# Copyright [2023-11-28] # 2024 Alibaba Inc (authors: Xiang Lyu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from cosyvoice.transformer.activation import Swish from cosyvoice.transformer.subsampling import ( LinearNoSubsampling, EmbedinigNoSubsampling, Conv1dSubsampling2, Conv2dSubsampling4, Conv2dSubsampling6, Conv2dSubsampling8, ) from cosyvoice.transformer.embedding import (PositionalEncoding, RelPositionalEncoding, WhisperPositionalEncoding, LearnablePositionalEncoding, NoPositionalEncoding) from cosyvoice.transformer.attention import (MultiHeadedAttention, RelPositionMultiHeadedAttention) from cosyvoice.transformer.embedding import EspnetRelPositionalEncoding from cosyvoice.transformer.subsampling import LegacyLinearNoSubsampling from cosyvoice.llm.llm import TransformerLM, Qwen2LM from cosyvoice.flow.flow import MaskedDiffWithXvec, CausalMaskedDiffWithXvec from cosyvoice.hifigan.generator import HiFTGenerator from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model COSYVOICE_ACTIVATION_CLASSES = { "hardtanh": torch.nn.Hardtanh, "tanh": torch.nn.Tanh, "relu": torch.nn.ReLU, "selu": torch.nn.SELU, "swish": getattr(torch.nn, "SiLU", Swish), "gelu": torch.nn.GELU, } COSYVOICE_SUBSAMPLE_CLASSES = { "linear": LinearNoSubsampling, "linear_legacy": LegacyLinearNoSubsampling, "embed": EmbedinigNoSubsampling, "conv1d2": Conv1dSubsampling2, "conv2d": Conv2dSubsampling4, "conv2d6": Conv2dSubsampling6, "conv2d8": Conv2dSubsampling8, 'paraformer_dummy': torch.nn.Identity } COSYVOICE_EMB_CLASSES = { "embed": PositionalEncoding, "abs_pos": PositionalEncoding, "rel_pos": RelPositionalEncoding, "rel_pos_espnet": EspnetRelPositionalEncoding, "no_pos": NoPositionalEncoding, "abs_pos_whisper": WhisperPositionalEncoding, "embed_learnable_pe": LearnablePositionalEncoding, } COSYVOICE_ATTENTION_CLASSES = { "selfattn": MultiHeadedAttention, "rel_selfattn": RelPositionMultiHeadedAttention, } def get_model_type(configs): # NOTE CosyVoice2Model inherits CosyVoiceModel if isinstance(configs['llm'], TransformerLM) and isinstance(configs['flow'], MaskedDiffWithXvec) and isinstance(configs['hift'], HiFTGenerator): return CosyVoiceModel if isinstance(configs['llm'], Qwen2LM) and isinstance(configs['flow'], CausalMaskedDiffWithXvec) and isinstance(configs['hift'], HiFTGenerator): return CosyVoice2Model raise TypeError('No valid model type found!')