|  | from copy import deepcopy | 
					
						
						|  | import math | 
					
						
						|  | import os, sys, gc | 
					
						
						|  | import random | 
					
						
						|  | import traceback | 
					
						
						|  |  | 
					
						
						|  | from tqdm import tqdm | 
					
						
						|  | now_dir = os.getcwd() | 
					
						
						|  | sys.path.append(now_dir) | 
					
						
						|  | import ffmpeg | 
					
						
						|  | import os | 
					
						
						|  | from typing import Generator, List, Tuple, Union | 
					
						
						|  | import numpy as np | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | import yaml | 
					
						
						|  | from transformers import AutoModelForMaskedLM, AutoTokenizer | 
					
						
						|  |  | 
					
						
						|  | from AR.models.t2s_lightning_module import Text2SemanticLightningModule | 
					
						
						|  | from feature_extractor.cnhubert import CNHubert | 
					
						
						|  | from module.models import SynthesizerTrn | 
					
						
						|  | import librosa | 
					
						
						|  | from time import time as ttime | 
					
						
						|  | from tools.i18n.i18n import I18nAuto, scan_language_list | 
					
						
						|  | from tools.my_utils import load_audio | 
					
						
						|  | from module.mel_processing import spectrogram_torch | 
					
						
						|  | from TTS_infer_pack.text_segmentation_method import splits | 
					
						
						|  | from TTS_infer_pack.TextPreprocessor import TextPreprocessor | 
					
						
						|  | language=os.environ.get("language","Auto") | 
					
						
						|  | language=sys.argv[-1] if sys.argv[-1] in scan_language_list() else language | 
					
						
						|  | i18n = I18nAuto(language=language) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | custom: | 
					
						
						|  | bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large | 
					
						
						|  | cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base | 
					
						
						|  | device: cpu | 
					
						
						|  | is_half: false | 
					
						
						|  | t2s_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt | 
					
						
						|  | vits_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth | 
					
						
						|  | version: v2 | 
					
						
						|  | default: | 
					
						
						|  | bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large | 
					
						
						|  | cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base | 
					
						
						|  | device: cpu | 
					
						
						|  | is_half: false | 
					
						
						|  | t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt | 
					
						
						|  | vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth | 
					
						
						|  | version: v1 | 
					
						
						|  | default_v2: | 
					
						
						|  | bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large | 
					
						
						|  | cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base | 
					
						
						|  | device: cpu | 
					
						
						|  | is_half: false | 
					
						
						|  | t2s_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt | 
					
						
						|  | vits_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth | 
					
						
						|  | version: v2 | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def set_seed(seed:int): | 
					
						
						|  | seed = int(seed) | 
					
						
						|  | seed = seed if seed != -1 else random.randrange(1 << 32) | 
					
						
						|  | print(f"Set seed to {seed}") | 
					
						
						|  | os.environ['PYTHONHASHSEED'] = str(seed) | 
					
						
						|  | random.seed(seed) | 
					
						
						|  | np.random.seed(seed) | 
					
						
						|  | torch.manual_seed(seed) | 
					
						
						|  | try: | 
					
						
						|  | if torch.cuda.is_available(): | 
					
						
						|  | torch.cuda.manual_seed(seed) | 
					
						
						|  | torch.cuda.manual_seed_all(seed) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | torch.backends.cuda.matmul.allow_tf32 = False | 
					
						
						|  | torch.backends.cudnn.allow_tf32 = False | 
					
						
						|  | except: | 
					
						
						|  | pass | 
					
						
						|  | return seed | 
					
						
						|  |  | 
					
						
						|  | class TTS_Config: | 
					
						
						|  | default_configs={ | 
					
						
						|  | "default":{ | 
					
						
						|  | "device": "cpu", | 
					
						
						|  | "is_half": False, | 
					
						
						|  | "version": "v1", | 
					
						
						|  | "t2s_weights_path": "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt", | 
					
						
						|  | "vits_weights_path": "GPT_SoVITS/pretrained_models/s2G488k.pth", | 
					
						
						|  | "cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base", | 
					
						
						|  | "bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large", | 
					
						
						|  | }, | 
					
						
						|  | "default_v2":{ | 
					
						
						|  | "device": "cpu", | 
					
						
						|  | "is_half": False, | 
					
						
						|  | "version": "v2", | 
					
						
						|  | "t2s_weights_path": "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", | 
					
						
						|  | "vits_weights_path": "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth", | 
					
						
						|  | "cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base", | 
					
						
						|  | "bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large", | 
					
						
						|  | }, | 
					
						
						|  | } | 
					
						
						|  | configs:dict = None | 
					
						
						|  | v1_languages:list = ["auto", "en", "zh", "ja",  "all_zh", "all_ja"] | 
					
						
						|  | v2_languages:list = ["auto", "auto_yue", "en", "zh", "ja", "yue", "ko", "all_zh", "all_ja", "all_yue", "all_ko"] | 
					
						
						|  | languages:list = v2_languages | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, configs: Union[dict, str]=None): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | configs_base_path:str = "GPT_SoVITS/configs/" | 
					
						
						|  | os.makedirs(configs_base_path, exist_ok=True) | 
					
						
						|  | self.configs_path:str = os.path.join(configs_base_path, "tts_infer.yaml") | 
					
						
						|  |  | 
					
						
						|  | if configs in ["", None]: | 
					
						
						|  | if not os.path.exists(self.configs_path): | 
					
						
						|  | self.save_configs() | 
					
						
						|  | print(f"Create default config file at {self.configs_path}") | 
					
						
						|  | configs:dict = deepcopy(self.default_configs) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(configs, str): | 
					
						
						|  | self.configs_path = configs | 
					
						
						|  | configs:dict = self._load_configs(self.configs_path) | 
					
						
						|  |  | 
					
						
						|  | assert isinstance(configs, dict) | 
					
						
						|  | version = configs.get("version", "v2").lower() | 
					
						
						|  | assert version in ["v1", "v2"] | 
					
						
						|  | self.default_configs["default"] = configs.get("default", self.default_configs["default"]) | 
					
						
						|  | self.default_configs["default_v2"] = configs.get("default_v2", self.default_configs["default_v2"]) | 
					
						
						|  |  | 
					
						
						|  | default_config_key = "default"if version=="v1" else "default_v2" | 
					
						
						|  | self.configs:dict = configs.get("custom", deepcopy(self.default_configs[default_config_key])) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.device = self.configs.get("device", torch.device("cpu")) | 
					
