|
30 |
+
weight_norm(
|
31 |
+
Conv1d(
|
32 |
+
channels,
|
33 |
+
channels,
|
34 |
+
kernel_size,
|
35 |
+
1,
|
36 |
+
dilation=dilation[1],
|
37 |
+
padding=get_padding(kernel_size, dilation[1]),
|
38 |
+
)
|
39 |
+
),
|
40 |
+
weight_norm(
|
41 |
+
Conv1d(
|
42 |
+
channels,
|
43 |
+
channels,
|
44 |
+
kernel_size,
|
45 |
+
1,
|
46 |
+
dilation=dilation[2],
|
47 |
+
padding=get_padding(kernel_size, dilation[2]),
|
48 |
+
)
|
49 |
+
),
|
50 |
+
]
|
51 |
+
)
|
52 |
+
self.convs1.apply(init_weights)
|
53 |
+
|
54 |
+
self.convs2 = nn.ModuleList(
|
55 |
+
[
|
56 |
+
weight_norm(
|
57 |
+
Conv1d(
|
58 |
+
channels,
|
59 |
+
channels,
|
60 |
+
kernel_size,
|
61 |
+
1,
|
62 |
+
dilation=1,
|
63 |
+
padding=get_padding(kernel_size, 1),
|
64 |
+
)
|
65 |
+
),
|
66 |
+
weight_norm(
|
67 |
+
Conv1d(
|
68 |
+
channels,
|
69 |
+
channels,
|
70 |
+
kernel_size,
|
71 |
+
1,
|
72 |
+
dilation=1,
|
73 |
+
padding=get_padding(kernel_size, 1),
|
74 |
+
)
|
75 |
+
),
|
76 |
+
weight_norm(
|
77 |
+
Conv1d(
|
78 |
+
channels,
|
79 |
+
channels,
|
80 |
+
kernel_size,
|
81 |
+
1,
|
82 |
+
dilation=1,
|
83 |
+
padding=get_padding(kernel_size, 1),
|
84 |
+
)
|
85 |
+
),
|
86 |
+
]
|
87 |
+
)
|
88 |
+
self.convs2.apply(init_weights)
|
89 |
+
|
90 |
+
def forward(self, x):
|
91 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
92 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
93 |
+
xt = c1(xt)
|
94 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
95 |
+
xt = c2(xt)
|
96 |
+
x = xt + x
|
97 |
+
return x
|
98 |
+
|
99 |
+
def remove_weight_norm(self):
|
100 |
+
for l in self.convs1:
|
101 |
+
remove_weight_norm(l)
|
102 |
+
for l in self.convs2:
|
103 |
+
remove_weight_norm(l)
|
104 |
+
|
105 |
+
|
106 |
+
class ResBlock2(torch.nn.Module):
|
107 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
|
108 |
+
super().__init__()
|
109 |
+
self.h = h
|
110 |
+
self.convs = nn.ModuleList(
|
111 |
+
[
|
112 |
+
weight_norm(
|
113 |
+
Conv1d(
|
114 |
+
channels,
|
115 |
+
channels,
|
116 |
+
kernel_size,
|
117 |
+
1,
|
118 |
+
dilation=dilation[0],
|
119 |
+
padding=get_padding(kernel_size, dilation[0]),
|
120 |
+
)
|
121 |
+
),
|
122 |
+
weight_norm(
|
123 |
+
Conv1d(
|
124 |
+
channels,
|
125 |
+
channels,
|
126 |
+
kernel_size,
|
127 |
+
1,
|
128 |
+
dilation=dilation[1],
|
129 |
+
padding=get_padding(kernel_size, dilation[1]),
|
130 |
+
)
|
131 |
+
),
|
132 |
+
]
|
133 |
+
)
|
134 |
+
self.convs.apply(init_weights)
|
135 |
+
|
136 |
+
def forward(self, x):
|
137 |
+
for c in self.convs:
|
138 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
139 |
+
xt = c(xt)
|
140 |
+
x = xt + x
|
141 |
+
return x
|
142 |
+
|
143 |
+
def remove_weight_norm(self):
|
144 |
+
for l in self.convs:
|
145 |
+
remove_weight_norm(l)
|
146 |
+
|
147 |
+
|
148 |
+
class Generator(torch.nn.Module):
|
149 |
+
def __init__(self, h):
|
150 |
+
super().__init__()
|
151 |
+
self.h = h
|
152 |
+
self.num_kernels = len(h.resblock_kernel_sizes)
|
153 |
+
self.num_upsamples = len(h.upsample_rates)
|
154 |
+
self.conv_pre = weight_norm(Conv1d(80, h.upsample_initial_channel, 7, 1, padding=3))
|
155 |
+
resblock = ResBlock1 if h.resblock == "1" else ResBlock2
|
156 |
+
|
157 |
+
self.ups = nn.ModuleList()
|
158 |
+
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
159 |
+
self.ups.append(
|
160 |
+
weight_norm(
|
161 |
+
ConvTranspose1d(
|
162 |
+
h.upsample_initial_channel // (2**i),
|
163 |
+
h.upsample_initial_channel // (2 ** (i + 1)),
|
164 |
+
k,
|
165 |
+
u,
|
166 |
+
padding=(k - u) // 2,
|
167 |
+
)
|
168 |
+
)
|
169 |
+
)
|
170 |
+
|
171 |
+
self.resblocks = nn.ModuleList()
|
172 |
+
for i in range(len(self.ups)):
|
173 |
+
ch = h.upsample_initial_channel // (2 ** (i + 1))
|
174 |
+
for _, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
|
175 |
+
self.resblocks.append(resblock(h, ch, k, d))
|
176 |
+
|
177 |
+
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
178 |
+
self.ups.apply(init_weights)
|
179 |
+
self.conv_post.apply(init_weights)
|
180 |
+
|
181 |
+
def forward(self, x):
|
182 |
+
x = self.conv_pre(x)
|
183 |
+
for i in range(self.num_upsamples):
|
184 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
185 |
+
x = self.ups[i](x)
|
186 |
+
xs = None
|
187 |
+
for j in range(self.num_kernels):
|
188 |
+
if xs is None:
|
189 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
190 |
+
else:
|
191 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
192 |
+
x = xs / self.num_kernels
|
193 |
+
x = F.leaky_relu(x)
|
194 |
+
x = self.conv_post(x)
|
195 |
+
x = torch.tanh(x)
|
196 |
+
|
197 |
+
return x
|
198 |
+
|
199 |
+
def remove_weight_norm(self):
|
200 |
+
print("Removing weight norm...")
|
201 |
+
for l in self.ups:
|
202 |
+
remove_weight_norm(l)
|
203 |
+
for l in self.resblocks:
|
204 |
+
l.remove_weight_norm()
|
205 |
+
remove_weight_norm(self.conv_pre)
|
206 |
+
remove_weight_norm(self.conv_post)
|
207 |
+
|
208 |
+
|
209 |
+
class DiscriminatorP(torch.nn.Module):
|
210 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
211 |
+
super().__init__()
|
212 |
+
self.period = period
|
213 |
+
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
214 |
+
self.convs = nn.ModuleList(
|
215 |
+
[
|
216 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
217 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
218 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
219 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
220 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
|
221 |
+
]
|
222 |
+
)
|
223 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
224 |
+
|
225 |
+
def forward(self, x):
|
226 |
+
fmap = []
|
227 |
+
|
228 |
+
# 1d to 2d
|
229 |
+
b, c, t = x.shape
|
230 |
+
if t % self.period != 0: # pad first
|
231 |
+
n_pad = self.period - (t % self.period)
|
232 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
233 |
+
t = t + n_pad
|
234 |
+
x = x.view(b, c, t // self.period, self.period)
|
235 |
+
|
236 |
+
for l in self.convs:
|
237 |
+
x = l(x)
|
238 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
239 |
+
fmap.append(x)
|
240 |
+
x = self.conv_post(x)
|
241 |
+
fmap.append(x)
|
242 |
+
x = torch.flatten(x, 1, -1)
|
243 |
+
|
244 |
+
return x, fmap
|
245 |
+
|
246 |
+
|
247 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
248 |
+
def __init__(self):
|
249 |
+
super().__init__()
|
250 |
+
self.discriminators = nn.ModuleList(
|
251 |
+
[
|
252 |
+
DiscriminatorP(2),
|
253 |
+
DiscriminatorP(3),
|
254 |
+
DiscriminatorP(5),
|
255 |
+
DiscriminatorP(7),
|
256 |
+
DiscriminatorP(11),
|
257 |
+
]
|
258 |
+
)
|
259 |
+
|
260 |
+
def forward(self, y, y_hat):
|
261 |
+
y_d_rs = []
|
262 |
+
y_d_gs = []
|
263 |
+
fmap_rs = []
|
264 |
+
fmap_gs = []
|
265 |
+
for _, d in enumerate(self.discriminators):
|
266 |
+
y_d_r, fmap_r = d(y)
|
267 |
+
y_d_g, fmap_g = d(y_hat)
|
268 |
+
y_d_rs.append(y_d_r)
|
269 |
+
fmap_rs.append(fmap_r)
|
270 |
+
y_d_gs.append(y_d_g)
|
271 |
+
fmap_gs.append(fmap_g)
|
272 |
+
|
273 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
274 |
+
|
275 |
+
|
276 |
+
class DiscriminatorS(torch.nn.Module):
|
277 |
+
def __init__(self, use_spectral_norm=False):
|
278 |
+
super().__init__()
|
279 |
+
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
280 |
+
self.convs = nn.ModuleList(
|
281 |
+
[
|
282 |
+
norm_f(Conv1d(1, 128, 15, 1, padding=7)),
|
283 |
+
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
|
284 |
+
norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)),
|
285 |
+
norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)),
|
286 |
+
norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
|
287 |
+
norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
|
288 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
289 |
+
]
|
290 |
+
)
|
291 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
292 |
+
|
293 |
+
def forward(self, x):
|
294 |
+
fmap = []
|
295 |
+
for l in self.convs:
|
296 |
+
x = l(x)
|
297 |
+
