|
''' |
|
按中英混合识别 |
|
按日英混合识别 |
|
多语种启动切分识别语种 |
|
全部按中文识别 |
|
全部按英文识别 |
|
全部按日文识别 |
|
''' |
|
import logging |
|
import traceback,torchaudio,warnings |
|
logging.getLogger("markdown_it").setLevel(logging.ERROR) |
|
logging.getLogger("urllib3").setLevel(logging.ERROR) |
|
logging.getLogger("httpcore").setLevel(logging.ERROR) |
|
logging.getLogger("httpx").setLevel(logging.ERROR) |
|
logging.getLogger("asyncio").setLevel(logging.ERROR) |
|
logging.getLogger("charset_normalizer").setLevel(logging.ERROR) |
|
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR) |
|
logging.getLogger("multipart.multipart").setLevel(logging.ERROR) |
|
warnings.simplefilter(action='ignore', category=FutureWarning) |
|
|
|
import os, re, sys, json |
|
import pdb |
|
import torch |
|
from text.LangSegmenter import LangSegmenter |
|
import torch.nn.functional as F |
|
|
|
try: |
|
import gradio.analytics as analytics |
|
analytics.version_check = lambda:None |
|
except:... |
|
version=model_version="v3" |
|
pretrained_sovits_name=["GPT_SoVITS/pretrained_models/s2Gv3.pth"] |
|
pretrained_gpt_name=["GPT_SoVITS/pretrained_models/s1v3.ckpt"] |
|
|
|
|
|
_ =[[],[]] |
|
for i in range(1): |
|
if os.path.exists(pretrained_gpt_name[i]):_[0].append(pretrained_gpt_name[i]) |
|
if os.path.exists(pretrained_sovits_name[i]):_[-1].append(pretrained_sovits_name[i]) |
|
pretrained_gpt_name,pretrained_sovits_name = _ |
|
|
|
|
|
if os.path.exists(f"./weight.json"): |
|
pass |
|
else: |
|
with open(f"./weight.json", 'w', encoding="utf-8") as file:json.dump({'GPT':{},'SoVITS':{}},file) |
|
|
|
with open(f"./weight.json", 'r', encoding="utf-8") as file: |
|
weight_data = file.read() |
|
weight_data=json.loads(weight_data) |
|
gpt_path = os.environ.get( |
|
"gpt_path", weight_data.get('GPT',{}).get(version,pretrained_gpt_name)) |
|
sovits_path = os.environ.get( |
|
"sovits_path", weight_data.get('SoVITS',{}).get(version,pretrained_sovits_name)) |
|
if isinstance(gpt_path,list): |
|
gpt_path = gpt_path[0] |
|
if isinstance(sovits_path,list): |
|
sovits_path = sovits_path[0] |
|
|
|
|
|
|
|
|
|
|
|
cnhubert_base_path = os.environ.get( |
|
"cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base" |
|
) |
|
bert_path = os.environ.get( |
|
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large" |
|
) |
|
infer_ttswebui = os.environ.get("infer_ttswebui", 9872) |
|
infer_ttswebui = int(infer_ttswebui) |
|
is_share = os.environ.get("is_share", "False") |
|
is_share = eval(is_share) |
|
if "_CUDA_VISIBLE_DEVICES" in os.environ: |
|
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] |
|
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available() |
|
punctuation = set(['!', '?', '…', ',', '.', '-'," "]) |
|
import gradio as gr |
|
from transformers import AutoModelForMaskedLM, AutoTokenizer |
|
import numpy as np |
|
import librosa |
|
from feature_extractor import cnhubert |
|
|
|
cnhubert.cnhubert_base_path = cnhubert_base_path |
|
|
|
from GPT_SoVITS.module.models import SynthesizerTrn,SynthesizerTrnV3 |
|
from AR.models.t2s_lightning_module import Text2SemanticLightningModule |
|
from text import cleaned_text_to_sequence |
|
from text.cleaner import clean_text |
|
from time import time as ttime |
|
from module.mel_processing import spectrogram_torch |
|
from tools.my_utils import load_audio |
|
from tools.i18n.i18n import I18nAuto, scan_language_list |
|
|
|
language=os.environ.get("language","Auto") |
|
language=sys.argv[-1] if sys.argv[-1] in scan_language_list() else language |
|
i18n = I18nAuto(language=language) |
|
|
|
|
|
|
|
if torch.cuda.is_available(): |
|
device = "cuda" |
|
else: |
|
device = "cpu" |
|
|
|
dict_language_v1 = { |
|