						
						|  | self.is_half = self.configs.get("is_half", False) | 
					
						
						|  | self.version = version | 
					
						
						|  | self.t2s_weights_path = self.configs.get("t2s_weights_path", None) | 
					
						
						|  | self.vits_weights_path = self.configs.get("vits_weights_path", None) | 
					
						
						|  | self.bert_base_path = self.configs.get("bert_base_path", None) | 
					
						
						|  | self.cnhuhbert_base_path = self.configs.get("cnhuhbert_base_path", None) | 
					
						
						|  | self.languages = self.v2_languages if self.version=="v2" else self.v1_languages | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if (self.t2s_weights_path in [None, ""]) or (not os.path.exists(self.t2s_weights_path)): | 
					
						
						|  | self.t2s_weights_path = self.default_configs[default_config_key]['t2s_weights_path'] | 
					
						
						|  | print(f"fall back to default t2s_weights_path: {self.t2s_weights_path}") | 
					
						
						|  | if (self.vits_weights_path in [None, ""]) or (not os.path.exists(self.vits_weights_path)): | 
					
						
						|  | self.vits_weights_path = self.default_configs[default_config_key]['vits_weights_path'] | 
					
						
						|  | print(f"fall back to default vits_weights_path: {self.vits_weights_path}") | 
					
						
						|  | if (self.bert_base_path in [None, ""]) or (not os.path.exists(self.bert_base_path)): | 
					
						
						|  | self.bert_base_path = self.default_configs[default_config_key]['bert_base_path'] | 
					
						
						|  | print(f"fall back to default bert_base_path: {self.bert_base_path}") | 
					
						
						|  | if (self.cnhuhbert_base_path in [None, ""]) or (not os.path.exists(self.cnhuhbert_base_path)): | 
					
						
						|  | self.cnhuhbert_base_path = self.default_configs[default_config_key]['cnhuhbert_base_path'] | 
					
						
						|  | print(f"fall back to default cnhuhbert_base_path: {self.cnhuhbert_base_path}") | 
					
						
						|  | self.update_configs() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.max_sec = None | 
					
						
						|  | self.hz:int = 50 | 
					
						
						|  | self.semantic_frame_rate:str = "25hz" | 
					
						
						|  | self.segment_size:int = 20480 | 
					
						
						|  | self.filter_length:int = 2048 | 
					
						
						|  | self.sampling_rate:int = 32000 | 
					
						
						|  | self.hop_length:int = 640 | 
					
						
						|  | self.win_length:int = 2048 | 
					
						
						|  | self.n_speakers:int = 300 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _load_configs(self, configs_path: str)->dict: | 
					
						
						|  | if os.path.exists(configs_path): | 
					
						
						|  | ... | 
					
						
						|  | else: | 
					
						
						|  | print(i18n("路径不存在,使用默认配置")) | 
					
						
						|  | self.save_configs(configs_path) | 
					
						
						|  | with open(configs_path, 'r') as f: | 
					
						
						|  | configs = yaml.load(f, Loader=yaml.FullLoader) | 
					
						
						|  |  | 
					
						
						|  | return configs | 
					
						
						|  |  | 
					
						
						|  | def save_configs(self, configs_path:str=None)->None: | 
					
						
						|  | configs=deepcopy(self.default_configs) | 
					
						
						|  | if self.configs is not None: | 
					
						
						|  | configs["custom"] = self.update_configs() | 
					
						
						|  |  | 
					
						
						|  | if configs_path is None: | 
					
						
						|  | configs_path = self.configs_path | 
					
						
						|  | with open(configs_path, 'w') as f: | 
					
						
						|  | yaml.dump(configs, f) | 
					
						
						|  |  | 
					
						
						|  | def update_configs(self): | 
					
						
						|  | self.config = { | 
					
						
						|  | "device"             : str(self.device), | 
					
						
						|  | "is_half"            : self.is_half, | 
					
						
						|  | "version"            : self.version, | 
					
						
						|  | "t2s_weights_path"   : self.t2s_weights_path, | 
					
						
						|  | "vits_weights_path"  : self.vits_weights_path, | 
					
						
						|  | "bert_base_path"     : self.bert_base_path, | 
					
						
						|  | "cnhuhbert_base_path": self.cnhuhbert_base_path, | 
					
						
						|  | } | 
					
						
						|  | return self.config | 
					
						
						|  |  | 
					
						
						|  | def update_version(self, version:str)->None: | 
					
						
						|  | self.version = version | 
					
						
						|  | self.languages = self.v2_languages if self.version=="v2" else self.v1_languages | 
					
						
						|  |  | 
					
						
						|  | def __str__(self): | 
					
						
						|  | self.configs = self.update_configs() | 
					
						
						|  | string = "TTS Config".center(100, '-') + '\n' | 
					
						
						|  | for k, v in self.configs.items(): | 
					
						
						|  | string += f"{str(k).ljust(20)}: {str(v)}\n" | 
					
						
						|  | string += "-" * 100 + '\n' | 
					
						
						|  | return string | 
					
						
						|  |  | 
					
						
						|  | def __repr__(self): | 
					
						
						|  | return self.__str__() | 
					
						
						|  |  | 
					
						
						|  | def __hash__(self): | 
					
						
						|  | return hash(self.configs_path) | 
					
						
						|  |  | 
					
						
						|  | def __eq__(self, other): | 
					
						
						|  | return isinstance(other, TTS_Config) and self.configs_path == other.configs_path | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TTS: | 
					
						
						|  | def __init__(self, configs: Union[dict, str, TTS_Config]): | 
					
						
						|  | if isinstance(configs, TTS_Config): | 
					
						
						|  | self.configs = configs | 
					
						
						|  | else: | 
					
						
						|  | self.configs:TTS_Config = TTS_Config(configs) | 
					
						
						|  |  | 
					
						
						|  | self.t2s_model:Text2SemanticLightningModule = None | 
					
						
						|  | self.vits_model:SynthesizerTrn = None | 
					
						
						|  | self.bert_tokenizer:AutoTokenizer = None | 
					
						
						|  | self.bert_model:AutoModelForMaskedLM = None | 
					
						
						|  | self.cnhuhbert_model:CNHubert = None | 
					
						
						|  |  | 
					
						
						|  | self._init_models() | 
					
						
						|  |  | 
					
						
						|  | self.text_preprocessor:TextPreprocessor = \ | 
					
						
						|  | TextPreprocessor(self.bert_model, | 
					
						
						|  | self.bert_tokenizer, | 
					
						
						|  | self.configs.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.prompt_cache:dict = { | 
					
						
						|  | "ref_audio_path" : None, | 
					
						
						|  | "prompt_semantic": None, | 
					
						
						|  | "refer_spec"     : [], | 
					
						
						|  | "prompt_text"    : None, | 
					
						
						|  | "prompt_lang"    : None, | 
					
						
						|  | "phones"         : None, | 
					
						
						|  | "bert_features"  : None, | 
					
						
						|  | "norm_text"      : None, | 
					
						
						|  | "aux_ref_audio_paths": [], | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.stop_flag:bool = False | 
					