x = F.leaky_relu(x, LRELU_SLOPE)
|
298 |
+
fmap.append(x)
|
299 |
+
x = self.conv_post(x)
|
300 |
+
fmap.append(x)
|
301 |
+
x = torch.flatten(x, 1, -1)
|
302 |
+
|
303 |
+
return x, fmap
|
304 |
+
|
305 |
+
|
306 |
+
class MultiScaleDiscriminator(torch.nn.Module):
|
307 |
+
def __init__(self):
|
308 |
+
super().__init__()
|
309 |
+
self.discriminators = nn.ModuleList(
|
310 |
+
[
|
311 |
+
DiscriminatorS(use_spectral_norm=True),
|
312 |
+
DiscriminatorS(),
|
313 |
+
DiscriminatorS(),
|
314 |
+
]
|
315 |
+
)
|
316 |
+
self.meanpools = nn.ModuleList([AvgPool1d(4, 2, padding=2), AvgPool1d(4, 2, padding=2)])
|
317 |
+
|
318 |
+
def forward(self, y, y_hat):
|
319 |
+
y_d_rs = []
|
320 |
+
y_d_gs = []
|
321 |
+
fmap_rs = []
|
322 |
+
fmap_gs = []
|
323 |
+
for i, d in enumerate(self.discriminators):
|
324 |
+
if i != 0:
|
325 |
+
y = self.meanpools[i - 1](y)
|
326 |
+
y_hat = self.meanpools[i - 1](y_hat)
|
327 |
+
y_d_r, fmap_r = d(y)
|
328 |
+
y_d_g, fmap_g = d(y_hat)
|
329 |
+
y_d_rs.append(y_d_r)
|
330 |
+
fmap_rs.append(fmap_r)
|
331 |
+
y_d_gs.append(y_d_g)
|
332 |
+
fmap_gs.append(fmap_g)
|
333 |
+
|
334 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
335 |
+
|
336 |
+
|
337 |
+
def feature_loss(fmap_r, fmap_g):
|
338 |
+
loss = 0
|
339 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
340 |
+
for rl, gl in zip(dr, dg):
|
341 |
+
loss += torch.mean(torch.abs(rl - gl))
|
342 |
+
|
343 |
+
return loss * 2
|
344 |
+
|
345 |
+
|
346 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
347 |
+
loss = 0
|
348 |
+
r_losses = []
|
349 |
+
g_losses = []
|
350 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
351 |
+
r_loss = torch.mean((1 - dr) ** 2)
|
352 |
+
g_loss = torch.mean(dg**2)
|
353 |
+
loss += r_loss + g_loss
|
354 |
+
r_losses.append(r_loss.item())
|
355 |
+
g_losses.append(g_loss.item())
|
356 |
+
|
357 |
+
return loss, r_losses, g_losses
|
358 |
+
|
359 |
+
|
360 |
+
def generator_loss(disc_outputs):
|
361 |
+
loss = 0
|
362 |
+
gen_losses = []
|
363 |
+
for dg in disc_outputs:
|
364 |
+
l = torch.mean((1 - dg) ** 2)
|
365 |
+
gen_losses.append(l)
|
366 |
+
loss += l
|
367 |
+
|
368 |
+
return loss, gen_losses
|
third_party/Matcha-TTS/matcha/models/__init__.py
ADDED
File without changes
|
third_party/Matcha-TTS/matcha/models/baselightningmodule.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This is a base lightning module that can be used to train a model.
|
3 |
+
The benefit of this abstraction is that all the logic outside of model definition can be reused for different models.
|
4 |
+
"""
|
5 |
+
import inspect
|
6 |
+
from abc import ABC
|
7 |
+
from typing import Any, Dict
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from lightning import LightningModule
|
11 |
+
from lightning.pytorch.utilities import grad_norm
|
12 |
+
|
13 |
+
from matcha import utils
|
14 |
+
from matcha.utils.utils import plot_tensor
|
15 |
+
|
16 |
+
log = utils.get_pylogger(__name__)
|
17 |
+
|
18 |
+
|
19 |
+
class BaseLightningClass(LightningModule, ABC):
|
20 |
+
def update_data_statistics(self, data_statistics):
|
21 |
+
if data_statistics is None:
|
22 |
+
data_statistics = {
|
23 |
+
"mel_mean": 0.0,
|
24 |
+
"mel_std": 1.0,
|
25 |
+
}
|
26 |
+
|
27 |
+
self.register_buffer("mel_mean", torch.tensor(data_statistics["mel_mean"]))
|
28 |
+
self.register_buffer("mel_std", torch.tensor(data_statistics["mel_std"]))
|
29 |
+
|
30 |
+
def configure_optimizers(self) -> Any:
|
31 |
+
optimizer = self.hparams.optimizer(params=self.parameters())
|
32 |
+
if self.hparams.scheduler not in (None, {}):
|
33 |
+
scheduler_args = {}
|
34 |
+
# Manage last epoch for exponential schedulers
|
35 |
+
if "last_epoch" in inspect.signature(self.hparams.scheduler.scheduler).parameters:
|
36 |
+
if hasattr(self, "ckpt_loaded_epoch"):
|
37 |
+
current_epoch = self.ckpt_loaded_epoch - 1
|
38 |
+
else:
|
39 |
+
current_epoch = -1
|
40 |
+
|
41 |
+
scheduler_args.update({"optimizer": optimizer})
|
42 |
+
scheduler = self.hparams.scheduler.scheduler(**scheduler_args)
|
43 |
+
scheduler.last_epoch = current_epoch
|
44 |
+
return {
|
45 |
+
"optimizer": optimizer,
|
46 |
+
"lr_scheduler": {
|
47 |
+
"scheduler": scheduler,
|
48 |
+
"interval": self.hparams.scheduler.lightning_args.interval,
|
49 |
+
"frequency": self.hparams.scheduler.lightning_args.frequency,
|
50 |
+
"name": "learning_rate",
|
51 |
+
},
|
52 |
+
}
|
53 |
+
|
54 |
+
return {"optimizer": optimizer}
|
55 |
+
|
56 |
+
def get_losses(self, batch):
|
57 |
+
x, x_lengths = batch["x"], batch["x_lengths"]
|
58 |
+
y, y_lengths = batch["y"], batch["y_lengths"]
|
59 |
+
spks = batch["spks"]
|
60 |
+
|
61 |
+
dur_loss, prior_loss, diff_loss = self(
|
62 |
+
x=x,
|
63 |
+
x_lengths=x_lengths,
|
64 |
+
y=y,
|
65 |
+
y_lengths=y_lengths,
|
66 |
+
spks=spks,
|
67 |
+
out_size=self.out_size,
|
68 |
+
)
|
69 |
+
return {
|
70 |
+
"dur_loss": dur_loss,
|
71 |
+
"prior_loss": prior_loss,
|
72 |
+
"diff_loss": diff_loss,
|
73 |
+
}
|
74 |
+
|
75 |
+
def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
|
76 |
+
self.ckpt_loaded_epoch = checkpoint["epoch"] # pylint: disable=attribute-defined-outside-init
|
77 |
+
|
78 |
+
def training_step(self, batch: Any, batch_idx: int):
|
79 |
+
loss_dict = self.get_losses(batch)
|
80 |
+
self.log(
|
81 |
+
"step",
|
82 |
+
float(self.global_step),
|
83 |
+
on_step=True,
|
84 |
+
prog_bar=True,
|
85 |
+
logger=True,
|
86 |
+
sync_dist=True,
|
87 |
+
)
|
88 |
+
|
89 |
+
self.log(
|
90 |
+
"sub_loss/train_dur_loss",
|
91 |
+
loss_dict["dur_loss"],
|
92 |
+
on_step=True,
|
93 |
+
on_epoch=True,
|
94 |
+
logger=True,
|
95 |
+
sync_dist=True,
|
96 |
+
)
|
97 |
+
self.log(
|
98 |
+
"sub_loss/train_prior_loss",
|
99 |
+
loss_dict["prior_loss"],
|
100 |
+
on_step=True,
|
101 |
+
on_epoch=True,
|
102 |
+
logger=True,
|
103 |
+
sync_dist=True,
|
104 |
+
)
|
105 |
+
self.log(
|
106 |
+
"sub_loss/train_diff_loss",
|
107 |
+
loss_dict["diff_loss"],
|
108 |
+
on_step=True,
|
109 |
+
on_epoch=True,
|
110 |
+
logger=True,
|
111 |
+
sync_dist=True,
|
112 |
+
)
|
113 |
+
|
114 |
+
total_loss = sum(loss_dict.values())
|
115 |
+
self.log(
|
116 |
+
"loss/train",
|
117 |
+
total_loss,
|
118 |
+
on_step=True,
|
119 |
+
on_epoch=True,
|
120 |
+
logger=True,
|
121 |
+
prog_bar=True,
|
122 |
+
sync_dist=True,
|
123 |
+
)
|
124 |
+
|
125 |
+
return {"loss": total_loss, "log": loss_dict}
|
126 |
+
|
127 |
+
def validation_step(self, batch: Any, batch_idx: int):
|
128 |
+
loss_dict = self.get_losses(batch)
|
129 |
+
self.log(
|
130 |
+
"sub_loss/val_dur_loss",
|
131 |
+
loss_dict["dur_loss"],
|
132 |
+
on_step=True,
|
133 |
+
on_epoch=True,
|
134 |
+
logger=True,
|
135 |
+
sync_dist=True,
|
136 |
+
)
|
137 |
+
self.log(
|
138 |
+
"sub_loss/val_prior_loss",
|
139 |
+
loss_dict["prior_loss"],
|
140 |
+
on_step=True,
|
141 |
+
on_epoch=True,
|
142 |
+
logger=True,
|
143 |
+
sync_dist=True,
|
144 |
+
)
|
145 |
+
self.log(
|
146 |
+
"sub_loss/val_diff_loss",
|
147 |
+
loss_dict["diff_loss"],
|
148 |
+
on_step=True,
|
149 |
+
on_epoch=True,
|
150 |
+
logger=True,
|
151 |
+
sync_dist=True,
|
152 |
+
)
|
153 |
+
|
154 |
+
total_loss = sum(loss_dict.values())
|
155 |
+
self.log(
|
156 |
+
"loss/val",
|
157 |
+
total_loss,
|
158 |
+
on_step=True,
|
159 |
+
on_epoch=True,
|
160 |
+
logger=True,
|
161 |
+
prog_bar=True,
|
162 |
+
sync_dist=True,
|
163 |
+
)
|
164 |
+
|
165 |
+
return total_loss
|
166 |
+
|
167 |
+
def on_validation_end(self) -> None:
|
168 |
+
if self.trainer.is_global_zero:
|
169 |
+
one_batch = next(iter(self.trainer.val_dataloaders))
|
170 |
+
if self.current_epoch == 0:
|
171 |
+
log.debug("Plotting original samples")
|
172 |
+
for i in range(2):
|
173 |
+
y = one_batch["y"][i].unsqueeze(0).to(self.device)
|
174 |
+
self.logger.experiment.add_image(
|
175 |
+
f"original/{i}",
|
176 |
+
plot_tensor(y.squeeze().cpu()),
|
177 |
+
self.current_epoch,
|
178 |
+
dataformats="HWC",
|
179 |
+
)
|
180 |
+
|
181 |
+
log.debug("Synthesising...")
