|
|
|
|
|
import argparse |
|
from typing import Optional |
|
from my_utils import load_audio |
|
from text import cleaned_text_to_sequence |
|
import torch |
|
import torchaudio |
|
|
|
from torch import IntTensor, LongTensor, Tensor, nn |
|
from torch.nn import functional as F |
|
|
|
from transformers import AutoModelForMaskedLM, AutoTokenizer |
|
from feature_extractor import cnhubert |
|
|
|
from AR.models.t2s_lightning_module import Text2SemanticLightningModule |
|
from module.models_onnx import SynthesizerTrn |
|
|
|
from inference_webui import get_phones_and_bert |
|
|
|
import os |
|
import soundfile |
|
|
|
default_config = { |
|
"embedding_dim": 512, |
|
"hidden_dim": 512, |
|
"num_head": 8, |
|
"num_layers": 12, |
|
"num_codebook": 8, |
|
"p_dropout": 0.0, |
|
"vocab_size": 1024 + 1, |
|
"phoneme_vocab_size": 512, |
|
"EOS": 1024, |
|
} |
|
|
|
def get_raw_t2s_model(dict_s1) -> Text2SemanticLightningModule: |
|
config = dict_s1["config"] |
|
config["model"]["dropout"] = float(config["model"]["dropout"]) |
|
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) |
|
t2s_model.load_state_dict(dict_s1["weight"]) |
|
t2s_model = t2s_model.eval() |
|
return t2s_model |
|
|
|
@torch.jit.script |
|
def logits_to_probs( |
|
logits, |
|
previous_tokens: Optional[torch.Tensor] = None, |
|
temperature: float = 1.0, |
|
top_k: Optional[int] = None, |
|
top_p: Optional[int] = None, |
|
repetition_penalty: float = 1.0, |
|
): |
|
|
|
|
|
|
|
|
|
if previous_tokens is not None and repetition_penalty != 1.0: |
|
previous_tokens = previous_tokens.long() |
|
score = torch.gather(logits, dim=1, index=previous_tokens) |
|
score = torch.where( |
|
score < 0, score * repetition_penalty, score / repetition_penalty |
|
) |
|
logits.scatter_(dim=1, index=previous_tokens, src=score) |
|
|
|
if top_p is not None and top_p < 1.0: |
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True) |
|
cum_probs = torch.cumsum( |
|
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1 |
|
) |
|
sorted_indices_to_remove = cum_probs > top_p |
|
sorted_indices_to_remove[:, 0] = False |
|
indices_to_remove = sorted_indices_to_remove.scatter( |
|
dim=1, index=sorted_indices, src=sorted_indices_to_remove |
|
) |
|
logits = logits.masked_fill(indices_to_remove, -float("Inf")) |
|
|
|
logits = logits / max(temperature, 1e-5) |
|
|
|
if top_k is not None: |
|
v, _ = torch.topk(logits, min(top_k, logits.size(-1))) |
|
pivot = v[: , -1].unsqueeze(-1) |
|
logits = torch.where(logits < pivot, -float("Inf"), logits) |
|
|
|
probs = torch.nn.functional.softmax(logits, dim=-1) |
|
return probs |
|
|
|
@torch.jit.script |
|
def multinomial_sample_one_no_sync(probs_sort): |
|
|
|
q = torch.randn_like(probs_sort) |
|
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int) |
|
|
|
@torch.jit.script |
|
def sample( |
|
logits, |
|
previous_tokens, |
|
temperature: float = 1.0, |
|
top_k: Optional[int] = None, |
|
top_p: Optional[int] = None, |
|
repetition_penalty: float = 1.0, |
|
): |
|
probs = logits_to_probs( |
|
logits=logits, previous_tokens=previous_tokens, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty |
|
) |
|
idx_next = multinomial_sample_one_no_sync(probs) |
|
return idx_next, probs |
|
|
|
|
|
@torch.jit.script |
|