i18n("中文"): "all_zh", |
|
i18n("英文"): "en", |
|
i18n("日文"): "all_ja", |
|
i18n("中英混合"): "zh", |
|
i18n("日英混合"): "ja", |
|
i18n("多语种混合"): "auto", |
|
} |
|
dict_language_v2 = { |
|
i18n("中文"): "all_zh", |
|
i18n("英文"): "en", |
|
i18n("日文"): "all_ja", |
|
i18n("粤语"): "all_yue", |
|
i18n("韩文"): "all_ko", |
|
i18n("中英混合"): "zh", |
|
i18n("日英混合"): "ja", |
|
i18n("粤英混合"): "yue", |
|
i18n("韩英混合"): "ko", |
|
i18n("多语种混合"): "auto", |
|
i18n("多语种混合(粤语)"): "auto_yue", |
|
} |
|
dict_language = dict_language_v1 if version =='v1' else dict_language_v2 |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(bert_path) |
|
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) |
|
if is_half == True: |
|
bert_model = bert_model.half().to(device) |
|
else: |
|
bert_model = bert_model.to(device) |
|
|
|
|
|
def get_bert_feature(text, word2ph): |
|
with torch.no_grad(): |
|
inputs = tokenizer(text, return_tensors="pt") |
|
for i in inputs: |
|
inputs[i] = inputs[i].to(device) |
|
res = bert_model(**inputs, output_hidden_states=True) |
|
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] |
|
assert len(word2ph) == len(text) |
|
phone_level_feature = [] |
|
for i in range(len(word2ph)): |
|
repeat_feature = res[i].repeat(word2ph[i], 1) |
|
phone_level_feature.append(repeat_feature) |
|
phone_level_feature = torch.cat(phone_level_feature, dim=0) |
|
return phone_level_feature.T |
|
|
|
|
|
class DictToAttrRecursive(dict): |
|
def __init__(self, input_dict): |
|
super().__init__(input_dict) |
|
for key, value in input_dict.items(): |
|
if isinstance(value, dict): |
|
value = DictToAttrRecursive(value) |
|
self[key] = value |
|
setattr(self, key, value) |
|
|
|
def __getattr__(self, item): |
|
try: |
|
return self[item] |
|
except KeyError: |
|
raise AttributeError(f"Attribute {item} not found") |
|
|
|
def __setattr__(self, key, value): |
|
if isinstance(value, dict): |
|
value = DictToAttrRecursive(value) |
|
super(DictToAttrRecursive, self).__setitem__(key, value) |
|
super().__setattr__(key, value) |
|
|
|
def __delattr__(self, item): |
|
try: |
|
del self[item] |
|
except KeyError: |
|
raise AttributeError(f"Attribute {item} not found") |
|
|
|
|
|
ssl_model = cnhubert.get_model() |
|
if is_half == True: |
|
ssl_model = ssl_model.half().to(device) |
|
else: |
|
ssl_model = ssl_model.to(device) |
|
|
|
resample_transform_dict={} |
|
def resample(audio_tensor, sr0): |
|
global resample_transform_dict |
|
if sr0 not in resample_transform_dict: |
|
resample_transform_dict[sr0] = torchaudio.transforms.Resample( |
|
sr0, 24000 |
|
).to(device) |
|
return resample_transform_dict[sr0](audio_tensor) |
|
|
|
def change_sovits_weights(sovits_path,prompt_language=None,text_language=None): |
|
global vq_model, hps, version, model_version, dict_language |
|
''' |
|
v1:about 82942KB |
|
half thr:82978KB |
|
v2:about 83014KB |
|
half thr:100MB |
|
v1base:103490KB |
|
half thr:103520KB |
|
v2base:103551KB |
|
v3:about 750MB |
|
|
|
~82978K~100M~103420~700M |
|
v1-v2-v1base-v2base-v3 |
|
version: |
|
symbols version and timebre_embedding version |
|
model_version: |
|
sovits is v1/2 (VITS) or v3 (shortcut CFM DiT) |
|
''' |
|
size=os.path.getsize(sovits_path) |
|
if size<82978*1024: |
|
model_version=version="v1" |
|
elif size<100*1024*1024: |
|
model_version=version="v2" |
|
elif size<103520*1024: |
|
model_version=version="v1" |
|
elif size<700*1024*1024: |
|
model_version = version = "v2" |
|
else: |
|
version = "v2" |
|
model_version="v3" |
|
|
|
dict_language = dict_language_v1 if version =='v1' else dict_language_v2 |
|
if prompt_language is not None and text_language is not None: |
|
if prompt_language in list(dict_language.keys()): |
|