|
182 |
+
for i in range(2):
|
183 |
+
x = one_batch["x"][i].unsqueeze(0).to(self.device)
|
184 |
+
x_lengths = one_batch["x_lengths"][i].unsqueeze(0).to(self.device)
|
185 |
+
spks = one_batch["spks"][i].unsqueeze(0).to(self.device) if one_batch["spks"] is not None else None
|
186 |
+
output = self.synthesise(x[:, :x_lengths], x_lengths, n_timesteps=10, spks=spks)
|
187 |
+
y_enc, y_dec = output["encoder_outputs"], output["decoder_outputs"]
|
188 |
+
attn = output["attn"]
|
189 |
+
self.logger.experiment.add_image(
|
190 |
+
f"generated_enc/{i}",
|
191 |
+
plot_tensor(y_enc.squeeze().cpu()),
|
192 |
+
self.current_epoch,
|
193 |
+
dataformats="HWC",
|
194 |
+
)
|
195 |
+
self.logger.experiment.add_image(
|
196 |
+
f"generated_dec/{i}",
|
197 |
+
plot_tensor(y_dec.squeeze().cpu()),
|
198 |
+
self.current_epoch,
|
199 |
+
dataformats="HWC",
|
200 |
+
)
|
201 |
+
self.logger.experiment.add_image(
|
202 |
+
f"alignment/{i}",
|
203 |
+
plot_tensor(attn.squeeze().cpu()),
|
204 |
+
self.current_epoch,
|
205 |
+
dataformats="HWC",
|
206 |
+
)
|
207 |
+
|
208 |
+
def on_before_optimizer_step(self, optimizer):
|
209 |
+
self.log_dict({f"grad_norm/{k}": v for k, v in grad_norm(self, norm_type=2).items()})
|
third_party/Matcha-TTS/matcha/models/components/__init__.py
ADDED
File without changes
|
third_party/Matcha-TTS/matcha/models/components/flow_matching.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
from matcha.models.components.decoder import Decoder
|
7 |
+
from matcha.utils.pylogger import get_pylogger
|
8 |
+
|
9 |
+
log = get_pylogger(__name__)
|
10 |
+
|
11 |
+
|
12 |
+
class BASECFM(torch.nn.Module, ABC):
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
n_feats,
|
16 |
+
cfm_params,
|
17 |
+
n_spks=1,
|
18 |
+
spk_emb_dim=128,
|
19 |
+
):
|
20 |
+
super().__init__()
|
21 |
+
self.n_feats = n_feats
|
22 |
+
self.n_spks = n_spks
|
23 |
+
self.spk_emb_dim = spk_emb_dim
|
24 |
+
self.solver = cfm_params.solver
|
25 |
+
if hasattr(cfm_params, "sigma_min"):
|
26 |
+
self.sigma_min = cfm_params.sigma_min
|
27 |
+
else:
|
28 |
+
self.sigma_min = 1e-4
|
29 |
+
|
30 |
+
self.estimator = None
|
31 |
+
|
32 |
+
@torch.inference_mode()
|
33 |
+
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
34 |
+
"""Forward diffusion
|
35 |
+
|
36 |
+
Args:
|
37 |
+
mu (torch.Tensor): output of encoder
|
38 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
39 |
+
mask (torch.Tensor): output_mask
|
40 |
+
shape: (batch_size, 1, mel_timesteps)
|
41 |
+
n_timesteps (int): number of diffusion steps
|
42 |
+
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
43 |
+
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
44 |
+
shape: (batch_size, spk_emb_dim)
|
45 |
+
cond: Not used but kept for future purposes
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
sample: generated mel-spectrogram
|
49 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
50 |
+
"""
|
51 |
+
z = torch.randn_like(mu) * temperature
|
52 |
+
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
|
53 |
+
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
|
54 |
+
|
55 |
+
def solve_euler(self, x, t_span, mu, mask, spks, cond):
|
56 |
+
"""
|
57 |
+
Fixed euler solver for ODEs.
|
58 |
+
Args:
|
59 |
+
x (torch.Tensor): random noise
|
60 |
+
t_span (torch.Tensor): n_timesteps interpolated
|
61 |
+
shape: (n_timesteps + 1,)
|
62 |
+
mu (torch.Tensor): output of encoder
|
63 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
64 |
+
mask (torch.Tensor): output_mask
|
65 |
+
shape: (batch_size, 1, mel_timesteps)
|
66 |
+
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
67 |
+
shape: (batch_size, spk_emb_dim)
|
68 |
+
cond: Not used but kept for future purposes
|
69 |
+
"""
|
70 |
+
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
71 |
+
|
72 |
+
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
73 |
+
# Or in future might add like a return_all_steps flag
|
74 |
+
sol = []
|
75 |
+
|
76 |
+
for step in range(1, len(t_span)):
|
77 |
+
dphi_dt = self.estimator(x, mask, mu, t, spks, cond)
|
78 |
+
|
79 |
+
x = x + dt * dphi_dt
|
80 |
+
t = t + dt
|
81 |
+
sol.append(x)
|
82 |
+
if step < len(t_span) - 1:
|
83 |
+
dt = t_span[step + 1] - t
|
84 |
+
|
85 |
+
return sol[-1]
|
86 |
+
|
87 |
+
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
88 |
+
"""Computes diffusion loss
|
89 |
+
|
90 |
+
Args:
|
91 |
+
x1 (torch.Tensor): Target
|
92 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
93 |
+
mask (torch.Tensor): target mask
|
94 |
+
shape: (batch_size, 1, mel_timesteps)
|
95 |
+
mu (torch.Tensor): output of encoder
|
96 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
97 |
+
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
|
98 |
+
shape: (batch_size, spk_emb_dim)
|
99 |
+
|
100 |
+
Returns:
|
101 |
+
loss: conditional flow matching loss
|
102 |
+
y: conditional flow
|
103 |
+
shape: (batch_size, n_feats, mel_timesteps)
|
104 |
+
"""
|
105 |
+
b, _, t = mu.shape
|
106 |
+
|
107 |
+
# random timestep
|
108 |
+
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
|
109 |
+
# sample noise p(x_0)
|
110 |
+
z = torch.randn_like(x1)
|
111 |
+
|
112 |
+
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
|
113 |
+
u = x1 - (1 - self.sigma_min) * z
|
114 |
+
|
115 |
+
loss = F.mse_loss(self.estimator(y, mask, mu, t.squeeze(), spks), u, reduction="sum") / (
|
116 |
+
torch.sum(mask) * u.shape[1]
|
117 |
+
)
|
118 |
+
return loss, y
|
119 |
+
|
120 |
+
|
121 |
+
class CFM(BASECFM):
|
122 |
+
def __init__(self, in_channels, out_channel, cfm_params, decoder_params, n_spks=1, spk_emb_dim=64):
|
123 |
+
super().__init__(
|
124 |
+
n_feats=in_channels,
|
125 |
+
cfm_params=cfm_params,
|
126 |
+
n_spks=n_spks,
|
127 |
+
spk_emb_dim=spk_emb_dim,
|
128 |
+
)
|
129 |
+
|
130 |
+
in_channels = in_channels + (spk_emb_dim if n_spks > 1 else 0)
|
131 |
+
# Just change the architecture of the estimator here
|
132 |
+
self.estimator = Decoder(in_channels=in_channels, out_channels=out_channel, **decoder_params)
|
third_party/Matcha-TTS/matcha/models/matcha_tts.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime as dt
|
2 |
+
import math
|
3 |
+
import random
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
import matcha.utils.monotonic_align as monotonic_align
|
8 |
+
from matcha import utils
|
9 |
+
from matcha.models.baselightningmodule import BaseLightningClass
|
10 |
+
from matcha.models.components.flow_matching import CFM
|
11 |
+
from matcha.models.components.text_encoder import TextEncoder
|
12 |
+
from matcha.utils.model import (
|
13 |
+
denormalize,
|
14 |
+
duration_loss,
|
15 |
+
fix_len_compatibility,
|
16 |
+
generate_path,
|
17 |
+
sequence_mask,
|
18 |
+
)
|
19 |
+
|
20 |
+
log = utils.get_pylogger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
class MatchaTTS(BaseLightningClass): # 🍵
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
n_vocab,
|
27 |
+
n_spks,
|
28 |
+
spk_emb_dim,
|
29 |
+
n_feats,
|
30 |
+
encoder,
|
31 |
+
decoder,
|
32 |
+
cfm,
|
33 |
+
data_statistics,
|
34 |
+
out_size,
|
35 |
+
optimizer=None,
|
36 |
+
scheduler=None,
|
37 |
+
prior_loss=True,
|
38 |
+
):
|
39 |
+
super().__init__()
|
40 |
+
|
41 |
+
self.save_hyperparameters(logger=False)
|
42 |
+
|
43 |
+
self.n_vocab = n_vocab
|
44 |
+
self.n_spks = n_spks
|
45 |
+
self.spk_emb_dim = spk_emb_dim
|
46 |
+
self.n_feats = n_feats
|
47 |
+
self.out_size = out_size
|
48 |
+
self.prior_loss = prior_loss
|
49 |
+
|
50 |
+
if n_spks > 1:
|
51 |
+
self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim)
|
52 |
+
|
53 |
+
self.encoder = TextEncoder(
|
54 |
+
encoder.encoder_type,
|
55 |
+
encoder.encoder_params,
|
56 |
+
encoder.duration_predictor_params,
|
57 |
+
n_vocab,
|
58 |
+
n_spks,
|
59 |
+
spk_emb_dim,
|
60 |
+
)
|
61 |
+
|
62 |
+
self.decoder = CFM(
|
63 |
+
in_channels=2 * encoder.encoder_params.n_feats,
|
64 |
+
out_channel=encoder.encoder_params.n_feats,
|
65 |
+
cfm_params=cfm,
|
66 |
+
decoder_params=decoder,
|
67 |
+
n_spks=n_spks,
|
68 |
+
spk_emb_dim=spk_emb_dim,
|
69 |
+
)
|
70 |
+
|
71 |
+
self.update_data_statistics(data_statistics)
|
72 |
+
|
73 |
+
@torch.inference_mode()
|
74 |
+
def synthesise(self, x, x_lengths, n_timesteps, temperature=1.0, spks=None, length_scale=1.0):
|
75 |
+
"""
|
76 |
+
Generates mel-spectrogram from text. Returns:
|
77 |
+
1. encoder outputs
|
78 |
+
2. decoder outputs
|
79 |
+
3. generated alignment
|
80 |
+
|
81 |
+
Args:
|
82 |
+
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
|
83 |
+
shape: (batch_size, max_text_length)
|
84 |
+
x_lengths (torch.Tensor): lengths of texts in batch.