						
						|  | self.precision:torch.dtype = torch.float16 if self.configs.is_half else torch.float32 | 
					
						
						|  |  | 
					
						
						|  | def _init_models(self,): | 
					
						
						|  | self.init_t2s_weights(self.configs.t2s_weights_path) | 
					
						
						|  | self.init_vits_weights(self.configs.vits_weights_path) | 
					
						
						|  | self.init_bert_weights(self.configs.bert_base_path) | 
					
						
						|  | self.init_cnhuhbert_weights(self.configs.cnhuhbert_base_path) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def init_cnhuhbert_weights(self, base_path: str): | 
					
						
						|  | print(f"Loading CNHuBERT weights from {base_path}") | 
					
						
						|  | self.cnhuhbert_model = CNHubert(base_path) | 
					
						
						|  | self.cnhuhbert_model=self.cnhuhbert_model.eval() | 
					
						
						|  | self.cnhuhbert_model = self.cnhuhbert_model.to(self.configs.device) | 
					
						
						|  | if self.configs.is_half and str(self.configs.device)!="cpu": | 
					
						
						|  | self.cnhuhbert_model = self.cnhuhbert_model.half() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def init_bert_weights(self, base_path: str): | 
					
						
						|  | print(f"Loading BERT weights from {base_path}") | 
					
						
						|  | self.bert_tokenizer = AutoTokenizer.from_pretrained(base_path) | 
					
						
						|  | self.bert_model = AutoModelForMaskedLM.from_pretrained(base_path) | 
					
						
						|  | self.bert_model=self.bert_model.eval() | 
					
						
						|  | self.bert_model = self.bert_model.to(self.configs.device) | 
					
						
						|  | if self.configs.is_half and str(self.configs.device)!="cpu": | 
					
						
						|  | self.bert_model = self.bert_model.half() | 
					
						
						|  |  | 
					
						
						|  | def init_vits_weights(self, weights_path: str): | 
					
						
						|  | print(f"Loading VITS weights from {weights_path}") | 
					
						
						|  | self.configs.vits_weights_path = weights_path | 
					
						
						|  | dict_s2 = torch.load(weights_path, map_location=self.configs.device) | 
					
						
						|  | hps = dict_s2["config"] | 
					
						
						|  | if dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322: | 
					
						
						|  | self.configs.update_version("v1") | 
					
						
						|  | else: | 
					
						
						|  | self.configs.update_version("v2") | 
					
						
						|  | self.configs.save_configs() | 
					
						
						|  |  | 
					
						
						|  | hps["model"]["version"] = self.configs.version | 
					
						
						|  | self.configs.filter_length = hps["data"]["filter_length"] | 
					
						
						|  | self.configs.segment_size = hps["train"]["segment_size"] | 
					
						
						|  | self.configs.sampling_rate = hps["data"]["sampling_rate"] | 
					
						
						|  | self.configs.hop_length = hps["data"]["hop_length"] | 
					
						
						|  | self.configs.win_length = hps["data"]["win_length"] | 
					
						
						|  | self.configs.n_speakers = hps["data"]["n_speakers"] | 
					
						
						|  | self.configs.semantic_frame_rate = "25hz" | 
					
						
						|  | kwargs = hps["model"] | 
					
						
						|  | vits_model = SynthesizerTrn( | 
					
						
						|  | self.configs.filter_length // 2 + 1, | 
					
						
						|  | self.configs.segment_size // self.configs.hop_length, | 
					
						
						|  | n_speakers=self.configs.n_speakers, | 
					
						
						|  | **kwargs | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if hasattr(vits_model, "enc_q"): | 
					
						
						|  | del vits_model.enc_q | 
					
						
						|  |  | 
					
						
						|  | vits_model = vits_model.to(self.configs.device) | 
					
						
						|  | vits_model = vits_model.eval() | 
					
						
						|  | vits_model.load_state_dict(dict_s2["weight"], strict=False) | 
					
						
						|  | self.vits_model = vits_model | 
					
						
						|  | if self.configs.is_half and str(self.configs.device)!="cpu": | 
					
						
						|  | self.vits_model = self.vits_model.half() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def init_t2s_weights(self, weights_path: str): | 
					