prompt_text_update, prompt_language_update = {'__type__':'update'}, {'__type__':'update', 'value':prompt_language} |
|
else: |
|
prompt_text_update = {'__type__':'update', 'value':''} |
|
prompt_language_update = {'__type__':'update', 'value':i18n("中文")} |
|
if text_language in list(dict_language.keys()): |
|
text_update, text_language_update = {'__type__':'update'}, {'__type__':'update', 'value':text_language} |
|
else: |
|
text_update = {'__type__':'update', 'value':''} |
|
text_language_update = {'__type__':'update', 'value':i18n("中文")} |
|
if model_version=="v3": |
|
visible_sample_steps=True |
|
visible_inp_refs=False |
|
else: |
|
visible_sample_steps=False |
|
visible_inp_refs=True |
|
yield {'__type__':'update', 'choices':list(dict_language.keys())}, {'__type__':'update', 'choices':list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update,{"__type__": "update", "visible": visible_sample_steps},{"__type__": "update", "visible": visible_inp_refs},{"__type__": "update", "value": False,"interactive":True if model_version!="v3"else False} |
|
|
|
dict_s2 = torch.load(sovits_path, map_location="cpu", weights_only=False) |
|
hps = dict_s2["config"] |
|
hps = DictToAttrRecursive(hps) |
|
hps.model.semantic_frame_rate = "25hz" |
|
if dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322: |
|
hps.model.version = "v1" |
|
else: |
|
hps.model.version = "v2" |
|
version=hps.model.version |
|
|
|
if model_version!="v3": |
|
vq_model = SynthesizerTrn( |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model |
|
) |
|
model_version=version |
|
else: |
|
vq_model = SynthesizerTrnV3( |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model |
|
) |
|
if ("pretrained" not in sovits_path): |
|
try: |
|
del vq_model.enc_q |
|
except:pass |
|
if is_half == True: |
|
vq_model = vq_model.half().to(device) |
|
else: |
|
vq_model = vq_model.to(device) |
|
vq_model.eval() |
|
print("loading sovits_%s"%model_version,vq_model.load_state_dict(dict_s2["weight"], strict=False)) |
|
with open("./weight.json")as f: |
|
data=f.read() |
|
data=json.loads(data) |
|
data["SoVITS"][version]=sovits_path |
|
with open("./weight.json","w")as f:f.write(json.dumps(data)) |
|
|
|
|
|
try:next(change_sovits_weights(sovits_path)) |
|
except:pass |
|
|
|
def change_gpt_weights(gpt_path): |
|
global hz, max_sec, t2s_model, config |
|
hz = 50 |
|
dict_s1 = torch.load(gpt_path, map_location="cpu") |
|
config = dict_s1["config"] |
|
max_sec = config["data"]["max_sec"] |
|
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) |
|
t2s_model.load_state_dict(dict_s1["weight"]) |
|
if is_half == True: |
|
t2s_model = t2s_model.half() |
|
t2s_model = t2s_model.to(device) |
|
t2s_model.eval() |
|
|
|
|
|
with open("./weight.json")as f: |
|
data=f.read() |
|
data=json.loads(data) |
|
data["GPT"][version]=gpt_path |
|
with open("./weight.json","w")as f:f.write(json.dumps(data)) |
|
|
|
|
|
change_gpt_weights(gpt_path) |
|
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com" |
|
import torch,soundfile |
|
now_dir = os.getcwd() |
|
import soundfile |
|
|
|
def init_bigvgan(): |
|
global model |
|
from BigVGAN import bigvgan |
|
model = bigvgan.BigVGAN.from_pretrained("%s/GPT_SoVITS/pretrained_models/models--nvidia--bigvgan_v2_24khz_100band_256x" % (now_dir,), use_cuda_kernel=False) |
|
|
|
model.remove_weight_norm() |
|
model = model.eval() |
|
if is_half == True: |
|
model = model.half().to(device) |
|
else: |
|
model = model.to(device) |
|
|
|
if model_version!="v3":model=None |
|
else:init_bigvgan() |
|
|
|
|
|
def get_spepc(hps, filename): |
|
audio = load_audio(filename, int(hps.data.sampling_rate)) |
|
audio = torch.FloatTensor(audio) |