|
85 |
+
shape: (batch_size,)
|
86 |
+
n_timesteps (int): number of steps to use for reverse diffusion in decoder.
|
87 |
+
temperature (float, optional): controls variance of terminal distribution.
|
88 |
+
spks (bool, optional): speaker ids.
|
89 |
+
shape: (batch_size,)
|
90 |
+
length_scale (float, optional): controls speech pace.
|
91 |
+
Increase value to slow down generated speech and vice versa.
|
92 |
+
|
93 |
+
Returns:
|
94 |
+
dict: {
|
95 |
+
"encoder_outputs": torch.Tensor, shape: (batch_size, n_feats, max_mel_length),
|
96 |
+
# Average mel spectrogram generated by the encoder
|
97 |
+
"decoder_outputs": torch.Tensor, shape: (batch_size, n_feats, max_mel_length),
|
98 |
+
# Refined mel spectrogram improved by the CFM
|
99 |
+
"attn": torch.Tensor, shape: (batch_size, max_text_length, max_mel_length),
|
100 |
+
# Alignment map between text and mel spectrogram
|
101 |
+
"mel": torch.Tensor, shape: (batch_size, n_feats, max_mel_length),
|
102 |
+
# Denormalized mel spectrogram
|
103 |
+
"mel_lengths": torch.Tensor, shape: (batch_size,),
|
104 |
+
# Lengths of mel spectrograms
|
105 |
+
"rtf": float,
|
106 |
+
# Real-time factor
|
107 |
+
"""
|
108 |
+
# For RTF computation
|
109 |
+
t = dt.datetime.now()
|
110 |
+
|
111 |
+
if self.n_spks > 1:
|
112 |
+
# Get speaker embedding
|
113 |
+
spks = self.spk_emb(spks.long())
|
114 |
+
|
115 |
+
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
|
116 |
+
mu_x, logw, x_mask = self.encoder(x, x_lengths, spks)
|
117 |
+
|
118 |
+
w = torch.exp(logw) * x_mask
|
119 |
+
w_ceil = torch.ceil(w) * length_scale
|
120 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
121 |
+
y_max_length = y_lengths.max()
|
122 |
+
y_max_length_ = fix_len_compatibility(y_max_length)
|
123 |
+
|
124 |
+
# Using obtained durations `w` construct alignment map `attn`
|
125 |
+
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
|
126 |
+
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
|
127 |
+
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
|
128 |
+
|
129 |
+
# Align encoded text and get mu_y
|
130 |
+
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
|
131 |
+
mu_y = mu_y.transpose(1, 2)
|
132 |
+
encoder_outputs = mu_y[:, :, :y_max_length]
|
133 |
+
|
134 |
+
# Generate sample tracing the probability flow
|
135 |
+
decoder_outputs = self.decoder(mu_y, y_mask, n_timesteps, temperature, spks)
|
136 |
+
decoder_outputs = decoder_outputs[:, :, :y_max_length]
|
137 |
+
|
138 |
+
t = (dt.datetime.now() - t).total_seconds()
|
139 |
+
rtf = t * 22050 / (decoder_outputs.shape[-1] * 256)
|
140 |
+
|
141 |
+
return {
|
142 |
+
"encoder_outputs": encoder_outputs,
|
143 |
+
"decoder_outputs": decoder_outputs,
|
144 |
+
"attn": attn[:, :, :y_max_length],
|
145 |
+
"mel": denormalize(decoder_outputs, self.mel_mean, self.mel_std),
|
146 |
+
"mel_lengths": y_lengths,
|
147 |
+
"rtf": rtf,
|
148 |
+
}
|
149 |
+
|
150 |
+
def forward(self, x, x_lengths, y, y_lengths, spks=None, out_size=None, cond=None):
|
151 |
+
"""
|
152 |
+
Computes 3 losses:
|
153 |
+
1. duration loss: loss between predicted token durations and those extracted by Monotinic Alignment Search (MAS).
|
154 |
+
2. prior loss: loss between mel-spectrogram and encoder outputs.
|
155 |
+
3. flow matching loss: loss between mel-spectrogram and decoder outputs.
|
156 |
+
|
157 |
+
Args:
|
158 |
+
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
|
159 |
+
shape: (batch_size, max_text_length)
|
160 |
+
x_lengths (torch.Tensor): lengths of texts in batch.
|
161 |
+
shape: (batch_size,)
|
162 |
+
y (torch.Tensor): batch of corresponding mel-spectrograms.
|
163 |
+
shape: (batch_size, n_feats, max_mel_length)
|
164 |
+
y_lengths (torch.Tensor): lengths of mel-spectrograms in batch.
|
165 |
+
shape: (batch_size,)
|
166 |
+
out_size (int, optional): length (in mel's sampling rate) of segment to cut, on which decoder will be trained.
|
167 |
+
Should be divisible by 2^{num of UNet downsamplings}. Needed to increase batch size.
|
168 |
+
spks (torch.Tensor, optional): speaker ids.