						
						|  | print(f"Loading Text2Semantic weights from {weights_path}") | 
					
						
						|  | self.configs.t2s_weights_path = weights_path | 
					
						
						|  | self.configs.save_configs() | 
					
						
						|  | self.configs.hz = 50 | 
					
						
						|  | dict_s1 = torch.load(weights_path, map_location=self.configs.device) | 
					
						
						|  | config = dict_s1["config"] | 
					
						
						|  | self.configs.max_sec = config["data"]["max_sec"] | 
					
						
						|  | t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) | 
					
						
						|  | t2s_model.load_state_dict(dict_s1["weight"]) | 
					
						
						|  | t2s_model = t2s_model.to(self.configs.device) | 
					
						
						|  | t2s_model = t2s_model.eval() | 
					
						
						|  | self.t2s_model = t2s_model | 
					
						
						|  | if self.configs.is_half and str(self.configs.device)!="cpu": | 
					
						
						|  | self.t2s_model = self.t2s_model.half() | 
					
						
						|  |  | 
					
						
						|  | def enable_half_precision(self, enable: bool = True, save: bool = True): | 
					
						
						|  | ''' | 
					
						
						|  | To enable half precision for the TTS model. | 
					
						
						|  | Args: | 
					
						
						|  | enable: bool, whether to enable half precision. | 
					
						
						|  |  | 
					
						
						|  | ''' | 
					
						
						|  | if str(self.configs.device) == "cpu" and enable: | 
					
						
						|  | print("Half precision is not supported on CPU.") | 
					
						
						|  | return | 
					
						
						|  |  | 
					
						
						|  | self.configs.is_half = enable | 
					
						
						|  | self.precision = torch.float16 if enable else torch.float32 | 
					
						
						|  | if save: | 
					
						
						|  | self.configs.save_configs() | 
					
						
						|  | if enable: | 
					
						
						|  | if self.t2s_model is not None: | 
					
						
						|  | self.t2s_model =self.t2s_model.half() | 
					
						
						|  | if self.vits_model is not None: | 
					
						
						|  | self.vits_model = self.vits_model.half() | 
					
						
						|  | if self.bert_model is not None: | 
					
						
						|  | self.bert_model =self.bert_model.half() | 
					
						
						|  | if self.cnhuhbert_model is not None: | 
					
						
						|  | self.cnhuhbert_model = self.cnhuhbert_model.half() | 
					
						
						|  | else: | 
					
						
						|  | if self.t2s_model is not None: | 
					
						
						|  | self.t2s_model = self.t2s_model.float() | 
					
						
						|  | if self.vits_model is not None: | 
					
						
						|  | self.vits_model = self.vits_model.float() | 
					
						
						|  | if self.bert_model is not None: | 
					
						
						|  | self.bert_model = self.bert_model.float() | 
					
						
						|  | if self.cnhuhbert_model is not None: | 
					
						
						|  | self.cnhuhbert_model = self.cnhuhbert_model.float() | 
					
						
						|  |  | 
					
						
						|  | def set_device(self, device: torch.device, save: bool = True): | 
					
						
						|  | ''' | 
					
						
						|  | To set the device for all models. | 
					
						
						|  | Args: | 
					
						
						|  | device: torch.device, the device to use for all models. | 
					
						
						|  | ''' | 
					
						
						|  | self.configs.device = device | 
					
						
						|  | if save: | 
					
						
						|  | self.configs.save_configs() | 
					
						
						|  | if self.t2s_model is not None: | 
					
						
						|  | self.t2s_model = self.t2s_model.to(device) | 
					
						
						|  | if self.vits_model is not None: | 
					
						
						|  | self.vits_model = self.vits_model.to(device) | 
					
						
						|  | if self.bert_model is not None: | 
					
						
						|  | self.bert_model = self.bert_model.to(device) | 
					
						
						|  | if self.cnhuhbert_model is not None: | 
					
						
						|  | self.cnhuhbert_model = self.cnhuhbert_model.to(device) | 
					
						
						|  |  | 
					
						
						|  | def set_ref_audio(self, ref_audio_path:str): | 
					
						
						|  | ''' | 
					
						
						|  | To set the reference audio for the TTS model, | 
					
						
						|  | including the prompt_semantic and refer_spepc. | 
					
						
						|  | Args: | 
					
						
						|  | ref_audio_path: str, the path of the reference audio. | 
					
						
						|  | ''' | 
					
						
						|  | self._set_prompt_semantic(ref_audio_path) | 
					
						
						|  | self._set_ref_spec(ref_audio_path) | 
					
						
						|  | self._set_ref_audio_path(ref_audio_path) | 
					
						
						|  |  | 
					
						
						|  | def _set_ref_audio_path(self, ref_audio_path): | 
					
						
						|  | self.prompt_cache["ref_audio_path"] = ref_audio_path | 
					
						
						|  |  | 
					
						
						|  | def _set_ref_spec(self, ref_audio_path): | 
					
						
						|  | spec = self._get_ref_spec(ref_audio_path) | 
					
						
						|  | if self.prompt_cache["refer_spec"] in [[],None]: | 
					
						
						|  | self.prompt_cache["refer_spec"]=[spec] | 
					
						
						|  | else: | 
					
						
						|  | self.prompt_cache["refer_spec"][0] = spec | 
					
						
						|  |  | 
					
						
						|  | def _get_ref_spec(self, ref_audio_path): | 
					
						
						|  | audio = load_audio(ref_audio_path, int(self.configs.sampling_rate)) | 
					
						
						|  | audio = torch.FloatTensor(audio) | 
					
						
						|  | maxx=audio.abs().max() | 
					
						
						|  | if(maxx>1):audio/=min(2,maxx) | 
					
						
						|  | audio_norm = audio | 
					
						
						|  | audio_norm = audio_norm.unsqueeze(0) | 
					
						
						|  | spec = spectrogram_torch( | 
					
						
						|  | audio_norm, | 
					
						
						|  | self.configs.filter_length, | 
					
						
						|  | self.configs.sampling_rate, | 
					
						
						|  | self.configs.hop_length, | 
					
						
						|  | self.configs.win_length, | 
					
						
						|  | center=False, | 
					
						
						|  | ) | 
					
						
						|  | spec = spec.to(self.configs.device) | 
					
						
						|  | if self.configs.is_half: | 
					
						
						|  | spec = spec.half() | 
					
						
						|  | return spec | 
					
						
						|  |  | 
					
						
						|  | def _set_prompt_semantic(self, ref_wav_path:str): | 
					
						
						|  | zero_wav = np.zeros( | 
					
						
						|  | int(self.configs.sampling_rate * 0.3), | 
					
						
						|  | dtype=np.float16 if self.configs.is_half else np.float32, | 
					
						
						|  | ) | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | wav16k, sr = librosa.load(ref_wav_path, sr=16000) | 
					
						
						|  | if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000): | 
					
						
						|  | raise OSError(i18n("参考音频在3~10秒范围外,请更换!")) | 
					
						
						|  | wav16k = torch.from_numpy(wav16k) | 
					
						
						|  | zero_wav_torch = torch.from_numpy(zero_wav) | 
					
						
						|  | wav16k = wav16k.to(self.configs.device) | 
					
						
						|  | zero_wav_torch = zero_wav_torch.to(self.configs.device) | 
					
						
						|  | if self.configs.is_half: | 
					
						
						|  | wav16k = wav16k.half() | 
					
						
						|  | zero_wav_torch = zero_wav_torch.half() | 
					
						
						|  |  | 
					
						
						|  | wav16k = torch.cat([wav16k, zero_wav_torch]) | 
					
						
						|  | hubert_feature = self.cnhuhbert_model.model(wav16k.unsqueeze(0))[ | 
					
						
						|  | "last_hidden_state" | 
					
						
						|  | ].transpose( | 
					
						
						|  | 1, 2 | 
					
						
						|  | ) | 
					
						
						|  | codes = self.vits_model.extract_latent(hubert_feature) | 
					
						
						|  |  | 
					
						
						|  | prompt_semantic = codes[0, 0].to(self.configs.device) | 
					
						
						|  | self.prompt_cache["prompt_semantic"] = prompt_semantic | 
					
						
						|  |  | 
					
						
						|  | def batch_sequences(self, sequences: List[torch.Tensor], axis: int = 0, pad_value: int = 0, max_length:int=None): | 
					
						
						|  | seq = sequences[0] | 
					
						
						|  | ndim = seq.dim() | 
					
						
						|  | if axis < 0: | 
					
						
						|  | axis += ndim | 
					
						
						|  | dtype:torch.dtype = seq.dtype | 
					
						
						|  | pad_value = torch.tensor(pad_value, dtype=dtype) | 
					
						
						|  | seq_lengths = [seq.shape[axis] for seq in sequences] | 
					
						
						|  | if max_length is None: | 
					
						
						|  | max_length = max(seq_lengths) | 
					
						
						|  | else: | 
					
						
						|  | max_length = max(seq_lengths) if max_length < max(seq_lengths) else max_length | 
					