def spectrogram_torch(y:Tensor, n_fft:int, sampling_rate:int, hop_size:int, win_size:int, center:bool=False): |
|
hann_window = torch.hann_window(win_size,device=y.device,dtype=y.dtype) |
|
y = torch.nn.functional.pad( |
|
y.unsqueeze(1), |
|
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), |
|
mode="reflect", |
|
) |
|
y = y.squeeze(1) |
|
spec = torch.stft( |
|
y, |
|
n_fft, |
|
hop_length=hop_size, |
|
win_length=win_size, |
|
window=hann_window, |
|
center=center, |
|
pad_mode="reflect", |
|
normalized=False, |
|
onesided=True, |
|
return_complex=False, |
|
) |
|
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) |
|
return spec |
|
|
|
|
|
class DictToAttrRecursive(dict): |
|
def __init__(self, input_dict): |
|
super().__init__(input_dict) |
|
for key, value in input_dict.items(): |
|
if isinstance(value, dict): |
|
value = DictToAttrRecursive(value) |
|
self[key] = value |
|
setattr(self, key, value) |
|
|
|
def __getattr__(self, item): |
|
try: |
|
return self[item] |
|
except KeyError: |
|
raise AttributeError(f"Attribute {item} not found") |
|
|
|
def __setattr__(self, key, value): |
|
if isinstance(value, dict): |
|
value = DictToAttrRecursive(value) |
|
super(DictToAttrRecursive, self).__setitem__(key, value) |
|
super().__setattr__(key, value) |
|
|
|
def __delattr__(self, item): |
|
try: |
|
del self[item] |
|
except KeyError: |
|
raise AttributeError(f"Attribute {item} not found") |
|
|
|
@torch.jit.script |
|
class T2SMLP: |
|
def __init__(self, w1, b1, w2, b2): |
|
self.w1 = w1 |
|
self.b1 = b1 |
|
self.w2 = w2 |
|
self.b2 = b2 |
|
|
|
def forward(self, x): |
|
x = F.relu(F.linear(x, self.w1, self.b1)) |
|
x = F.linear(x, self.w2, self.b2) |
|
return x |
|
|
|
@torch.jit.script |
|
class T2SBlock: |
|
def __init__( |
|
self, |
|
num_heads: int, |
|
hidden_dim: int, |
|
mlp: T2SMLP, |
|
qkv_w, |
|
qkv_b, |
|
out_w, |
|
out_b, |
|
norm_w1, |
|
norm_b1, |
|
norm_eps1: float, |
|
norm_w2, |
|
norm_b2, |
|
norm_eps2: float, |
|
): |
|
self.num_heads = num_heads |
|
self.mlp = mlp |
|
self.hidden_dim: int = hidden_dim |
|
self.qkv_w = qkv_w |
|
self.qkv_b = qkv_b |
|
self.out_w = out_w |
|
self.out_b = out_b |
|
self.norm_w1 = norm_w1 |
|
self.norm_b1 = norm_b1 |
|
self.norm_eps1 = norm_eps1 |
|
self.norm_w2 = norm_w2 |
|
self.norm_b2 = norm_b2 |
|
self.norm_eps2 = norm_eps2 |
|
|
|
self.false = torch.tensor(False, dtype=torch.bool) |
|
|
|
@torch.jit.ignore |
|
def to_mask(self, x:torch.Tensor, padding_mask:Optional[torch.Tensor]): |
|
if padding_mask is None: |
|
return x |
|
|
|
if padding_mask.dtype == torch.bool: |
|
return x.masked_fill(padding_mask, 0) |
|
else: |
|
return x * padding_mask |
|
|
|
def process_prompt(self, x:torch.Tensor, attn_mask : torch.Tensor, padding_mask:Optional[torch.Tensor]=None): |
|
q, k, v = F.linear(self.to_mask(x, padding_mask), self.qkv_w, self.qkv_b).chunk(3, dim=-1) |
|
|
|
batch_size = q.shape[0] |
|
q_len = q.shape[1] |
|
kv_len = k.shape[1] |
|
|
|
q = self.to_mask(q, padding_mask) |
|
k_cache = self.to_mask(k, padding_mask) |
|
v_cache = self.to_mask(v, padding_mask) |
|
|
|
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2) |
|
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2) |
|
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2) |
|
|
|
attn = F.scaled_dot_product_attention(q, k, v, ~attn_mask) |