|
169 |
+
shape: (batch_size,)
|
170 |
+
"""
|
171 |
+
if self.n_spks > 1:
|
172 |
+
# Get speaker embedding
|
173 |
+
spks = self.spk_emb(spks)
|
174 |
+
|
175 |
+
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
|
176 |
+
mu_x, logw, x_mask = self.encoder(x, x_lengths, spks)
|
177 |
+
y_max_length = y.shape[-1]
|
178 |
+
|
179 |
+
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask)
|
180 |
+
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
|
181 |
+
|
182 |
+
# Use MAS to find most likely alignment `attn` between text and mel-spectrogram
|
183 |
+
with torch.no_grad():
|
184 |
+
const = -0.5 * math.log(2 * math.pi) * self.n_feats
|
185 |
+
factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device)
|
186 |
+
y_square = torch.matmul(factor.transpose(1, 2), y**2)
|
187 |
+
y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y)
|
188 |
+
mu_square = torch.sum(factor * (mu_x**2), 1).unsqueeze(-1)
|
189 |
+
log_prior = y_square - y_mu_double + mu_square + const
|
190 |
+
|
191 |
+
attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1))
|
192 |
+
attn = attn.detach()
|
193 |
+
|
194 |
+
# Compute loss between predicted log-scaled durations and those obtained from MAS
|
195 |
+
# refered to as prior loss in the paper
|
196 |
+
logw_ = torch.log(1e-8 + torch.sum(attn.unsqueeze(1), -1)) * x_mask
|
197 |
+
dur_loss = duration_loss(logw, logw_, x_lengths)
|
198 |
+
|
199 |
+
# Cut a small segment of mel-spectrogram in order to increase batch size
|
200 |
+
# - "Hack" taken from Grad-TTS, in case of Grad-TTS, we cannot train batch size 32 on a 24GB GPU without it
|
201 |
+
# - Do not need this hack for Matcha-TTS, but it works with it as well
|
202 |
+
if not isinstance(out_size, type(None)):
|
203 |
+
max_offset = (y_lengths - out_size).clamp(0)
|
204 |
+
offset_ranges = list(zip([0] * max_offset.shape[0], max_offset.cpu().numpy()))
|
205 |
+
out_offset = torch.LongTensor(
|
206 |
+
[torch.tensor(random.choice(range(start, end)) if end > start else 0) for start, end in offset_ranges]
|
207 |
+
).to(y_lengths)
|
208 |
+
attn_cut = torch.zeros(attn.shape[0], attn.shape[1], out_size, dtype=attn.dtype, device=attn.device)
|
209 |
+
y_cut = torch.zeros(y.shape[0], self.n_feats, out_size, dtype=y.dtype, device=y.device)
|
210 |
+
|
211 |
+
y_cut_lengths = []
|
212 |
+
for i, (y_, out_offset_) in enumerate(zip(y, out_offset)):
|
213 |
+
y_cut_length = out_size + (y_lengths[i] - out_size).clamp(None, 0)
|
214 |
+
y_cut_lengths.append(y_cut_length)
|
215 |
+
cut_lower, cut_upper = out_offset_, out_offset_ + y_cut_length
|
216 |
+
y_cut[i, :, :y_cut_length] = y_[:, cut_lower:cut_upper]
|
217 |
+
attn_cut[i, :, :y_cut_length] = attn[i, :, cut_lower:cut_upper]
|
218 |
+
|
219 |
+
y_cut_lengths = torch.LongTensor(y_cut_lengths)
|
220 |
+
y_cut_mask = sequence_mask(y_cut_lengths).unsqueeze(1).to(y_mask)
|
221 |
+
|
222 |
+
attn = attn_cut
|
223 |
+
y = y_cut
|
224 |
+
y_mask = y_cut_mask
|
225 |
+
|
226 |
+
# Align encoded text with mel-spectrogram and get mu_y segment
|
227 |
+
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
|
228 |
+
mu_y = mu_y.transpose(1, 2)
|
229 |
+
|
230 |
+
# Compute loss of the decoder
|
231 |
+
diff_loss, _ = self.decoder.compute_loss(x1=y, mask=y_mask, mu=mu_y, spks=spks, cond=cond)
|
232 |
+
|
233 |
+
if self.prior_loss:
|
234 |
+
prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask)
|
235 |
+
prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats)
|
236 |
+
else:
|
237 |
+
prior_loss = 0
|
238 |
+
|
239 |
+
return dur_loss, prior_loss, diff_loss
|
third_party/Matcha-TTS/matcha/onnx/__init__.py
ADDED
File without changes
|
third_party/Matcha-TTS/matcha/onnx/export.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import random
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from lightning import LightningModule
|
8 |
+
|
9 |
+
from matcha.cli import VOCODER_URLS, load_matcha, load_vocoder
|
10 |
+
|
11 |
+
DEFAULT_OPSET = 15
|
12 |
+
|
13 |
+
SEED = 1234
|
14 |
+
random.seed(SEED)
|
15 |
+
np.random.seed(SEED)
|
16 |
+
torch.manual_seed(SEED)
|
17 |
+
torch.cuda.manual_seed(SEED)
|
18 |
+
torch.backends.cudnn.deterministic = True
|
19 |
+
torch.backends.cudnn.benchmark = False
|
20 |
+
|
21 |
+
|
22 |
+
class MatchaWithVocoder(LightningModule):
|
23 |
+
def __init__(self, matcha, vocoder):
|
24 |
+
super().__init__()
|
25 |
+
self.matcha = matcha
|
26 |
+
self.vocoder = vocoder
|
27 |
+
|
28 |
+
def forward(self, x, x_lengths, scales, spks=None):
|
29 |
+
mel, mel_lengths = self.matcha(x, x_lengths, scales, spks)
|
30 |
+
wavs = self.vocoder(mel).clamp(-1, 1)
|
31 |
+
lengths = mel_lengths * 256
|
32 |
+
return wavs.squeeze(1), lengths
|
33 |
+
|
34 |
+
|
35 |
+
def get_exportable_module(matcha, vocoder, n_timesteps):
|
36 |
+
"""
|
37 |
+
Return an appropriate `LighteningModule` and output-node names
|
38 |
+
based on whether the vocoder is embedded in the final graph
|
39 |
+
"""
|
40 |
+
|
41 |
+
def onnx_forward_func(x, x_lengths, scales, spks=None):
|
42 |
+
"""
|
43 |
+
Custom forward function for accepting
|
44 |
+
scaler parameters as tensors
|
45 |
+
"""
|
46 |
+
# Extract scaler parameters from tensors
|
47 |
+
temperature = scales[0]
|
48 |
+
length_scale = scales[1]
|
49 |
+
output = matcha.synthesise(x, x_lengths, n_timesteps, temperature, spks, length_scale)
|
50 |
+
return output["mel"], output["mel_lengths"]
|
51 |
+
|
52 |
+
# Monkey-patch Matcha's forward function
|
53 |
+
matcha.forward = onnx_forward_func
|
54 |
+
|
55 |
+
if vocoder is None:
|
56 |
+
model, output_names = matcha, ["mel", "mel_lengths"]
|
57 |
+
else:
|
58 |
+
model = MatchaWithVocoder(matcha, vocoder)
|
59 |
+
output_names = ["wav", "wav_lengths"]
|
60 |
+
return model, output_names
|
61 |
+
|
62 |
+
|
63 |
+
def get_inputs(is_multi_speaker):
|
64 |
+
"""
|
65 |
+
Create dummy inputs for tracing
|
66 |
+
"""
|
67 |
+
dummy_input_length = 50
|
68 |
+
x = torch.randint(low=0, high=20, size=(1, dummy_input_length), dtype=torch.long)
|
69 |
+
x_lengths = torch.LongTensor([dummy_input_length])
|
70 |
+
|
71 |
+
# Scales
|
72 |
+
temperature = 0.667
|
73 |
+
length_scale = 1.0
|
74 |
+
scales = torch.Tensor([temperature, length_scale])
|
75 |
+
|
76 |
+
model_inputs = [x, x_lengths, scales]
|
77 |
+
input_names = [
|
78 |
+
"x",
|
79 |
+
"x_lengths",
|
80 |
+
"scales",
|
81 |
+
]
|
82 |
+
|
83 |
+
if is_multi_speaker:
|
84 |
+
spks = torch.LongTensor([1])
|
85 |
+
model_inputs.append(spks)
|
86 |
+
input_names.append("spks")
|
87 |
+
|
88 |
+
return tuple(model_inputs), input_names
|
89 |
+
|
90 |
+
|
91 |
+
def main():
|
92 |
+
parser = argparse.ArgumentParser(description="Export 🍵 Matcha-TTS to ONNX")
|
93 |
+
|
94 |
+
parser.add_argument(
|
95 |
+
"checkpoint_path",
|
96 |
+
type=str,
|
97 |
+
help="Path to the model checkpoint",
|
98 |
+
)
|
99 |
+
parser.add_argument("output", type=str, help="Path to output `.onnx` file")
|
100 |
+
parser.add_argument(
|
101 |
+
"--n-timesteps", type=int, default=5, help="Number of steps to use for reverse diffusion in decoder (default 5)"
|
102 |
+
)
|
103 |
+
parser.add_argument(
|
104 |
+
"--vocoder-name",
|
105 |
+
type=str,
|
106 |
+
choices=list(VOCODER_URLS.keys()),
|
107 |
+
default=None,
|
108 |
+
help="Name of the vocoder to embed in the ONNX graph",
|
109 |
+
)
|
110 |
+
parser.add_argument(
|
111 |
+
"--vocoder-checkpoint-path",
|
112 |
+
type=str,
|
113 |
+
default=None,
|
114 |
+
help="Vocoder checkpoint to embed in the ONNX graph for an `e2e` like experience",
|
115 |
+
)
|
116 |
+
parser.add_argument("--opset", type=int, default=DEFAULT_OPSET, help="ONNX opset version to use (default 15")
|
117 |
+
|
118 |
+
args = parser.parse_args()
|
119 |
+
|
120 |
+
print(f"[🍵] Loading Matcha checkpoint from {args.checkpoint_path}")
|
121 |
+
print(f"Setting n_timesteps to {args.n_timesteps}")
|
122 |
+
|
123 |
+
checkpoint_path = Path(args.checkpoint_path)
|
124 |
+
matcha = load_matcha(checkpoint_path.stem, checkpoint_path, "cpu")
|
125 |
+
|
126 |
+
if args.vocoder_name or args.vocoder_checkpoint_path:
|
127 |
+
assert (
|
128 |
+
args.vocoder_name and args.vocoder_checkpoint_path
|
129 |
+
), "Both vocoder_name and vocoder-checkpoint are required when embedding the vocoder in the ONNX graph."