						
						|  |  | 
					
						
						|  | padded_sequences = [] | 
					
						
						|  | for seq, length in zip(sequences, seq_lengths): | 
					
						
						|  | padding = [0] * axis + [0, max_length - length] + [0] * (ndim - axis - 1) | 
					
						
						|  | padded_seq = torch.nn.functional.pad(seq, padding, value=pad_value) | 
					
						
						|  | padded_sequences.append(padded_seq) | 
					
						
						|  | batch = torch.stack(padded_sequences) | 
					
						
						|  | return batch | 
					
						
						|  |  | 
					
						
						|  | def to_batch(self, data:list, | 
					
						
						|  | prompt_data:dict=None, | 
					
						
						|  | batch_size:int=5, | 
					
						
						|  | threshold:float=0.75, | 
					
						
						|  | split_bucket:bool=True, | 
					
						
						|  | device:torch.device=torch.device("cpu"), | 
					
						
						|  | precision:torch.dtype=torch.float32, | 
					
						
						|  | ): | 
					
						
						|  | _data:list = [] | 
					
						
						|  | index_and_len_list = [] | 
					
						
						|  | for idx, item in enumerate(data): | 
					
						
						|  | norm_text_len = len(item["norm_text"]) | 
					
						
						|  | index_and_len_list.append([idx, norm_text_len]) | 
					
						
						|  |  | 
					
						
						|  | batch_index_list = [] | 
					
						
						|  | if split_bucket: | 
					
						
						|  | index_and_len_list.sort(key=lambda x: x[1]) | 
					
						
						|  | index_and_len_list = np.array(index_and_len_list, dtype=np.int64) | 
					
						
						|  |  | 
					
						
						|  | batch_index_list_len = 0 | 
					
						
						|  | pos = 0 | 
					
						
						|  | while pos <index_and_len_list.shape[0]: | 
					
						
						|  |  | 
					
						
						|  | pos_end = min(pos+batch_size,index_and_len_list.shape[0]) | 
					
						
						|  | while pos < pos_end: | 
					
						
						|  | batch=index_and_len_list[pos:pos_end, 1].astype(np.float32) | 
					
						
						|  | score=batch[(pos_end-pos)//2]/(batch.mean()+1e-8) | 
					
						
						|  | if (score>=threshold) or (pos_end-pos==1): | 
					
						
						|  | batch_index=index_and_len_list[pos:pos_end, 0].tolist() | 
					
						
						|  | batch_index_list_len += len(batch_index) | 
					
						
						|  | batch_index_list.append(batch_index) | 
					
						
						|  | pos = pos_end | 
					
						
						|  | break | 
					
						
						|  | pos_end=pos_end-1 | 
					
						
						|  |  | 
					
						
						|  | assert batch_index_list_len == len(data) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | for i in range(len(data)): | 
					
						
						|  | if i%batch_size == 0: | 
					
						
						|  | batch_index_list.append([]) | 
					
						
						|  | batch_index_list[-1].append(i) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for batch_idx, index_list in enumerate(batch_index_list): | 
					
						
						|  | item_list = [data[idx] for idx in index_list] | 
					
						
						|  | phones_list = [] | 
					
						
						|  | phones_len_list = [] | 
					
						
						|  |  | 
					
						
						|  | all_phones_list = [] | 
					
						
						|  | all_phones_len_list = [] | 
					
						
						|  | all_bert_features_list = [] | 
					
						
						|  | norm_text_batch = [] | 
					
						
						|  | all_bert_max_len = 0 | 
					
						
						|  | all_phones_max_len = 0 | 
					
						
						|  | for item in item_list: | 
					
						
						|  | if prompt_data is not None: | 
					
						
						|  | all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1)\ | 
					
						
						|  | .to(dtype=precision, device=device) | 
					
						
						|  | all_phones = torch.LongTensor(prompt_data["phones"]+item["phones"]).to(device) | 
					
						
						|  | phones = torch.LongTensor(item["phones"]).to(device) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | all_bert_features = item["bert_features"]\ | 
					
						
						|  | .to(dtype=precision, device=device) | 
					
						
						|  | phones = torch.LongTensor(item["phones"]).to(device) | 
					
						
						|  | all_phones = phones | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_bert_max_len = max(all_bert_max_len, all_bert_features.shape[-1]) | 
					
						
						|  | all_phones_max_len = max(all_phones_max_len, all_phones.shape[-1]) | 
					
						
						|  |  | 
					
						
						|  | phones_list.append(phones) | 
					
						
						|  | phones_len_list.append(phones.shape[-1]) | 
					
						
						|  | all_phones_list.append(all_phones) | 
					
						
						|  | all_phones_len_list.append(all_phones.shape[-1]) | 
					
						
						|  | all_bert_features_list.append(all_bert_features) | 
					
						
						|  | norm_text_batch.append(item["norm_text"]) | 
					
						
						|  |  | 
					
						
						|  | phones_batch = phones_list | 
					
						
						|  | all_phones_batch = all_phones_list | 
					
						
						|  | all_bert_features_batch = all_bert_features_list | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | max_len = max(all_bert_max_len, all_phones_max_len) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | batch = { | 
					
						
						|  | "phones": phones_batch, | 
					
						
						|  | "phones_len": torch.LongTensor(phones_len_list).to(device), | 
					
						
						|  | "all_phones": all_phones_batch, | 
					
						
						|  | "all_phones_len": torch.LongTensor(all_phones_len_list).to(device), | 
					
						
						|  | "all_bert_features": all_bert_features_batch, | 
					
						
						|  | "norm_text": norm_text_batch, | 
					
						
						|  | "max_len": max_len, | 
					
						
						|  | } | 
					
						
						|  | _data.append(batch) | 
					
						
						|  |  | 
					
						
						|  | return _data, batch_index_list | 
					
						
						|  |  | 
					
						
						|  | def recovery_order(self, data:list, batch_index_list:list)->list: | 
					
						
						|  | ''' | 
					
						
						|  | Recovery the order of the audio according to the batch_index_list. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | data (List[list(np.ndarray)]): the out of order audio . | 
					
						
						|  | batch_index_list (List[list[int]]): the batch index list. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | list (List[np.ndarray]): the data in the original order. | 
					
						
						|  | ''' | 
					
						
						|  | length = len(sum(batch_index_list, [])) | 
					
						
						|  | _data = [None]*length | 
					
						
						|  | for i, index_list in enumerate(batch_index_list): | 
					
						
						|  | for j, index in enumerate(index_list): | 
					
						
						|  | _data[index] = data[i][j] | 
					
						
						|  | return _data | 
					
						
						|  |  | 
					
						
						|  | def stop(self,): | 
					
						
						|  | ''' | 
					
						
						|  | Stop the inference process. | 
					
						
						|  | ''' | 
					
						
						|  | self.stop_flag = True | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def run(self, inputs:dict): | 
					
						
						|  | """ | 
					
						
						|  | Text to speech inference. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | inputs (dict): | 
					