|
|
|
attn = attn.permute(2, 0, 1, 3).reshape(batch_size*q_len, self.hidden_dim) |
|
attn = attn.view(q_len, batch_size, self.hidden_dim).transpose(1, 0) |
|
attn = F.linear(self.to_mask(attn, padding_mask), self.out_w, self.out_b) |
|
|
|
if padding_mask is not None: |
|
for i in range(batch_size): |
|
|
|
if self.false.device!= padding_mask.device: |
|
self.false = self.false.to(padding_mask.device) |
|
idx = torch.where(padding_mask[i,:,0]==self.false)[0] |
|
x_item = x[i,idx,:].unsqueeze(0) |
|
attn_item = attn[i,idx,:].unsqueeze(0) |
|
x_item = x_item + attn_item |
|
x_item = F.layer_norm( |
|
x_item, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1 |
|
) |
|
x_item = x_item + self.mlp.forward(x_item) |
|
x_item = F.layer_norm( |
|
x_item, |
|
[self.hidden_dim], |
|
self.norm_w2, |
|
self.norm_b2, |
|
self.norm_eps2, |
|
) |
|
x[i,idx,:] = x_item.squeeze(0) |
|
x = self.to_mask(x, padding_mask) |
|
else: |
|
x = x + attn |
|
x = F.layer_norm( |
|
x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1 |
|
) |
|
x = x + self.mlp.forward(x) |
|
x = F.layer_norm( |
|
x, |
|
[self.hidden_dim], |
|
self.norm_w2, |
|
self.norm_b2, |
|
self.norm_eps2, |
|
) |
|
return x, k_cache, v_cache |
|
|
|
def decode_next_token(self, x:torch.Tensor, k_cache:torch.Tensor, v_cache:torch.Tensor): |
|
q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1) |
|
|
|
k_cache = torch.cat([k_cache, k], dim=1) |
|
v_cache = torch.cat([v_cache, v], dim=1) |
|
|
|
batch_size = q.shape[0] |
|
q_len = q.shape[1] |
|
kv_len = k_cache.shape[1] |
|
|
|
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2) |
|
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2) |
|
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2) |
|
|
|
attn = F.scaled_dot_product_attention(q, k, v) |
|
|
|
attn = attn.permute(2, 0, 1, 3).reshape(batch_size*q_len, self.hidden_dim) |
|
attn = attn.view(q_len, batch_size, self.hidden_dim).transpose(1, 0) |
|
attn = F.linear(attn, self.out_w, self.out_b) |
|
|
|
x = x + attn |
|
x = F.layer_norm( |
|
x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1 |
|
) |
|
x = x + self.mlp.forward(x) |
|
x = F.layer_norm( |
|
x, |
|
[self.hidden_dim], |
|
self.norm_w2, |
|
self.norm_b2, |
|
self.norm_eps2, |
|
) |
|
return x, k_cache, v_cache |
|
|
|
@torch.jit.script |
|
class T2STransformer: |
|
def __init__(self, num_blocks : int, blocks: list[T2SBlock]): |
|
self.num_blocks : int = num_blocks |
|
self.blocks = blocks |
|
|
|
def process_prompt( |
|
self, x:torch.Tensor, attn_mask : torch.Tensor,padding_mask : Optional[torch.Tensor]=None): |
|
k_cache : list[torch.Tensor] = [] |
|
v_cache : list[torch.Tensor] = [] |
|
for i in range(self.num_blocks): |
|
x, k_cache_, v_cache_ = self.blocks[i].process_prompt(x, attn_mask, padding_mask) |
|
k_cache.append(k_cache_) |
|
v_cache.append(v_cache_) |
|
return x, k_cache, v_cache |
|
|
|
def decode_next_token( |
|
self, x:torch.Tensor, |
|
k_cache: list[torch.Tensor], |
|
v_cache: list[torch.Tensor]): |
|
for i in range(self.num_blocks): |
|
x, k_cache[i], v_cache[i] = self.blocks[i].decode_next_token(x, k_cache[i], v_cache[i]) |
|
return x, k_cache, v_cache |
|
|
|
class VitsModel(nn.Module): |
|
def __init__(self, vits_path): |
|
super().__init__() |
|
|
|