|
maxx=audio.abs().max() |
|
if(maxx>1):audio/=min(2,maxx) |
|
audio_norm = audio |
|
audio_norm = audio_norm.unsqueeze(0) |
|
spec = spectrogram_torch( |
|
audio_norm, |
|
hps.data.filter_length, |
|
hps.data.sampling_rate, |
|
hps.data.hop_length, |
|
hps.data.win_length, |
|
center=False, |
|
) |
|
return spec |
|
|
|
def clean_text_inf(text, language, version): |
|
phones, word2ph, norm_text = clean_text(text, language, version) |
|
phones = cleaned_text_to_sequence(phones, version) |
|
return phones, word2ph, norm_text |
|
|
|
dtype=torch.float16 if is_half == True else torch.float32 |
|
def get_bert_inf(phones, word2ph, norm_text, language): |
|
language=language.replace("all_","") |
|
if language == "zh": |
|
bert = get_bert_feature(norm_text, word2ph).to(device) |
|
else: |
|
bert = torch.zeros( |
|
(1024, len(phones)), |
|
dtype=torch.float16 if is_half == True else torch.float32, |
|
).to(device) |
|
|
|
return bert |
|
|
|
|
|
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", } |
|
|
|
|
|
def get_first(text): |
|
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]" |
|
text = re.split(pattern, text)[0].strip() |
|
return text |
|
|
|
from text import chinese |
|
def get_phones_and_bert(text,language,version,final=False): |
|
if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}: |
|
language = language.replace("all_","") |
|
if language == "en": |
|
formattext = text |
|
else: |
|
|
|
formattext = text |
|
while " " in formattext: |
|
formattext = formattext.replace(" ", " ") |
|
if language == "zh": |
|
if re.search(r'[A-Za-z]', formattext): |
|
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext) |
|
formattext = chinese.mix_text_normalize(formattext) |
|
return get_phones_and_bert(formattext,"zh",version) |
|
else: |
|
phones, word2ph, norm_text = clean_text_inf(formattext, language, version) |
|
bert = get_bert_feature(norm_text, word2ph).to(device) |
|
elif language == "yue" and re.search(r'[A-Za-z]', formattext): |
|
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext) |
|
formattext = chinese.mix_text_normalize(formattext) |
|
return get_phones_and_bert(formattext,"yue",version) |
|
else: |
|
phones, word2ph, norm_text = clean_text_inf(formattext, language, version) |
|
bert = torch.zeros( |
|
(1024, len(phones)), |
|
dtype=torch.float16 if is_half == True else torch.float32, |
|
).to(device) |
|
elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}: |
|
textlist=[] |
|
langlist=[] |
|
if language == "auto": |
|
for tmp in LangSegmenter.getTexts(text): |
|
langlist.append(tmp["lang"]) |
|
textlist.append(tmp["text"]) |
|
elif language == "auto_yue": |
|
for tmp in LangSegmenter.getTexts(text): |
|
if tmp["lang"] == "zh": |
|
tmp["lang"] = "yue" |
|
langlist.append(tmp["lang"]) |
|
textlist.append(tmp["text"]) |
|
else: |
|
for tmp in LangSegmenter.getTexts(text): |
|
if tmp["lang"] == "en": |
|
langlist.append(tmp["lang"]) |
|
else: |
|
|
|
langlist.append(language) |
|
textlist.append(tmp["text"]) |
|
print(textlist) |
|
print(langlist) |
|
phones_list = [] |
|
bert_list = [] |
|
norm_text_list = [] |
|
for i in range(len(textlist)): |
|
lang = langlist[i] |
|
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang, version) |
|
bert = get_bert_inf(phones, word2ph, norm_text, lang) |
|
phones_list.append(phones) |
|
norm_text_list.append(norm_text) |
|
bert_list.append(bert) |
|
bert = torch.cat(bert_list, dim=1) |
|
phones = sum(phones_list, []) |
|
norm_text = ''.join(norm_text_list) |
|
|
|
if not final and len(phones) < 6: |
|
return get_phones_and_bert("." + text,language,version,final=True) |
|
|
|
return phones,bert.to(dtype),norm_text |
|
|
|