						
						|  | { | 
					
						
						|  | "text": "",                   # str.(required) text to be synthesized | 
					
						
						|  | "text_lang: "",               # str.(required) language of the text to be synthesized | 
					
						
						|  | "ref_audio_path": "",         # str.(required) reference audio path | 
					
						
						|  | "aux_ref_audio_paths": [],    # list.(optional) auxiliary reference audio paths for multi-speaker tone fusion | 
					
						
						|  | "prompt_text": "",            # str.(optional) prompt text for the reference audio | 
					
						
						|  | "prompt_lang": "",            # str.(required) language of the prompt text for the reference audio | 
					
						
						|  | "top_k": 5,                   # int. top k sampling | 
					
						
						|  | "top_p": 1,                   # float. top p sampling | 
					
						
						|  | "temperature": 1,             # float. temperature for sampling | 
					
						
						|  | "text_split_method": "cut0",  # str. text split method, see text_segmentation_method.py for details. | 
					
						
						|  | "batch_size": 1,              # int. batch size for inference | 
					
						
						|  | "batch_threshold": 0.75,      # float. threshold for batch splitting. | 
					
						
						|  | "split_bucket: True,          # bool. whether to split the batch into multiple buckets. | 
					
						
						|  | "return_fragment": False,     # bool. step by step return the audio fragment. | 
					
						
						|  | "speed_factor":1.0,           # float. control the speed of the synthesized audio. | 
					
						
						|  | "fragment_interval":0.3,      # float. to control the interval of the audio fragment. | 
					
						
						|  | "seed": -1,                   # int. random seed for reproducibility. | 
					
						
						|  | "parallel_infer": True,       # bool. whether to use parallel inference. | 
					
						
						|  | "repetition_penalty": 1.35    # float. repetition penalty for T2S model. | 
					
						
						|  | } | 
					
						
						|  | returns: | 
					
						
						|  | Tuple[int, np.ndarray]: sampling rate and audio data. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | self.stop_flag:bool = False | 
					
						
						|  | text:str = inputs.get("text", "") | 
					
						
						|  | text_lang:str = inputs.get("text_lang", "") | 
					
						
						|  | ref_audio_path:str = inputs.get("ref_audio_path", "") | 
					
						
						|  | aux_ref_audio_paths:list = inputs.get("aux_ref_audio_paths", []) | 
					
						
						|  | prompt_text:str = inputs.get("prompt_text", "") | 
					
						
						|  | prompt_lang:str = inputs.get("prompt_lang", "") | 
					
						
						|  | top_k:int = inputs.get("top_k", 5) | 
					
						
						|  | top_p:float = inputs.get("top_p", 1) | 
					
						
						|  | temperature:float = inputs.get("temperature", 1) | 
					
						
						|  | text_split_method:str = inputs.get("text_split_method", "cut0") | 
					
						
						|  | batch_size = inputs.get("batch_size", 1) | 
					
						
						|  | batch_threshold = inputs.get("batch_threshold", 0.75) | 
					
						
						|  | speed_factor = inputs.get("speed_factor", 1.0) | 
					
						
						|  | split_bucket = inputs.get("split_bucket", True) | 
					
						
						|  | return_fragment = inputs.get("return_fragment", False) | 
					
						
						|  | fragment_interval = inputs.get("fragment_interval", 0.3) | 
					
						
						|  | seed = inputs.get("seed", -1) | 
					
						
						|  | seed = -1 if seed in ["", None] else seed | 
					
						
						|  | actual_seed = set_seed(seed) | 
					
						
						|  | parallel_infer = inputs.get("parallel_infer", True) | 
					
						
						|  | repetition_penalty = inputs.get("repetition_penalty", 1.35) | 
					
						
						|  |  | 
					
						
						|  | if parallel_infer: | 
					
						
						|  | print(i18n("并行推理模式已开启")) | 
					
						
						|  | self.t2s_model.model.infer_panel = self.t2s_model.model.infer_panel_batch_infer | 
					
						
						|  | else: | 
					
						
						|  | print(i18n("并行推理模式已关闭")) | 
					
						
						|  | self.t2s_model.model.infer_panel = self.t2s_model.model.infer_panel_naive_batched | 
					
						
						|  |  | 
					
						
						|  | if return_fragment: | 
					
						
						|  | print(i18n("分段返回模式已开启")) | 
					
						
						|  | if split_bucket: | 
					
						
						|  | split_bucket = False | 
					
						
						|  | print(i18n("分段返回模式不支持分桶处理,已自动关闭分桶处理")) | 
					
						
						|  |  | 
					
						
						|  | if split_bucket and speed_factor==1.0: | 
					
						
						|  | print(i18n("分桶处理模式已开启")) | 
					
						
						|  | elif speed_factor!=1.0: | 
					
						
						|  | print(i18n("语速调节不支持分桶处理,已自动关闭分桶处理")) | 
					
						
						|  | split_bucket = False | 
					
						
						|  | else: | 
					
						
						|  | print(i18n("分桶处理模式已关闭")) | 
					
						
						|  |  | 
					
						
						|  | if fragment_interval<0.01: | 
					
						
						|  | fragment_interval = 0.01 | 
					
						
						|  | print(i18n("分段间隔过小,已自动设置为0.01")) | 
					
						
						|  |  | 
					
						
						|  | no_prompt_text = False | 
					
						
						|  | if prompt_text in [None, ""]: | 
					
						
						|  | no_prompt_text = True | 
					
						
						|  |  | 
					
						
						|  | assert text_lang in self.configs.languages | 
					
						
						|  | if not no_prompt_text: | 
					
						
						|  | assert prompt_lang in self.configs.languages | 
					
						
						|  |  | 
					
						
						|  | if ref_audio_path in [None, ""] and \ | 
					
						
						|  | ((self.prompt_cache["prompt_semantic"] is None) or (self.prompt_cache["refer_spec"] in [None, []])): | 
					
						
						|  | raise ValueError("ref_audio_path cannot be empty, when the reference audio is not set using set_ref_audio()") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | t0 = ttime() | 
					
						
						|  | if (ref_audio_path is not None) and (ref_audio_path != self.prompt_cache["ref_audio_path"]): | 
					
						
						|  | if not os.path.exists(ref_audio_path): | 
					
						
						|  | raise ValueError(f"{ref_audio_path} not exists") | 
					
						
						|  | self.set_ref_audio(ref_audio_path) | 
					
						
						|  |  | 
					
						
						|  | aux_ref_audio_paths = aux_ref_audio_paths if aux_ref_audio_paths is not None else [] | 
					
						
						|  | paths = set(aux_ref_audio_paths)&set(self.prompt_cache["aux_ref_audio_paths"]) | 
					
						
						|  | if not (len(list(paths)) == len(aux_ref_audio_paths) == len(self.prompt_cache["aux_ref_audio_paths"])): | 
					