dict_s2 = torch.load(vits_path) |
|
self.hps = dict_s2["config"] |
|
if dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322: |
|
self.hps["model"]["version"] = "v1" |
|
else: |
|
self.hps["model"]["version"] = "v2" |
|
|
|
self.hps = DictToAttrRecursive(self.hps) |
|
self.hps.model.semantic_frame_rate = "25hz" |
|
self.vq_model = SynthesizerTrn( |
|
self.hps.data.filter_length // 2 + 1, |
|
self.hps.train.segment_size // self.hps.data.hop_length, |
|
n_speakers=self.hps.data.n_speakers, |
|
**self.hps.model |
|
) |
|
self.vq_model.eval() |
|
self.vq_model.load_state_dict(dict_s2["weight"], strict=False) |
|
|
|
def forward(self, text_seq, pred_semantic, ref_audio, speed=1.0): |
|
refer = spectrogram_torch( |
|
ref_audio, |
|
self.hps.data.filter_length, |
|
self.hps.data.sampling_rate, |
|
self.hps.data.hop_length, |
|
self.hps.data.win_length, |
|
center=False |
|
) |
|
return self.vq_model(pred_semantic, text_seq, refer, speed)[0, 0] |
|
|
|
class T2SModel(nn.Module): |
|
def __init__(self,raw_t2s:Text2SemanticLightningModule): |
|
super(T2SModel, self).__init__() |
|
self.model_dim = raw_t2s.model.model_dim |
|
self.embedding_dim = raw_t2s.model.embedding_dim |
|
self.num_head = raw_t2s.model.num_head |
|
self.num_layers = raw_t2s.model.num_layers |
|
self.vocab_size = raw_t2s.model.vocab_size |
|
self.phoneme_vocab_size = raw_t2s.model.phoneme_vocab_size |
|
|
|
self.EOS:int = int(raw_t2s.model.EOS) |
|
self.norm_first = raw_t2s.model.norm_first |
|
assert self.EOS == self.vocab_size - 1 |
|
self.hz = 50 |
|
|
|
self.bert_proj = raw_t2s.model.bert_proj |
|
self.ar_text_embedding = raw_t2s.model.ar_text_embedding |
|
self.ar_text_position = raw_t2s.model.ar_text_position |
|
self.ar_audio_embedding = raw_t2s.model.ar_audio_embedding |
|
self.ar_audio_position = raw_t2s.model.ar_audio_position |
|
|
|
|
|
|
|
|
|
blocks = [] |
|
h = raw_t2s.model.h |
|
|
|
for i in range(self.num_layers): |
|
layer = h.layers[i] |
|
t2smlp = T2SMLP( |
|
layer.linear1.weight, |
|
layer.linear1.bias, |
|
layer.linear2.weight, |
|
layer.linear2.bias |
|
) |
|
|
|
block = T2SBlock( |
|
self.num_head, |
|
self.model_dim, |
|
t2smlp, |
|
layer.self_attn.in_proj_weight, |
|
layer.self_attn.in_proj_bias, |
|
layer.self_attn.out_proj.weight, |
|
layer.self_attn.out_proj.bias, |
|
layer.norm1.weight, |
|
layer.norm1.bias, |
|
layer.norm1.eps, |
|
layer.norm2.weight, |
|
layer.norm2.bias, |
|
layer.norm2.eps |
|
) |
|
|
|
blocks.append(block) |
|
|
|
self.t2s_transformer = T2STransformer(self.num_layers, blocks) |
|
|
|
|
|
self.ar_predict_layer = raw_t2s.model.ar_predict_layer |
|
|
|
self.max_sec = raw_t2s.config["data"]["max_sec"] |
|
self.top_k = int(raw_t2s.config["inference"]["top_k"]) |
|
self.early_stop_num = torch.LongTensor([self.hz * self.max_sec]) |
|
|
|
def forward(self,prompts:LongTensor, ref_seq:LongTensor, text_seq:LongTensor, ref_bert:torch.Tensor, text_bert:torch.Tensor): |
|
bert = torch.cat([ref_bert.T, text_bert.T], 1) |
|
all_phoneme_ids = torch.cat([ref_seq, text_seq], 1) |
|
bert = bert.unsqueeze(0) |
|
|
|
x = self.ar_text_embedding(all_phoneme_ids) |
|
x = x + self.bert_proj(bert.transpose(1, 2)) |
|
x:torch.Tensor = self.ar_text_position(x) |
|
|
|
early_stop_num = self.early_stop_num |
|
|
|
|
|
|
|
|
|
y = prompts |
|
|
|