from module.mel_processing import spectrogram_torch,spec_to_mel_torch |
|
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): |
|
spec=spectrogram_torch(y,n_fft,sampling_rate,hop_size,win_size,center) |
|
mel=spec_to_mel_torch(spec,n_fft,num_mels,sampling_rate,fmin,fmax) |
|
return mel |
|
mel_fn_args = { |
|
"n_fft": 1024, |
|
"win_size": 1024, |
|
"hop_size": 256, |
|
"num_mels": 100, |
|
"sampling_rate": 24000, |
|
"fmin": 0, |
|
"fmax": None, |
|
"center": False |
|
} |
|
|
|
spec_min = -12 |
|
spec_max = 2 |
|
def norm_spec(x): |
|
return (x - spec_min) / (spec_max - spec_min) * 2 - 1 |
|
def denorm_spec(x): |
|
return (x + 1) / 2 * (spec_max - spec_min) + spec_min |
|
mel_fn=lambda x: mel_spectrogram(x, **mel_fn_args) |
|
|
|
|
|
def merge_short_text_in_array(texts, threshold): |
|
if (len(texts)) < 2: |
|
return texts |
|
result = [] |
|
text = "" |
|
for ele in texts: |
|
text += ele |
|
if len(text) >= threshold: |
|
result.append(text) |
|
text = "" |
|
if (len(text) > 0): |
|
if len(result) == 0: |
|
result.append(text) |
|
else: |
|
result[len(result) - 1] += text |
|
return result |
|
|
|
|
|
|
|
cache= {} |
|
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free = False,speed=1,if_freeze=False,inp_refs=None,sample_steps=8): |
|
global cache |
|
if ref_wav_path:pass |
|
else:gr.Warning(i18n('请上传参考音频')) |
|
if text:pass |
|
else:gr.Warning(i18n('请填入推理文本')) |
|
t = [] |
|
if prompt_text is None or len(prompt_text) == 0: |
|
ref_free = True |
|
if model_version=="v3":ref_free=False |
|
t0 = ttime() |
|
prompt_language = dict_language[prompt_language] |
|
text_language = dict_language[text_language] |
|
|
|
|
|
if not ref_free: |
|
prompt_text = prompt_text.strip("\n") |
|
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "." |
|
print(i18n("实际输入的参考文本:"), prompt_text) |
|
text = text.strip("\n") |
|
|
|
|
|
print(i18n("实际输入的目标文本:"), text) |
|
zero_wav = np.zeros( |
|
int(hps.data.sampling_rate * 0.3), |
|
dtype=np.float16 if is_half == True else np.float32, |
|
) |
|
if not ref_free: |
|
with torch.no_grad(): |
|
wav16k, sr = librosa.load(ref_wav_path, sr=16000) |
|
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000): |
|
gr.Warning(i18n("参考音频在3~10秒范围外,请更换!")) |
|
raise OSError(i18n("参考音频在3~10秒范围外,请更换!")) |
|
wav16k = torch.from_numpy(wav16k) |
|
zero_wav_torch = torch.from_numpy(zero_wav) |
|
if is_half == True: |
|
wav16k = wav16k.half().to(device) |
|
zero_wav_torch = zero_wav_torch.half().to(device) |
|
else: |
|
wav16k = wav16k.to(device) |
|
zero_wav_torch = zero_wav_torch.to(device) |
|
wav16k = torch.cat([wav16k, zero_wav_torch]) |
|
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[ |
|
"last_hidden_state" |
|
].transpose( |
|
1, 2 |
|
) |
|
codes = vq_model.extract_latent(ssl_content) |
|
prompt_semantic = codes[0, 0] |
|
prompt = prompt_semantic.unsqueeze(0).to(device) |
|
|
|
t1 = ttime() |
|
t.append(t1-t0) |
|
|
|
if (how_to_cut == i18n("凑四句一切")): |
|
text = cut1(text) |
|
elif (how_to_cut == i18n("凑50字一切")): |
|
text = cut2(text) |
|
elif (how_to_cut == i18n("按中文句号。切")): |
|
text = cut3(text) |
|
elif (how_to_cut == i18n("按英文句号.切")): |
|
text = cut4(text) |
|
elif (how_to_cut == i18n("按标点符号切")): |
|
text = cut5(text) |
|
while "\n\n" in text: |
|
text = text.replace("\n\n", "\n") |
|
print(i18n("实际输入的目标文本(切句后):"), text) |
|
texts = text.split("\n") |
|
texts = process_text(texts) |
|
texts = merge_short_text_in_array(texts, 5) |
|
audio_opt = [] |
|
|
|
if not ref_free: |
|
phones1,bert1,norm_text1=get_phones_and_bert(prompt_text, prompt_language, version) |
|
|
|
for i_text,text in enumerate(texts): |
|
|
|
if (len(text.strip()) == 0): |
|
continue |
|