						
						|  | self.prompt_cache["aux_ref_audio_paths"] = aux_ref_audio_paths | 
					
						
						|  | self.prompt_cache["refer_spec"] = [self.prompt_cache["refer_spec"][0]] | 
					
						
						|  | for path in aux_ref_audio_paths: | 
					
						
						|  | if path in [None, ""]: | 
					
						
						|  | continue | 
					
						
						|  | if not os.path.exists(path): | 
					
						
						|  | print(i18n("音频文件不存在,跳过:"), path) | 
					
						
						|  | continue | 
					
						
						|  | self.prompt_cache["refer_spec"].append(self._get_ref_spec(path)) | 
					
						
						|  |  | 
					
						
						|  | if not no_prompt_text: | 
					
						
						|  | prompt_text = prompt_text.strip("\n") | 
					
						
						|  | if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_lang != "en" else "." | 
					
						
						|  | print(i18n("实际输入的参考文本:"), prompt_text) | 
					
						
						|  | if self.prompt_cache["prompt_text"] != prompt_text: | 
					
						
						|  | self.prompt_cache["prompt_text"] = prompt_text | 
					
						
						|  | self.prompt_cache["prompt_lang"] = prompt_lang | 
					
						
						|  | phones, bert_features, norm_text = \ | 
					
						
						|  | self.text_preprocessor.segment_and_extract_feature_for_text( | 
					
						
						|  | prompt_text, | 
					
						
						|  | prompt_lang, | 
					
						
						|  | self.configs.version) | 
					
						
						|  | self.prompt_cache["phones"] = phones | 
					
						
						|  | self.prompt_cache["bert_features"] = bert_features | 
					
						
						|  | self.prompt_cache["norm_text"] = norm_text | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | t1 = ttime() | 
					
						
						|  | data:list = None | 
					
						
						|  | if not return_fragment: | 
					
						
						|  | data = self.text_preprocessor.preprocess(text, text_lang, text_split_method, self.configs.version) | 
					
						
						|  | if len(data) == 0: | 
					
						
						|  | yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate), | 
					
						
						|  | dtype=np.int16) | 
					
						
						|  | return | 
					
						
						|  |  | 
					
						
						|  | batch_index_list:list = None | 
					
						
						|  | data, batch_index_list = self.to_batch(data, | 
					
						
						|  | prompt_data=self.prompt_cache if not no_prompt_text else None, | 
					
						
						|  | batch_size=batch_size, | 
					
						
						|  | threshold=batch_threshold, | 
					
						
						|  | split_bucket=split_bucket, | 
					
						
						|  | device=self.configs.device, | 
					
						
						|  | precision=self.precision | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | print(f'############ {i18n("切分文本")} ############') | 
					
						
						|  | texts = self.text_preprocessor.pre_seg_text(text, text_lang, text_split_method) | 
					
						
						|  | data = [] | 
					
						
						|  | for i in range(len(texts)): | 
					
						
						|  | if i%batch_size == 0: | 
					
						
						|  | data.append([]) | 
					
						
						|  | data[-1].append(texts[i]) | 
					
						
						|  |  | 
					
						
						|  | def make_batch(batch_texts): | 
					
						
						|  | batch_data = [] | 
					
						
						|  | print(f'############ {i18n("提取文本Bert特征")} ############') | 
					
						
						|  | for text in tqdm(batch_texts): | 
					
						
						|  | phones, bert_features, norm_text = self.text_preprocessor.segment_and_extract_feature_for_text(text, text_lang, self.configs.version) | 
					
						
						|  | if phones is None: | 
					
						
						|  | continue | 
					
						
						|  | res={ | 
					
						
						|  | "phones": phones, | 
					
						
						|  | "bert_features": bert_features, | 
					
						
						|  | "norm_text": norm_text, | 
					
						
						|  | } | 
					
						
						|  | batch_data.append(res) | 
					
						
						|  | if len(batch_data) == 0: | 
					
						
						|  | return None | 
					
						
						|  | batch, _ = self.to_batch(batch_data, | 
					
						
						|  | prompt_data=self.prompt_cache if not no_prompt_text else None, | 
					
						
						|  | batch_size=batch_size, | 
					
						
						|  | threshold=batch_threshold, | 
					
						
						|  | split_bucket=False, | 
					
						
						|  | device=self.configs.device, | 
					
						
						|  | precision=self.precision | 
					
						
						|  | ) | 
					
						
						|  | return batch[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | t2 = ttime() | 
					
						
						|  | try: | 
					
						
						|  | print("############ 推理 ############") | 
					
						
						|  |  | 
					
						
						|  | t_34 = 0.0 | 
					
						
						|  | t_45 = 0.0 | 
					
						
						|  | audio = [] | 
					
						
						|  | for item in data: | 
					
						
						|  | t3 = ttime() | 
					
						
						|  | if return_fragment: | 
					
						
						|  | item = make_batch(item) | 
					
						
						|  | if item is None: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | batch_phones:List[torch.LongTensor] = item["phones"] | 
					
						
						|  |  | 
					
						
						|  | batch_phones_len:torch.LongTensor = item["phones_len"] | 
					
						
						|  | all_phoneme_ids:torch.LongTensor = item["all_phones"] | 
					
						
						|  | all_phoneme_lens:torch.LongTensor  = item["all_phones_len"] | 
					
						
						|  | all_bert_features:torch.LongTensor = item["all_bert_features"] | 
					
						
						|  | norm_text:str = item["norm_text"] | 
					
						
						|  | max_len = item["max_len"] | 
					
						
						|  |  | 
					
						
						|  | print(i18n("前端处理后的文本(每句):"), norm_text) | 
					
						
						|  | if no_prompt_text : | 
					
						
						|  | prompt = None | 
					
						
						|  | else: | 
					
						
						|  | prompt = self.prompt_cache["prompt_semantic"].expand(len(all_phoneme_ids), -1).to(self.configs.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pred_semantic_list, idx_list = self.t2s_model.model.infer_panel( | 
					
						
						|  | all_phoneme_ids, | 
					
						
						|  | all_phoneme_lens, | 
					
						
						|  | prompt, | 
					
						
						|  | all_bert_features, | 
					
						
						|  |  | 
					
						
						|  | top_k=top_k, | 
					
						
						|  | top_p=top_p, | 
					
						
						|  | temperature=temperature, | 
					
						
						|  | early_stop_num=self.configs.hz * self.configs.max_sec, | 
					
						
						|  | max_len=max_len, | 
					
						
						|  | repetition_penalty=repetition_penalty, | 
					
						
						|  | ) | 
					
						
						|  | t4 = ttime() | 
					
						
						|  | t_34 += t4 - t3 | 
					
						
						|  |  | 
					
						
						|  | refer_audio_spec:torch.Tensor = [item.to(dtype=self.precision, device=self.configs.device) for item in self.prompt_cache["refer_spec"]] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | batch_audio_fragment = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if speed_factor == 1.0: | 
					