|
|
x_len = x.shape[1] |
|
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool) |
|
|
|
y_emb = self.ar_audio_embedding(y) |
|
y_len = y_emb.shape[1] |
|
prefix_len = y.shape[1] |
|
y_pos = self.ar_audio_position(y_emb) |
|
xy_pos = torch.concat([x, y_pos], dim=1) |
|
|
|
bsz = x.shape[0] |
|
src_len = x_len + y_len |
|
x_attn_mask_pad = F.pad( |
|
x_attn_mask, |
|
(0, y_len), |
|
value=True, |
|
) |
|
y_attn_mask = F.pad( |
|
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1), |
|
(x_len, 0), |
|
value=False, |
|
) |
|
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)\ |
|
.unsqueeze(0)\ |
|
.expand(bsz*self.num_head, -1, -1)\ |
|
.view(bsz, self.num_head, src_len, src_len)\ |
|
.to(device=x.device, dtype=torch.bool) |
|
|
|
idx = 0 |
|
|
|
xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask, None) |
|
|
|
logits = self.ar_predict_layer(xy_dec[:, -1]) |
|
logits = logits[:, :-1] |
|
samples = sample(logits, y, top_k=self.top_k, top_p=1, repetition_penalty=1.35, temperature=1.0)[0] |
|
y = torch.concat([y, samples], dim=1) |
|
y_emb = self.ar_audio_embedding(y[:, -1:]) |
|
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to(dtype=y_emb.dtype,device=y_emb.device) |
|
|
|
stop = False |
|
|
|
for idx in range(1, 1500): |
|
|
|
|
|
xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache) |
|
logits = self.ar_predict_layer(xy_dec[:, -1]) |
|
|
|
if(idx<11): |
|
logits = logits[:, :-1] |
|
|
|
samples = sample(logits, y, top_k=self.top_k, top_p=1, repetition_penalty=1.35, temperature=1.0)[0] |
|
|
|
y = torch.concat([y, samples], dim=1) |
|
|
|
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num: |
|
stop = True |
|
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS: |
|
stop = True |
|
if stop: |
|
if y.shape[1] == 0: |
|
y = torch.concat([y, torch.zeros_like(samples)], dim=1) |
|
break |
|
|
|
y_emb = self.ar_audio_embedding(y[:, -1:]) |
|
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to(dtype=y_emb.dtype,device=y_emb.device) |
|
|
|
y[0,-1] = 0 |
|
|
|
return y[:, -idx:].unsqueeze(0) |
|
|
|
bert_path = os.environ.get( |
|
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large" |
|
) |
|
cnhubert_base_path = "GPT_SoVITS/pretrained_models/chinese-hubert-base" |
|
cnhubert.cnhubert_base_path = cnhubert_base_path |
|
|
|
@torch.jit.script |
|
def build_phone_level_feature(res:Tensor, word2ph:IntTensor): |
|
phone_level_feature = [] |
|
for i in range(word2ph.shape[0]): |
|
repeat_feature = res[i].repeat(word2ph[i].item(), 1) |
|
phone_level_feature.append(repeat_feature) |
|
phone_level_feature = torch.cat(phone_level_feature, dim=0) |
|
|
|
return phone_level_feature |
|
|
|
class MyBertModel(torch.nn.Module): |
|
def __init__(self, bert_model): |
|
super(MyBertModel, self).__init__() |
|
self.bert = bert_model |
|
|
|
def forward(self, input_ids:torch.Tensor, attention_mask:torch.Tensor, token_type_ids:torch.Tensor, word2ph:IntTensor): |
|
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) |
|
|
|
res = torch.cat(outputs[1][-3:-2], -1)[0][1:-1] |
|
return build_phone_level_feature(res, word2ph) |
|
|
|
class SSLModel(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.ssl = cnhubert.get_model().model |
|
|
|
def forward(self, ref_audio_16k)-> torch.Tensor: |
|