|
130 |
+
vocoder, _ = load_vocoder(args.vocoder_name, args.vocoder_checkpoint_path, "cpu")
|
131 |
+
else:
|
132 |
+
vocoder = None
|
133 |
+
|
134 |
+
is_multi_speaker = matcha.n_spks > 1
|
135 |
+
|
136 |
+
dummy_input, input_names = get_inputs(is_multi_speaker)
|
137 |
+
model, output_names = get_exportable_module(matcha, vocoder, args.n_timesteps)
|
138 |
+
|
139 |
+
# Set dynamic shape for inputs/outputs
|
140 |
+
dynamic_axes = {
|
141 |
+
"x": {0: "batch_size", 1: "time"},
|
142 |
+
"x_lengths": {0: "batch_size"},
|
143 |
+
}
|
144 |
+
|
145 |
+
if vocoder is None:
|
146 |
+
dynamic_axes.update(
|
147 |
+
{
|
148 |
+
"mel": {0: "batch_size", 2: "time"},
|
149 |
+
"mel_lengths": {0: "batch_size"},
|
150 |
+
}
|
151 |
+
)
|
152 |
+
else:
|
153 |
+
print("Embedding the vocoder in the ONNX graph")
|
154 |
+
dynamic_axes.update(
|
155 |
+
{
|
156 |
+
"wav": {0: "batch_size", 1: "time"},
|
157 |
+
"wav_lengths": {0: "batch_size"},
|
158 |
+
}
|
159 |
+
)
|
160 |
+
|
161 |
+
if is_multi_speaker:
|
162 |
+
dynamic_axes["spks"] = {0: "batch_size"}
|
163 |
+
|
164 |
+
# Create the output directory (if not exists)
|
165 |
+
Path(args.output).parent.mkdir(parents=True, exist_ok=True)
|
166 |
+
|
167 |
+
model.to_onnx(
|
168 |
+
args.output,
|
169 |
+
dummy_input,
|
170 |
+
input_names=input_names,
|
171 |
+
output_names=output_names,
|
172 |
+
dynamic_axes=dynamic_axes,
|
173 |
+
opset_version=args.opset,
|
174 |
+
export_params=True,
|
175 |
+
do_constant_folding=True,
|
176 |
+
)
|
177 |
+
print(f"[🍵] ONNX model exported to {args.output}")
|
178 |
+
|
179 |
+
|
180 |
+
if __name__ == "__main__":
|
181 |
+
main()
|
third_party/Matcha-TTS/matcha/text/cleaners.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/keithito/tacotron
|
2 |
+
|
3 |
+
Cleaners are transformations that run over the input text at both training and eval time.
|
4 |
+
|
5 |
+
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
|
6 |
+
hyperparameter. Some cleaners are English-specific. You'll typically want to use:
|
7 |
+
1. "english_cleaners" for English text
|
8 |
+
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
|
9 |
+
the Unidecode library (https://pypi.python.org/pypi/Unidecode)
|
10 |
+
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
|
11 |
+
the symbols in symbols.py to match your data).
|
12 |
+
"""
|
13 |
+
|
14 |
+
import logging
|
15 |
+
import re
|
16 |
+
|
17 |
+
import phonemizer
|
18 |
+
import piper_phonemize
|
19 |
+
from unidecode import unidecode
|
20 |
+
|
21 |
+
# To avoid excessive logging we set the log level of the phonemizer package to Critical
|
22 |
+
critical_logger = logging.getLogger("phonemizer")
|
23 |
+
critical_logger.setLevel(logging.CRITICAL)
|
24 |
+
|
25 |
+
# Intializing the phonemizer globally significantly reduces the speed
|
26 |
+
# now the phonemizer is not initialising at every call
|
27 |
+
# Might be less flexible, but it is much-much faster
|
28 |
+
global_phonemizer = phonemizer.backend.EspeakBackend(
|
29 |
+
language="en-us",
|
30 |
+
preserve_punctuation=True,
|
31 |
+
with_stress=True,
|
32 |
+
language_switch="remove-flags",
|
33 |
+
logger=critical_logger,
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
# Regular expression matching whitespace:
|
38 |
+
_whitespace_re = re.compile(r"\s+")
|
39 |
+
|
40 |
+
# List of (regular expression, replacement) pairs for abbreviations:
|
41 |
+
_abbreviations = [
|
42 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
43 |
+
for x in [
|
44 |
+
("mrs", "misess"),
|
45 |
+
("mr", "mister"),
|
46 |
+
("dr", "doctor"),
|
47 |
+
("st", "saint"),
|
48 |
+
("co", "company"),
|
49 |
+
("jr", "junior"),
|
50 |
+
("maj", "major"),
|
51 |
+
("gen", "general"),
|
52 |
+
("drs", "doctors"),
|
53 |
+
("rev", "reverend"),
|
54 |
+
("lt", "lieutenant"),
|
55 |
+
("hon", "honorable"),
|
56 |
+
("sgt", "sergeant"),
|
57 |
+
("capt", "captain"),
|
58 |
+
("esq", "esquire"),
|
59 |
+
("ltd", "limited"),
|
60 |
+
("col", "colonel"),
|
61 |
+
("ft", "fort"),
|
62 |
+
]
|
63 |
+
]
|
64 |
+
|
65 |
+
|
66 |
+
def expand_abbreviations(text):
|
67 |
+
for regex, replacement in _abbreviations:
|
68 |
+
text = re.sub(regex, replacement, text)
|
69 |
+
return text
|
70 |
+
|
71 |
+
|
72 |
+
def lowercase(text):
|
73 |
+
return text.lower()
|
74 |
+
|
75 |
+
|
76 |
+
def collapse_whitespace(text):
|
77 |
+
return re.sub(_whitespace_re, " ", text)
|
78 |
+
|
79 |
+
|
80 |
+
def convert_to_ascii(text):
|
81 |
+
return unidecode(text)
|
82 |
+
|
83 |
+
|
84 |
+
def basic_cleaners(text):
|
85 |
+
"""Basic pipeline that lowercases and collapses whitespace without transliteration."""
|
86 |
+
text = lowercase(text)
|
87 |
+
text = collapse_whitespace(text)
|
88 |
+
return text
|
89 |
+
|
90 |
+
|
91 |
+
def transliteration_cleaners(text):
|
92 |
+
"""Pipeline for non-English text that transliterates to ASCII."""
|
93 |
+
text = convert_to_ascii(text)
|
94 |
+
text = lowercase(text)
|
95 |
+
text = collapse_whitespace(text)
|
96 |
+
return text
|
97 |
+
|
98 |
+
|
99 |
+
def english_cleaners2(text):
|
100 |
+
"""Pipeline for English text, including abbreviation expansion. + punctuation + stress"""
|
101 |
+
text = convert_to_ascii(text)
|
102 |
+
text = lowercase(text)
|
103 |
+
text = expand_abbreviations(text)
|
104 |
+
phonemes = global_phonemizer.phonemize([text], strip=True, njobs=1)[0]
|
105 |
+
phonemes = collapse_whitespace(phonemes)
|
106 |
+
return phonemes
|
107 |
+
|
108 |
+
|
109 |
+
def english_cleaners_piper(text):
|
110 |
+
"""Pipeline for English text, including abbreviation expansion. + punctuation + stress"""
|
111 |
+
text = convert_to_ascii(text)
|
112 |
+
text = lowercase(text)
|
113 |
+
text = expand_abbreviations(text)
|
114 |
+
phonemes = "".join(piper_phonemize.phonemize_espeak(text=text, voice="en-US")[0])
|
115 |
+
phonemes = collapse_whitespace(phonemes)
|
116 |
+
return phonemes
|
third_party/Matcha-TTS/matcha/utils/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from matcha.utils.instantiators import instantiate_callbacks, instantiate_loggers
|
2 |
+
from matcha.utils.logging_utils import log_hyperparameters
|
3 |
+
from matcha.utils.pylogger import get_pylogger
|
4 |
+
from matcha.utils.rich_utils import enforce_tags, print_config_tree
|
5 |
+
from matcha.utils.utils import extras, get_metric_value, task_wrapper
|
third_party/Matcha-TTS/matcha/utils/instantiators.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
import hydra
|
4 |
+
from lightning import Callback
|
5 |
+
from lightning.pytorch.loggers import Logger
|
6 |
+
from omegaconf import DictConfig
|
7 |
+
|
8 |
+
from matcha.utils import pylogger
|
9 |
+
|
10 |
+
log = pylogger.get_pylogger(__name__)
|
11 |
+
|
12 |
+
|
13 |
+
def instantiate_callbacks(callbacks_cfg: DictConfig) -> List[Callback]:
|
14 |
+
"""Instantiates callbacks from config.
|
15 |
+
|
16 |
+
:param callbacks_cfg: A DictConfig object containing callback configurations.
|
17 |
+
:return: A list of instantiated callbacks.
|
18 |
+
"""
|
19 |
+
callbacks: List[Callback] = []
|
20 |
+
|
21 |
+
if not callbacks_cfg:
|
22 |
+
log.warning("No callback configs found! Skipping..")
|
23 |
+
return callbacks
|
24 |
+
|
25 |
+
if not isinstance(callbacks_cfg, DictConfig):
|
26 |
+
raise TypeError("Callbacks config must be a DictConfig!")
|
27 |
+
|
28 |
+
for _, cb_conf in callbacks_cfg.items():
|
29 |
+
if isinstance(cb_conf, DictConfig) and "_target_" in cb_conf:
|
30 |
+
log.info(f"Instantiating callback <{cb_conf._target_}>") # pylint: disable=protected-access
|
31 |
+
callbacks.append(hydra.utils.instantiate(cb_conf))
|
32 |
+
|
33 |
+
return callbacks
|
34 |
+
|
35 |
+
|
36 |
+
def instantiate_loggers(logger_cfg: DictConfig) -> List[Logger]:
|
37 |
+
"""Instantiates loggers from config.
|
38 |
+
|
39 |
+
:param logger_cfg: A DictConfig object containing logger configurations.
|
40 |
+
:return: A list of instantiated loggers.
|
41 |
+
"""
|
42 |
+
logger: List[Logger] = []
|
43 |
+
|
44 |
+
if not logger_cfg:
|
45 |
+
log.warning("No logger configs found! Skipping...")
|
46 |
+
return logger
|
47 |
+
|
48 |
+
if not isinstance(logger_cfg, DictConfig):
|
49 |
+
raise TypeError("Logger config must be a DictConfig!")