						
						|  |  | 
					
						
						|  | pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)] | 
					
						
						|  | upsample_rate = math.prod(self.vits_model.upsample_rates) | 
					
						
						|  | audio_frag_idx = [pred_semantic_list[i].shape[0]*2*upsample_rate for i in range(0, len(pred_semantic_list))] | 
					
						
						|  | audio_frag_end_idx = [ sum(audio_frag_idx[:i+1]) for i in range(0, len(audio_frag_idx))] | 
					
						
						|  | all_pred_semantic = torch.cat(pred_semantic_list).unsqueeze(0).unsqueeze(0).to(self.configs.device) | 
					
						
						|  | _batch_phones = torch.cat(batch_phones).unsqueeze(0).to(self.configs.device) | 
					
						
						|  | _batch_audio_fragment = (self.vits_model.decode( | 
					
						
						|  | all_pred_semantic, _batch_phones, refer_audio_spec, speed=speed_factor | 
					
						
						|  | ).detach()[0, 0, :]) | 
					
						
						|  | audio_frag_end_idx.insert(0, 0) | 
					
						
						|  | batch_audio_fragment= [_batch_audio_fragment[audio_frag_end_idx[i-1]:audio_frag_end_idx[i]] for i in range(1, len(audio_frag_end_idx))] | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | for i, idx in enumerate(idx_list): | 
					
						
						|  | phones = batch_phones[i].unsqueeze(0).to(self.configs.device) | 
					
						
						|  | _pred_semantic = (pred_semantic_list[i][-idx:].unsqueeze(0).unsqueeze(0)) | 
					
						
						|  | audio_fragment =(self.vits_model.decode( | 
					
						
						|  | _pred_semantic, phones, refer_audio_spec, speed=speed_factor | 
					
						
						|  | ).detach()[0, 0, :]) | 
					
						
						|  | batch_audio_fragment.append( | 
					
						
						|  | audio_fragment | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | t5 = ttime() | 
					
						
						|  | t_45 += t5 - t4 | 
					
						
						|  | if return_fragment: | 
					
						
						|  | print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t4 - t3, t5 - t4)) | 
					
						
						|  | yield self.audio_postprocess([batch_audio_fragment], | 
					
						
						|  | self.configs.sampling_rate, | 
					
						
						|  | None, | 
					
						
						|  | speed_factor, | 
					
						
						|  | False, | 
					
						
						|  | fragment_interval | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | audio.append(batch_audio_fragment) | 
					
						
						|  |  | 
					
						
						|  | if self.stop_flag: | 
					
						
						|  | yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate), | 
					
						
						|  | dtype=np.int16) | 
					
						
						|  | return | 
					
						
						|  |  | 
					
						
						|  | if not return_fragment: | 
					
						
						|  | print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t_34, t_45)) | 
					
						
						|  | if len(audio) == 0: | 
					
						
						|  | yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate), | 
					
						
						|  | dtype=np.int16) | 
					
						
						|  | return | 
					
						
						|  | yield self.audio_postprocess(audio, | 
					
						
						|  | self.configs.sampling_rate, | 
					
						
						|  | batch_index_list, | 
					
						
						|  | speed_factor, | 
					
						
						|  | split_bucket, | 
					
						
						|  | fragment_interval | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | except Exception as e: | 
					
						
						|  | traceback.print_exc() | 
					
						
						|  |  | 
					
						
						|  | yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate), | 
					
						
						|  | dtype=np.int16) | 
					
						
						|  |  | 
					
						
						|  | del self.t2s_model | 
					
						
						|  | del self.vits_model | 
					
						
						|  | self.t2s_model = None | 
					
						
						|  | self.vits_model = None | 
					
						
						|  | self.init_t2s_weights(self.configs.t2s_weights_path) | 
					
						
						|  | self.init_vits_weights(self.configs.vits_weights_path) | 
					
						
						|  | raise e | 
					
						
						|  | finally: | 
					
						
						|  | self.empty_cache() | 
					
						
						|  |  | 
					
						
						|  | def empty_cache(self): | 
					
						
						|  | try: | 
					
						
						|  | gc.collect() | 
					
						
						|  | if "cuda" in str(self.configs.device): | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  | elif str(self.configs.device) == "mps": | 
					
						
						|  | torch.mps.empty_cache() | 
					
						
						|  | except: | 
					
						
						|  | pass | 
					
						
						|  |  | 
					
						
						|  | def audio_postprocess(self, | 
					
						
						|  | audio:List[torch.Tensor], | 
					
						
						|  | sr:int, | 
					
						
						|  | batch_index_list:list=None, | 
					
						
						|  | speed_factor:float=1.0, | 
					
						
						|  | split_bucket:bool=True, | 
					
						
						|  | fragment_interval:float=0.3 | 
					
						
						|  | )->Tuple[int, np.ndarray]: | 
					
						
						|  | zero_wav = torch.zeros( | 
					
						
						|  | int(self.configs.sampling_rate * fragment_interval), | 
					
						
						|  | dtype=self.precision, | 
					
						
						|  | device=self.configs.device | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | for i, batch in enumerate(audio): | 
					
						
						|  | for j, audio_fragment in enumerate(batch): | 
					
						
						|  | max_audio=torch.abs(audio_fragment).max() | 
					
						
						|  | if max_audio>1: audio_fragment/=max_audio | 
					
						
						|  | audio_fragment:torch.Tensor = torch.cat([audio_fragment, zero_wav], dim=0) | 
					
						
						|  | audio[i][j] = audio_fragment.cpu().numpy() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if split_bucket: | 
					
						
						|  | audio = self.recovery_order(audio, batch_index_list) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | audio = sum(audio, []) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | audio = np.concatenate(audio, 0) | 
					
						
						|  | audio = (audio * 32768).astype(np.int16) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return sr, audio | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def speed_change(input_audio:np.ndarray, speed:float, sr:int): | 
					
						
						|  |  | 
					
						
						|  | raw_audio = input_audio.astype(np.int16).tobytes() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input_stream = ffmpeg.input('pipe:', format='s16le', acodec='pcm_s16le', ar=str(sr), ac=1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | output_stream = input_stream.filter('atempo', speed) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | out, _ = ( | 
					
						
						|  | output_stream.output('pipe:', format='s16le', acodec='pcm_s16le') | 
					
						
						|  | .run(input=raw_audio, capture_stdout=True, capture_stderr=True) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | processed_audio = np.frombuffer(out, np.int16) | 
					
						
						|  |  | 
					
						
						|  | return processed_audio |