ssl_content = self.ssl(ref_audio_16k)["last_hidden_state"].transpose(1, 2) |
|
return ssl_content |
|
|
|
class ExportSSLModel(torch.nn.Module): |
|
def __init__(self,ssl:SSLModel): |
|
super().__init__() |
|
self.ssl = ssl |
|
|
|
def forward(self, ref_audio:torch.Tensor): |
|
return self.ssl(ref_audio) |
|
|
|
@torch.jit.export |
|
def resample(self,ref_audio:torch.Tensor,src_sr:int,dst_sr:int)->torch.Tensor: |
|
audio = resamplex(ref_audio,src_sr,dst_sr).float() |
|
return audio |
|
|
|
def export_bert(output_path): |
|
tokenizer = AutoTokenizer.from_pretrained(bert_path) |
|
|
|
text = "叹息声一声接着一声传出,木兰对着房门织布.听不见织布机织布的声音,只听见木兰在叹息.问木兰在想什么?问木兰在惦记什么?木兰答道,我也没有在想什么,也没有在惦记什么." |
|
ref_bert_inputs = tokenizer(text, return_tensors="pt") |
|
word2ph = [] |
|
for c in text: |
|
if c in [',','。',':','?',",",".","?"]: |
|
word2ph.append(1) |
|
else: |
|
word2ph.append(2) |
|
ref_bert_inputs['word2ph'] = torch.Tensor(word2ph).int() |
|
|
|
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path,output_hidden_states=True,torchscript=True) |
|
my_bert_model = MyBertModel(bert_model) |
|
|
|
ref_bert_inputs = { |
|
'input_ids': ref_bert_inputs['input_ids'], |
|
'attention_mask': ref_bert_inputs['attention_mask'], |
|
'token_type_ids': ref_bert_inputs['token_type_ids'], |
|
'word2ph': ref_bert_inputs['word2ph'] |
|
} |
|
|
|
torch._dynamo.mark_dynamic(ref_bert_inputs['input_ids'], 1) |
|
torch._dynamo.mark_dynamic(ref_bert_inputs['attention_mask'], 1) |
|
torch._dynamo.mark_dynamic(ref_bert_inputs['token_type_ids'], 1) |
|
torch._dynamo.mark_dynamic(ref_bert_inputs['word2ph'], 0) |
|
|
|
my_bert_model = torch.jit.trace(my_bert_model,example_kwarg_inputs=ref_bert_inputs) |
|
output_path = os.path.join(output_path, "bert_model.pt") |
|
my_bert_model.save(output_path) |
|
print('#### exported bert ####') |
|
|
|
def export(gpt_path, vits_path, ref_audio_path, ref_text, output_path, export_bert_and_ssl=False, device='cpu'): |
|
if not os.path.exists(output_path): |
|
os.makedirs(output_path) |
|
print(f"目录已创建: {output_path}") |
|
else: |
|
print(f"目录已存在: {output_path}") |
|
|
|
ref_audio = torch.tensor([load_audio(ref_audio_path, 16000)]).float() |
|
ssl = SSLModel() |
|
if export_bert_and_ssl: |
|
s = ExportSSLModel(torch.jit.trace(ssl,example_inputs=(ref_audio))) |
|
ssl_path = os.path.join(output_path, "ssl_model.pt") |
|
torch.jit.script(s).save(ssl_path) |
|
print('#### exported ssl ####') |
|
export_bert(output_path) |
|
else: |
|
s = ExportSSLModel(ssl) |
|
|
|
print(f"device: {device}") |
|
|
|
|
|
ref_seq_id,ref_bert_T,ref_norm_text = get_phones_and_bert(ref_text,"all_zh",'v2') |
|
ref_seq = torch.LongTensor([ref_seq_id]).to(device) |
|
ref_bert = ref_bert_T.T.to(ref_seq.device) |
|
text_seq_id,text_bert_T,norm_text = get_phones_and_bert("这是一条测试语音,说什么无所谓,只是给它一个例子","all_zh",'v2') |
|
text_seq = torch.LongTensor([text_seq_id]).to(device) |
|
text_bert = text_bert_T.T.to(text_seq.device) |
|
|
|
ssl_content = ssl(ref_audio).to(device) |
|
|
|
|
|
vits = VitsModel(vits_path).to(device) |
|
vits.eval() |
|
|
|
|
|
|
|
dict_s1 = torch.load(gpt_path) |
|
raw_t2s = get_raw_t2s_model(dict_s1).to(device) |
|
print('#### get_raw_t2s_model ####') |
|
print(raw_t2s.config) |
|
t2s_m = T2SModel(raw_t2s) |
|
t2s_m.eval() |
|
t2s = torch.jit.script(t2s_m).to(device) |