if (text[-1] not in splits): text += "。" if text_language != "en" else "." |
|
print(i18n("实际输入的目标文本(每句):"), text) |
|
phones2,bert2,norm_text2=get_phones_and_bert(text, text_language, version) |
|
print(i18n("前端处理后的文本(每句):"), norm_text2) |
|
if not ref_free: |
|
bert = torch.cat([bert1, bert2], 1) |
|
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0) |
|
else: |
|
bert = bert2 |
|
all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0) |
|
|
|
bert = bert.to(device).unsqueeze(0) |
|
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) |
|
|
|
t2 = ttime() |
|
|
|
|
|
if(i_text in cache and if_freeze==True):pred_semantic=cache[i_text] |
|
else: |
|
with torch.no_grad(): |
|
pred_semantic, idx = t2s_model.model.infer_panel( |
|
all_phoneme_ids, |
|
all_phoneme_len, |
|
None if ref_free else prompt, |
|
bert, |
|
|
|
top_k=top_k, |
|
top_p=top_p, |
|
temperature=temperature, |
|
early_stop_num=hz * max_sec, |
|
) |
|
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0) |
|
cache[i_text]=pred_semantic |
|
t3 = ttime() |
|
|
|
if model_version!="v3": |
|
refers=[] |
|
if(inp_refs): |
|
for path in inp_refs: |
|
try: |
|
refer = get_spepc(hps, path.name).to(dtype).to(device) |
|
refers.append(refer) |
|
except: |
|
traceback.print_exc() |
|
if(len(refers)==0):refers = [get_spepc(hps, ref_wav_path).to(dtype).to(device)] |
|
audio = (vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers,speed=speed).detach().cpu().numpy()[0, 0]) |
|
else: |
|
refer = get_spepc(hps, ref_wav_path).to(device).to(dtype) |
|
phoneme_ids0=torch.LongTensor(phones1).to(device).unsqueeze(0) |
|
phoneme_ids1=torch.LongTensor(phones2).to(device).unsqueeze(0) |
|
fea_ref,ge = vq_model.decode_encp(prompt.unsqueeze(0), phoneme_ids0, refer) |
|
ref_audio, sr = torchaudio.load(ref_wav_path) |
|
ref_audio=ref_audio.to(device).float() |
|
if (ref_audio.shape[0] == 2): |
|
ref_audio = ref_audio.mean(0).unsqueeze(0) |
|
if sr!=24000: |
|
ref_audio=resample(ref_audio,sr) |
|
mel2 = mel_fn(ref_audio.to(dtype)) |
|
mel2 = norm_spec(mel2) |
|
T_min = min(mel2.shape[2], fea_ref.shape[2]) |
|
mel2 = mel2[:, :, :T_min] |
|
fea_ref = fea_ref[:, :, :T_min] |
|
if (T_min > 468): |
|
mel2 = mel2[:, :, -468:] |
|
fea_ref = fea_ref[:, :, -468:] |
|
T_min = 468 |
|
chunk_len = 934 - T_min |
|
fea_todo, ge = vq_model.decode_encp(pred_semantic, phoneme_ids1, refer, ge) |
|
cfm_resss = [] |
|
idx = 0 |
|
while (1): |
|
fea_todo_chunk = fea_todo[:, :, idx:idx + chunk_len] |
|
if (fea_todo_chunk.shape[-1] == 0): break |
|
idx += chunk_len |
|
fea = torch.cat([fea_ref, fea_todo_chunk], 2).transpose(2, 1) |
|
cfm_res = vq_model.cfm.inference(fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0) |
|
cfm_res = cfm_res[:, :, mel2.shape[2]:] |
|
mel2 = cfm_res[:, :, -T_min:] |
|
fea_ref = fea_todo_chunk[:, :, -T_min:] |
|
cfm_resss.append(cfm_res) |
|
cmf_res = torch.cat(cfm_resss, 2) |
|
cmf_res = denorm_spec(cmf_res) |
|
if model==None:init_bigvgan() |
|
with torch.inference_mode(): |
|
wav_gen = model(cmf_res) |
|
audio=wav_gen[0][0].cpu().detach().numpy() |
|
max_audio=np.abs(audio).max() |
|
if max_audio>1:audio/=max_audio |
|
audio_opt.append(audio) |
|
audio_opt.append(zero_wav) |
|
t4 = ttime() |
|
t.extend([t2 - t1,t3 - t2, t4 - t3]) |
|
t1 = ttime() |
|
print("%.3f\t%.3f\t%.3f\t%.3f" % |
|
(t[0], sum(t[1::3]), sum(t[2::3]), sum(t[3::3])) |
|
) |
|
sr=hps.data.sampling_rate if model_version!="v3"else 24000 |
|
yield sr, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16) |
|
|
|
|
|
def split(todo_text): |
|
todo_text = todo_text.replace("……", "。").replace("——", ",") |
|
if todo_text[-1] not in splits: |
|
todo_text += "。" |
|
i_split_head = i_split_tail = 0 |
|