|
50 |
+
|
51 |
+
for _, lg_conf in logger_cfg.items():
|
52 |
+
if isinstance(lg_conf, DictConfig) and "_target_" in lg_conf:
|
53 |
+
log.info(f"Instantiating logger <{lg_conf._target_}>") # pylint: disable=protected-access
|
54 |
+
logger.append(hydra.utils.instantiate(lg_conf))
|
55 |
+
|
56 |
+
return logger
|
third_party/Matcha-TTS/matcha/utils/model.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/jaywalnut310/glow-tts """
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
|
6 |
+
|
7 |
+
def sequence_mask(length, max_length=None):
|
8 |
+
if max_length is None:
|
9 |
+
max_length = length.max()
|
10 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
11 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
12 |
+
|
13 |
+
|
14 |
+
def fix_len_compatibility(length, num_downsamplings_in_unet=2):
|
15 |
+
factor = torch.scalar_tensor(2).pow(num_downsamplings_in_unet)
|
16 |
+
length = (length / factor).ceil() * factor
|
17 |
+
if not torch.onnx.is_in_onnx_export():
|
18 |
+
return length.int().item()
|
19 |
+
else:
|
20 |
+
return length
|
21 |
+
|
22 |
+
|
23 |
+
def convert_pad_shape(pad_shape):
|
24 |
+
inverted_shape = pad_shape[::-1]
|
25 |
+
pad_shape = [item for sublist in inverted_shape for item in sublist]
|
26 |
+
return pad_shape
|
27 |
+
|
28 |
+
|
29 |
+
def generate_path(duration, mask):
|
30 |
+
device = duration.device
|
31 |
+
|
32 |
+
b, t_x, t_y = mask.shape
|
33 |
+
cum_duration = torch.cumsum(duration, 1)
|
34 |
+
path = torch.zeros(b, t_x, t_y, dtype=mask.dtype).to(device=device)
|
35 |
+
|
36 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
37 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
38 |
+
path = path.view(b, t_x, t_y)
|
39 |
+
path = path - torch.nn.functional.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
40 |
+
path = path * mask
|
41 |
+
return path
|
42 |
+
|
43 |
+
|
44 |
+
def duration_loss(logw, logw_, lengths):
|
45 |
+
loss = torch.sum((logw - logw_) ** 2) / torch.sum(lengths)
|
46 |
+
return loss
|
47 |
+
|
48 |
+
|
49 |
+
def normalize(data, mu, std):
|
50 |
+
if not isinstance(mu, (float, int)):
|
51 |
+
if isinstance(mu, list):
|
52 |
+
mu = torch.tensor(mu, dtype=data.dtype, device=data.device)
|
53 |
+
elif isinstance(mu, torch.Tensor):
|
54 |
+
mu = mu.to(data.device)
|
55 |
+
elif isinstance(mu, np.ndarray):
|
56 |
+
mu = torch.from_numpy(mu).to(data.device)
|
57 |
+
mu = mu.unsqueeze(-1)
|
58 |
+
|
59 |
+
if not isinstance(std, (float, int)):
|
60 |
+
if isinstance(std, list):
|
61 |
+
std = torch.tensor(std, dtype=data.dtype, device=data.device)
|
62 |
+
elif isinstance(std, torch.Tensor):
|
63 |
+
std = std.to(data.device)
|
64 |
+
elif isinstance(std, np.ndarray):
|
65 |
+
std = torch.from_numpy(std).to(data.device)
|
66 |
+
std = std.unsqueeze(-1)
|
67 |
+
|
68 |
+
return (data - mu) / std
|
69 |
+
|
70 |
+
|
71 |
+
def denormalize(data, mu, std):
|
72 |
+
if not isinstance(mu, float):
|
73 |
+
if isinstance(mu, list):
|
74 |
+
mu = torch.tensor(mu, dtype=data.dtype, device=data.device)
|
75 |
+
elif isinstance(mu, torch.Tensor):
|
76 |
+
mu = mu.to(data.device)
|
77 |
+
elif isinstance(mu, np.ndarray):
|
78 |
+
mu = torch.from_numpy(mu).to(data.device)
|
79 |
+
mu = mu.unsqueeze(-1)
|
80 |
+
|
81 |
+
if not isinstance(std, float):
|
82 |
+
if isinstance(std, list):
|
83 |
+
std = torch.tensor(std, dtype=data.dtype, device=data.device)
|
84 |
+
elif isinstance(std, torch.Tensor):
|
85 |
+
std = std.to(data.device)
|
86 |
+
elif isinstance(std, np.ndarray):
|
87 |
+
std = torch.from_numpy(std).to(data.device)
|
88 |
+
std = std.unsqueeze(-1)
|
89 |
+
|
90 |
+
return data * std + mu
|
third_party/Matcha-TTS/matcha/utils/monotonic_align/setup.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from distutils.core import setup
|
2 |
+
# from Cython.Build import cythonize
|
3 |
+
# import numpy
|
4 |
+
|
5 |
+
# setup(name='monotonic_align',
|
6 |
+
# ext_modules=cythonize("core.pyx"),
|
7 |
+
# include_dirs=[numpy.get_include()])
|
third_party/Matcha-TTS/matcha/utils/rich_utils.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Sequence
|
3 |
+
|
4 |
+
import rich
|
5 |
+
import rich.syntax
|
6 |
+
import rich.tree
|
7 |
+
from hydra.core.hydra_config import HydraConfig
|
8 |
+
from lightning.pytorch.utilities import rank_zero_only
|
9 |
+
from omegaconf import DictConfig, OmegaConf, open_dict
|
10 |
+
from rich.prompt import Prompt
|
11 |
+
|
12 |
+
from matcha.utils import pylogger
|
13 |
+
|
14 |
+
log = pylogger.get_pylogger(__name__)
|
15 |
+
|
16 |
+
|
17 |
+
@rank_zero_only
|
18 |
+
def print_config_tree(
|
19 |
+
cfg: DictConfig,
|
20 |
+
print_order: Sequence[str] = (
|
21 |
+
"data",
|
22 |
+
"model",
|
23 |
+
"callbacks",
|
24 |
+
"logger",
|
25 |
+
"trainer",
|
26 |
+
"paths",
|
27 |
+
"extras",
|
28 |
+
),
|
29 |
+
resolve: bool = False,
|
30 |
+
save_to_file: bool = False,
|
31 |
+
) -> None:
|
32 |
+
"""Prints the contents of a DictConfig as a tree structure using the Rich library.
|
33 |
+
|
34 |
+
:param cfg: A DictConfig composed by Hydra.
|
35 |
+
:param print_order: Determines in what order config components are printed. Default is ``("data", "model",
|
36 |
+
"callbacks", "logger", "trainer", "paths", "extras")``.
|
37 |
+
:param resolve: Whether to resolve reference fields of DictConfig. Default is ``False``.
|
38 |
+
:param save_to_file: Whether to export config to the hydra output folder. Default is ``False``.
|
39 |
+
"""
|
40 |
+
style = "dim"
|
41 |
+
tree = rich.tree.Tree("CONFIG", style=style, guide_style=style)
|
42 |
+
|
43 |
+
queue = []
|
44 |
+
|
45 |
+
# add fields from `print_order` to queue
|
46 |
+
for field in print_order:
|
47 |
+
_ = (
|
48 |
+
queue.append(field)
|
49 |
+
if field in cfg
|
50 |
+
else log.warning(f"Field '{field}' not found in config. Skipping '{field}' config printing...")
|
51 |
+
)
|
52 |
+
|
53 |
+
# add all the other fields to queue (not specified in `print_order`)
|
54 |
+
for field in cfg:
|
55 |
+
if field not in queue:
|
56 |
+
queue.append(field)
|
57 |
+
|
58 |
+
# generate config tree from queue
|
59 |
+
for field in queue:
|
60 |
+
branch = tree.add(field, style=style, guide_style=style)
|
61 |
+
|
62 |
+
config_group = cfg[field]
|
63 |
+
if isinstance(config_group, DictConfig):
|
64 |
+
branch_content = OmegaConf.to_yaml(config_group, resolve=resolve)
|
65 |
+
else:
|
66 |
+
branch_content = str(config_group)
|
67 |
+
|
68 |
+
branch.add(rich.syntax.Syntax(branch_content, "yaml"))
|
69 |
+
|
70 |
+
# print config tree
|
71 |
+
rich.print(tree)
|
72 |
+
|
73 |
+
# save config tree to file
|
74 |
+
if save_to_file:
|
75 |
+
with open(Path(cfg.paths.output_dir, "config_tree.log"), "w") as file:
|
76 |
+
rich.print(tree, file=file)
|
77 |
+
|
78 |
+
|
79 |
+
@rank_zero_only
|
80 |
+
def enforce_tags(cfg: DictConfig, save_to_file: bool = False) -> None:
|
81 |
+
"""Prompts user to input tags from command line if no tags are provided in config.
|
82 |
+
|
83 |
+
:param cfg: A DictConfig composed by Hydra.
|
84 |
+
:param save_to_file: Whether to export tags to the hydra output folder. Default is ``False``.
|
85 |
+
"""
|
86 |
+
if not cfg.get("tags"):
|
87 |
+
if "id" in HydraConfig().cfg.hydra.job:
|
88 |
+
raise ValueError("Specify tags before launching a multirun!")
|
89 |
+
|
90 |
+
log.warning("No tags provided in config. Prompting user to input tags...")
|
91 |
+
tags = Prompt.ask("Enter a list of comma separated tags", default="dev")
|
92 |
+
tags = [t.strip() for t in tags.split(",") if t != ""]
|
93 |
+
|
94 |
+
with open_dict(cfg):
|
95 |
+
cfg.tags = tags
|
96 |
+
|
97 |
+
log.info(f"Tags: {cfg.tags}")
|
98 |
+
|
99 |
+
if save_to_file:
|
100 |
+
with open(Path(cfg.paths.output_dir, "tags.log"), "w") as file:
|
101 |
+
rich.print(cfg.tags, file=file)
|
third_party/Matcha-TTS/matcha/utils/utils.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import warnings
|
4 |
+
from importlib.util import find_spec
|
5 |
+
from pathlib import Path
|
6 |
+
from typing import Any, Callable, Dict, Tuple
|
7 |
+
|
8 |
+
import gdown
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import wget
|
13 |
+
from omegaconf import DictConfig
|
14 |
+
|
15 |
+
from matcha.utils import pylogger, rich_utils
|
16 |
+
|
17 |
+
log = pylogger.get_pylogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
def extras(cfg: DictConfig) -> None:
|
21 |
+
"""Applies optional utilities before the task is started.