|
print('#### script t2s_m ####') |
|
|
|
print("vits.hps.data.sampling_rate:",vits.hps.data.sampling_rate) |
|
gpt_sovits = GPT_SoVITS(t2s,vits).to(device) |
|
gpt_sovits.eval() |
|
|
|
ref_audio_sr = s.resample(ref_audio,16000,32000).to(device) |
|
|
|
torch._dynamo.mark_dynamic(ssl_content, 2) |
|
torch._dynamo.mark_dynamic(ref_audio_sr, 1) |
|
torch._dynamo.mark_dynamic(ref_seq, 1) |
|
torch._dynamo.mark_dynamic(text_seq, 1) |
|
torch._dynamo.mark_dynamic(ref_bert, 0) |
|
torch._dynamo.mark_dynamic(text_bert, 0) |
|
|
|
with torch.no_grad(): |
|
gpt_sovits_export = torch.jit.trace( |
|
gpt_sovits, |
|
example_inputs=( |
|
ssl_content, |
|
ref_audio_sr, |
|
ref_seq, |
|
text_seq, |
|
ref_bert, |
|
text_bert)) |
|
|
|
gpt_sovits_path = os.path.join(output_path, "gpt_sovits_model.pt") |
|
gpt_sovits_export.save(gpt_sovits_path) |
|
print('#### exported gpt_sovits ####') |
|
|
|
@torch.jit.script |
|
def parse_audio(ref_audio): |
|
ref_audio_16k = torchaudio.functional.resample(ref_audio,48000,16000).float() |
|
ref_audio_sr = torchaudio.functional.resample(ref_audio,48000,32000).float() |
|
return ref_audio_16k,ref_audio_sr |
|
|
|
@torch.jit.script |
|
def resamplex(ref_audio:torch.Tensor,src_sr:int,dst_sr:int)->torch.Tensor: |
|
return torchaudio.functional.resample(ref_audio,src_sr,dst_sr).float() |
|
|
|
class GPT_SoVITS(nn.Module): |
|
def __init__(self, t2s:T2SModel,vits:VitsModel): |
|
super().__init__() |
|
self.t2s = t2s |
|
self.vits = vits |
|
|
|
def forward(self, ssl_content:torch.Tensor, ref_audio_sr:torch.Tensor, ref_seq:Tensor, text_seq:Tensor, ref_bert:Tensor, text_bert:Tensor, speed=1.0): |
|
codes = self.vits.vq_model.extract_latent(ssl_content) |
|
prompt_semantic = codes[0, 0] |
|
prompts = prompt_semantic.unsqueeze(0) |
|
|
|
pred_semantic = self.t2s(prompts, ref_seq, text_seq, ref_bert, text_bert) |
|
audio = self.vits(text_seq, pred_semantic, ref_audio_sr, speed) |
|
return audio |
|
|
|
def test(): |
|
parser = argparse.ArgumentParser(description="GPT-SoVITS Command Line Tool") |
|
parser.add_argument('--gpt_model', required=True, help="Path to the GPT model file") |
|
parser.add_argument('--sovits_model', required=True, help="Path to the SoVITS model file") |
|
parser.add_argument('--ref_audio', required=True, help="Path to the reference audio file") |
|
parser.add_argument('--ref_text', required=True, help="Path to the reference text file") |
|
parser.add_argument('--output_path', required=True, help="Path to the output directory") |
|
|
|
|
|
args = parser.parse_args() |
|
gpt_path = args.gpt_model |
|
vits_path = args.sovits_model |
|
ref_audio_path = args.ref_audio |
|
ref_text = args.ref_text |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(bert_path) |
|
|
|
|
|
my_bert = torch.jit.load("onnx/bert_model.pt",map_location='cuda') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ssl = torch.jit.load("onnx/by/ssl_model.pt",map_location='cuda') |
|
|
|
|
|
gpt_sovits = torch.jit.load("onnx/by/gpt_sovits_model.pt",map_location='cuda') |
|
|
|
ref_seq_id,ref_bert_T,ref_norm_text = get_phones_and_bert(ref_text,"all_zh",'v2') |
|
ref_seq = torch.LongTensor([ref_seq_id]) |
|
ref_bert = ref_bert_T.T.to(ref_seq.device) |
|
|
|
text = "昨天晚上看见征兵文书,知道君主在大规模征兵,那么多卷征兵文册,每一卷上都有父亲的名字." |
|
|
|