|
22 |
+
|
23 |
+
Utilities:
|
24 |
+
- Ignoring python warnings
|
25 |
+
- Setting tags from command line
|
26 |
+
- Rich config printing
|
27 |
+
|
28 |
+
:param cfg: A DictConfig object containing the config tree.
|
29 |
+
"""
|
30 |
+
# return if no `extras` config
|
31 |
+
if not cfg.get("extras"):
|
32 |
+
log.warning("Extras config not found! <cfg.extras=null>")
|
33 |
+
return
|
34 |
+
|
35 |
+
# disable python warnings
|
36 |
+
if cfg.extras.get("ignore_warnings"):
|
37 |
+
log.info("Disabling python warnings! <cfg.extras.ignore_warnings=True>")
|
38 |
+
warnings.filterwarnings("ignore")
|
39 |
+
|
40 |
+
# prompt user to input tags from command line if none are provided in the config
|
41 |
+
if cfg.extras.get("enforce_tags"):
|
42 |
+
log.info("Enforcing tags! <cfg.extras.enforce_tags=True>")
|
43 |
+
rich_utils.enforce_tags(cfg, save_to_file=True)
|
44 |
+
|
45 |
+
# pretty print config tree using Rich library
|
46 |
+
if cfg.extras.get("print_config"):
|
47 |
+
log.info("Printing config tree with Rich! <cfg.extras.print_config=True>")
|
48 |
+
rich_utils.print_config_tree(cfg, resolve=True, save_to_file=True)
|
49 |
+
|
50 |
+
|
51 |
+
def task_wrapper(task_func: Callable) -> Callable:
|
52 |
+
"""Optional decorator that controls the failure behavior when executing the task function.
|
53 |
+
|
54 |
+
This wrapper can be used to:
|
55 |
+
- make sure loggers are closed even if the task function raises an exception (prevents multirun failure)
|
56 |
+
- save the exception to a `.log` file
|
57 |
+
- mark the run as failed with a dedicated file in the `logs/` folder (so we can find and rerun it later)
|
58 |
+
- etc. (adjust depending on your needs)
|
59 |
+
|
60 |
+
Example:
|
61 |
+
```
|
62 |
+
@utils.task_wrapper
|
63 |
+
def train(cfg: DictConfig) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
64 |
+
...
|
65 |
+
return metric_dict, object_dict
|
66 |
+
```
|
67 |
+
|
68 |
+
:param task_func: The task function to be wrapped.
|
69 |
+
|
70 |
+
:return: The wrapped task function.
|
71 |
+
"""
|
72 |
+
|
73 |
+
def wrap(cfg: DictConfig) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
74 |
+
# execute the task
|
75 |
+
try:
|
76 |
+
metric_dict, object_dict = task_func(cfg=cfg)
|
77 |
+
|
78 |
+
# things to do if exception occurs
|
79 |
+
except Exception as ex:
|
80 |
+
# save exception to `.log` file
|
81 |
+
log.exception("")
|
82 |
+
|
83 |
+
# some hyperparameter combinations might be invalid or cause out-of-memory errors
|
84 |
+
# so when using hparam search plugins like Optuna, you might want to disable
|
85 |
+
# raising the below exception to avoid multirun failure
|
86 |
+
raise ex
|
87 |
+
|
88 |
+
# things to always do after either success or exception
|
89 |
+
finally:
|
90 |
+
# display output dir path in terminal
|
91 |
+
log.info(f"Output dir: {cfg.paths.output_dir}")
|
92 |
+
|
93 |
+
# always close wandb run (even if exception occurs so multirun won't fail)
|
94 |
+
if find_spec("wandb"): # check if wandb is installed
|
95 |
+
import wandb
|
96 |
+
|
97 |
+
if wandb.run:
|
98 |
+
log.info("Closing wandb!")
|
99 |
+
wandb.finish()
|
100 |
+
|
101 |
+
return metric_dict, object_dict
|
102 |
+
|
103 |
+
return wrap
|
104 |
+
|
105 |
+
|
106 |
+
def get_metric_value(metric_dict: Dict[str, Any], metric_name: str) -> float:
|
107 |
+
"""Safely retrieves value of the metric logged in LightningModule.
|
108 |
+
|
109 |
+
:param metric_dict: A dict containing metric values.
|
110 |
+
:param metric_name: The name of the metric to retrieve.
|
111 |
+
:return: The value of the metric.
|
112 |
+
"""
|
113 |
+
if not metric_name:
|
114 |
+
log.info("Metric name is None! Skipping metric value retrieval...")
|
115 |
+
return None
|
116 |
+
|
117 |
+
if metric_name not in metric_dict:
|
118 |
+
raise ValueError(
|
119 |
+
f"Metric value not found! <metric_name={metric_name}>\n"
|
120 |
+
"Make sure metric name logged in LightningModule is correct!\n"
|
121 |
+
"Make sure `optimized_metric` name in `hparams_search` config is correct!"
|
122 |
+
)
|
123 |
+
|
124 |
+
metric_value = metric_dict[metric_name].item()
|
125 |
+
log.info(f"Retrieved metric value! <{metric_name}={metric_value}>")
|
126 |
+
|
127 |
+
return metric_value
|
128 |
+
|
129 |
+
|
130 |
+
def intersperse(lst, item):
|
131 |
+
# Adds blank symbol
|
132 |
+
result = [item] * (len(lst) * 2 + 1)
|
133 |
+
result[1::2] = lst
|
134 |
+
return result
|
135 |
+
|
136 |
+
|
137 |
+
def save_figure_to_numpy(fig):
|
138 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
139 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
140 |
+
return data
|
141 |
+
|
142 |
+
|
143 |
+
def plot_tensor(tensor):
|
144 |
+
plt.style.use("default")
|
145 |
+
fig, ax = plt.subplots(figsize=(12, 3))
|
146 |
+
im = ax.imshow(tensor, aspect="auto", origin="lower", interpolation="none")
|
147 |
+
plt.colorbar(im, ax=ax)
|
148 |
+
plt.tight_layout()
|
149 |
+
fig.canvas.draw()
|
150 |
+
data = save_figure_to_numpy(fig)
|
151 |
+
plt.close()
|
152 |
+
return data
|
153 |
+
|
154 |
+
|
155 |
+
def save_plot(tensor, savepath):
|
156 |
+
plt.style.use("default")
|
157 |
+
fig, ax = plt.subplots(figsize=(12, 3))
|
158 |
+
im = ax.imshow(tensor, aspect="auto", origin="lower", interpolation="none")
|
159 |
+
plt.colorbar(im, ax=ax)
|
160 |
+
plt.tight_layout()
|
161 |
+
fig.canvas.draw()
|
162 |
+
plt.savefig(savepath)
|
163 |
+
plt.close()
|
164 |
+
|
165 |
+
|
166 |
+
def to_numpy(tensor):
|
167 |
+
if isinstance(tensor, np.ndarray):
|
168 |
+
return tensor
|
169 |
+
elif isinstance(tensor, torch.Tensor):
|
170 |
+
return tensor.detach().cpu().numpy()
|
171 |
+
elif isinstance(tensor, list):
|
172 |
+
return np.array(tensor)
|
173 |
+
else:
|
174 |
+
raise TypeError("Unsupported type for conversion to numpy array")
|
175 |
+
|
176 |
+
|
177 |
+
def get_user_data_dir(appname="matcha_tts"):
|
178 |
+
"""
|
179 |
+
Args:
|
180 |
+
appname (str): Name of application
|
181 |
+
|
182 |
+
Returns:
|
183 |
+
Path: path to user data directory
|
184 |
+
"""
|
185 |
+
|
186 |
+
MATCHA_HOME = os.environ.get("MATCHA_HOME")
|
187 |
+
if MATCHA_HOME is not None:
|
188 |
+
ans = Path(MATCHA_HOME).expanduser().resolve(strict=False)
|
189 |
+
elif sys.platform == "win32":
|
190 |
+
import winreg # pylint: disable=import-outside-toplevel
|
191 |
+
|
192 |
+
key = winreg.OpenKey(
|
193 |
+
winreg.HKEY_CURRENT_USER,
|
194 |
+
r"Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders",
|
195 |
+
)
|
196 |
+
dir_, _ = winreg.QueryValueEx(key, "Local AppData")
|
197 |
+
ans = Path(dir_).resolve(strict=False)
|
198 |
+
elif sys.platform == "darwin":
|
199 |
+
ans = Path("~/Library/Application Support/").expanduser()
|
200 |
+
else:
|
201 |
+
ans = Path.home().joinpath(".local/share")
|
202 |
+
|
203 |
+
final_path = ans.joinpath(appname)
|
204 |
+
final_path.mkdir(parents=True, exist_ok=True)
|
205 |
+
return final_path
|
206 |
+
|
207 |
+
|
208 |
+
def assert_model_downloaded(checkpoint_path, url, use_wget=True):
|
209 |
+
if Path(checkpoint_path).exists():
|
210 |
+
log.debug(f"[+] Model already present at {checkpoint_path}!")
|
211 |
+
print(f"[+] Model already present at {checkpoint_path}!")
|
212 |
+
return
|
213 |
+
log.info(f"[-] Model not found at {checkpoint_path}! Will download it")
|
214 |
+
print(f"[-] Model not found at {checkpoint_path}! Will download it")
|
215 |
+
checkpoint_path = str(checkpoint_path)
|
216 |
+
if not use_wget:
|
217 |
+
gdown.download(url=url, output=checkpoint_path, quiet=False, fuzzy=True)
|
218 |
+
else:
|
219 |
+
wget.download(url=url, out=checkpoint_path)
|