text_seq_id,text_bert_T,norm_text = get_phones_and_bert(text,"all_zh",'v2') |
|
|
|
test_bert = tokenizer(text, return_tensors="pt") |
|
word2ph = [] |
|
for c in text: |
|
if c in [',','。',':','?',"?",",","."]: |
|
word2ph.append(1) |
|
else: |
|
word2ph.append(2) |
|
test_bert['word2ph'] = torch.Tensor(word2ph).int() |
|
|
|
test_bert = my_bert( |
|
test_bert['input_ids'].to('cuda'), |
|
test_bert['attention_mask'].to('cuda'), |
|
test_bert['token_type_ids'].to('cuda'), |
|
test_bert['word2ph'].to('cuda') |
|
) |
|
|
|
text_seq = torch.LongTensor([text_seq_id]) |
|
text_bert = text_bert_T.T.to(text_seq.device) |
|
|
|
print('text_bert:',text_bert.shape,text_bert) |
|
print('test_bert:',test_bert.shape,test_bert) |
|
print(torch.allclose(text_bert.to('cuda'),test_bert)) |
|
|
|
print('text_seq:',text_seq.shape) |
|
print('text_bert:',text_bert.shape,text_bert.type()) |
|
|
|
|
|
ref_audio = torch.tensor([load_audio(ref_audio_path, 16000)]).float().to('cuda') |
|
print('ref_audio:',ref_audio.shape) |
|
|
|
ref_audio_sr = ssl.resample(ref_audio,16000,32000) |
|
print('start ssl') |
|
ssl_content = ssl(ref_audio) |
|
|
|
print('start gpt_sovits:') |
|
print('ssl_content:',ssl_content.shape) |
|
print('ref_audio_sr:',ref_audio_sr.shape) |
|
print('ref_seq:',ref_seq.shape) |
|
ref_seq=ref_seq.to('cuda') |
|
print('text_seq:',text_seq.shape) |
|
text_seq=text_seq.to('cuda') |
|
print('ref_bert:',ref_bert.shape) |
|
ref_bert=ref_bert.to('cuda') |
|
print('text_bert:',text_bert.shape) |
|
text_bert=text_bert.to('cuda') |
|
|
|
with torch.no_grad(): |
|
audio = gpt_sovits(ssl_content, ref_audio_sr, ref_seq, text_seq, ref_bert, test_bert) |
|
print('start write wav') |
|
soundfile.write("out.wav", audio.detach().cpu().numpy(), 32000) |
|
|
|
|
|
import text |
|
import json |
|
|
|
def export_symbel(version='v2'): |
|
if version=='v1': |
|
symbols = text._symbol_to_id_v1 |
|
with open(f"onnx/symbols_v1.json", "w") as file: |
|
json.dump(symbols, file, indent=4) |
|
else: |
|
symbols = text._symbol_to_id_v2 |
|
with open(f"onnx/symbols_v2.json", "w") as file: |
|
json.dump(symbols, file, indent=4) |
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description="GPT-SoVITS Command Line Tool") |
|
parser.add_argument('--gpt_model', required=True, help="Path to the GPT model file") |
|
parser.add_argument('--sovits_model', required=True, help="Path to the SoVITS model file") |
|
parser.add_argument('--ref_audio', required=True, help="Path to the reference audio file") |
|
parser.add_argument('--ref_text', required=True, help="Path to the reference text file") |
|
parser.add_argument('--output_path', required=True, help="Path to the output directory") |
|
parser.add_argument('--export_common_model', action='store_true', help="Export Bert and SSL model") |
|
parser.add_argument('--device', help="Device to use") |
|
|
|
args = parser.parse_args() |
|
export( |
|
gpt_path=args.gpt_model, |
|
vits_path=args.sovits_model, |
|
ref_audio_path=args.ref_audio, |
|
ref_text=args.ref_text, |
|
output_path=args.output_path, |
|
device=args.device, |
|
export_bert_and_ssl=args.export_common_model, |
|
) |
|
|
|
import inference_webui |
|
if __name__ == "__main__": |
|
inference_webui.is_half=False |
|
inference_webui.dtype=torch.float32 |
|
main() |
|
|
|
|