len_text = len(todo_text) |
|
todo_texts = [] |
|
while 1: |
|
if i_split_head >= len_text: |
|
break |
|
if todo_text[i_split_head] in splits: |
|
i_split_head += 1 |
|
todo_texts.append(todo_text[i_split_tail:i_split_head]) |
|
i_split_tail = i_split_head |
|
else: |
|
i_split_head += 1 |
|
return todo_texts |
|
|
|
|
|
def cut1(inp): |
|
inp = inp.strip("\n") |
|
inps = split(inp) |
|
split_idx = list(range(0, len(inps), 4)) |
|
split_idx[-1] = None |
|
if len(split_idx) > 1: |
|
opts = [] |
|
for idx in range(len(split_idx) - 1): |
|
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]])) |
|
else: |
|
opts = [inp] |
|
opts = [item for item in opts if not set(item).issubset(punctuation)] |
|
return "\n".join(opts) |
|
|
|
|
|
def cut2(inp): |
|
inp = inp.strip("\n") |
|
inps = split(inp) |
|
if len(inps) < 2: |
|
return inp |
|
opts = [] |
|
summ = 0 |
|
tmp_str = "" |
|
for i in range(len(inps)): |
|
summ += len(inps[i]) |
|
tmp_str += inps[i] |
|
if summ > 50: |
|
summ = 0 |
|
opts.append(tmp_str) |
|
tmp_str = "" |
|
if tmp_str != "": |
|
opts.append(tmp_str) |
|
|
|
if len(opts) > 1 and len(opts[-1]) < 50: |
|
opts[-2] = opts[-2] + opts[-1] |
|
opts = opts[:-1] |
|
opts = [item for item in opts if not set(item).issubset(punctuation)] |
|
return "\n".join(opts) |
|
|
|
|
|
def cut3(inp): |
|
inp = inp.strip("\n") |
|
opts = ["%s" % item for item in inp.strip("。").split("。")] |
|
opts = [item for item in opts if not set(item).issubset(punctuation)] |
|
return "\n".join(opts) |
|
|
|
def cut4(inp): |
|
inp = inp.strip("\n") |
|
opts = ["%s" % item for item in inp.strip(".").split(".")] |
|
opts = [item for item in opts if not set(item).issubset(punctuation)] |
|
return "\n".join(opts) |
|
|
|
|
|
|
|
def cut5(inp): |
|
inp = inp.strip("\n") |
|
punds = {',', '.', ';', '?', '!', '、', ',', '。', '?', '!', ';', ':', '…'} |
|
mergeitems = [] |
|
items = [] |
|
|
|
for i, char in enumerate(inp): |
|
if char in punds: |
|
if char == '.' and i > 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit(): |
|
items.append(char) |
|
else: |
|
items.append(char) |
|
mergeitems.append("".join(items)) |
|
items = [] |
|
else: |
|
items.append(char) |
|
|
|
if items: |
|
mergeitems.append("".join(items)) |
|
|
|
opt = [item for item in mergeitems if not set(item).issubset(punds)] |
|
return "\n".join(opt) |
|
|
|
|
|
def custom_sort_key(s): |
|
|
|
parts = re.split('(\d+)', s) |
|
|
|
parts = [int(part) if part.isdigit() else part for part in parts] |
|
return parts |
|
|
|
def process_text(texts): |
|
_text=[] |
|
if all(text in [None, " ", "\n",""] for text in texts): |
|
raise ValueError(i18n("请输入有效文本")) |
|
for text in texts: |
|
if text in [None, " ", ""]: |
|
pass |
|
else: |
|
_text.append(text) |
|
return _text |
|
|
|
|
|
def change_choices(): |
|
SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root) |
|
return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"} |
|
|
|
|
|
SoVITS_weight_root=["SoVITS_weights","SoVITS_weights_v2","SoVITS_weights_v3"] |
|
GPT_weight_root=["GPT_weights","GPT_weights_v2","GPT_weights_v3"] |
|
for path in SoVITS_weight_root+GPT_weight_root: |
|
os.makedirs(path,exist_ok=True) |
|
|
|
|
|
def get_weights_names(GPT_weight_root, SoVITS_weight_root): |
|
SoVITS_names = [i for i in pretrained_sovits_name] |
|
for path in SoVITS_weight_root: |
|
for name in os.listdir(path): |
|
if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (path, name)) |
|
GPT_names = [i for i in pretrained_gpt_name] |
|
for path in GPT_weight_root: |
|
for name in os.listdir(path): |
|
if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (path, name)) |
|
return SoVITS_names, GPT_names |
|
|
|
|
|
SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root) |
|
|
|
def html_center(text, label='p'): |
|
return f"""<div style="text-align: center; margin: 100; padding: 50;"> |
|
<{label} style="margin: 0; padding: 0;">{text}</{label}> |
|
</div>""" |
|
|
|
def html_left(text, label='p'): |
|
return f"""<div style="text-align: left; margin: 0; padding: 0;"> |
|
<{label} style="margin: 0; padding: 0;">{text}</{label}> |
|
</div>""" |
|
|
|
@torch.no_grad() |
|
def get_code_from_ssl(ssl): |
|
ssl = vq_model.ssl_proj(ssl) |
|
quantized, codes, commit_loss, quantized_list = vq_model.quantizer(ssl) |
|
|
|
return codes.transpose(0, 1) |
|
|
|
|
|
@torch.no_grad() |
|
def get_code_from_wav(wav_path): |
|
wav16k, sr = librosa.load(wav_path, sr=16000) |
|
wav16k = torch.from_numpy(wav16k) |
|
if is_half == True: |
|
wav16k = wav16k.half().to(device) |
|
else: |
|
wav16k = wav16k.to(device) |
|
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[ |
|
"last_hidden_state" |
|
].transpose( |
|
1, 2 |
|
) |
|
codes = get_code_from_ssl(ssl_content) |
|
|
|
prompt_semantic = codes[0, 0] |
|
return prompt_semantic |
|
|
|
|
|
def vc_main(wav_path, text, language, prompt_wav, noise_scale=0.5, top_k=20, top_p=0.6, temperature=0.6, speed=1, sample_steps=8): |
|
""" |
|
Voice Conversion function that supports both v2 and v3 model versions |
|
|
|
Args: |
|
wav_path: Path to source audio for conversion |
|
text: Corresponding text for phoneme extraction |
|
language: Language of the text |
|
prompt_wav: Path to target/reference voice |
|
noise_scale: Noise scale for v2 models |
|
top_k, top_p, temperature: Parameters for v3 models |
|
speed: Speed factor for audio playback |
|
sample_steps: Number of sample steps for v3 models |
|
|
|
Returns: |
|
Sampling rate and converted audio |
|
""" |
|
|
|
language = dict_language[language] |
|
|
|
|
|
phones, word2ph, norm_text = clean_text_inf(text, language, version) |
|
|
|
|
|
refer = get_spepc(hps, prompt_wav).to(dtype).to(device) |
|
|
|
|
|
source_codes = get_code_from_wav(wav_path) |
|
|
|
if model_version != "v3": |
|
|
|
ge = vq_model.ref_enc(refer) |
|
quantized = vq_model.quantizer.decode(source_codes[None, None]) |
|
|
|
|
|
if hps.model.semantic_frame_rate == "25hz": |
|
quantized = F.interpolate( |
|
quantized, size=int(quantized.shape[-1] * 2), mode="nearest" |
|
) |
|
|
|
m_p, logs_p, y_mask = vq_model.enc_p( |
|
quantized, |
|
torch.LongTensor([quantized.shape[-1]]).to(device), |
|
torch.LongTensor(phones).to(device).unsqueeze(0), |
|
torch.LongTensor([len(phones)]).to(device), |
|
ge |
|
) |
|
|
|
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale |
|
z = vq_model.flow(z_p, y_mask, g=ge, reverse=True) |
|
o = vq_model.dec((z * y_mask)[:, :, :], g=ge) |
|
audio = o.detach().cpu().numpy()[0, 0] |
|
|
|
else: |
|
|
|
if model is None: |
|
init_bigvgan() |
|
|
|
|
|
|
|
if source_codes.dim() == 1: |
|
|
|
|
|
|
|
|
|
|
|
|
|
semantic = source_codes.unsqueeze(0).unsqueeze(-1) |
|
|
|
|
|
|
|
if hasattr(vq_model, 'ssl_dim'): |
|
feature_dim = vq_model.ssl_dim |
|
else: |
|
|
|
|
|
feature_dim = 768 |
|
|
|
|
|
semantic = semantic.expand(-1, -1, feature_dim) |
|
|
|
elif source_codes.dim() == 2: |
|
semantic = source_codes.unsqueeze(0) |
|
elif source_codes.dim() == 3: |
|
semantic = source_codes |
|
else: |
|
|
|
raise ValueError(f"Unexpected source_codes shape: {source_codes.shape}") |
|
|
|
|
|
phoneme_ids = torch.LongTensor(phones).to(device).unsqueeze(0) |
|
|
|
|
|
fea_ref, ge = vq_model.decode_encp(semantic, phoneme_ids, refer) |
|
|
|
|
|
ref_audio, sr = torchaudio.load(prompt_wav) |
|
ref_audio = ref_audio.to(device).float() |
|
if ref_audio.shape[0] == 2: |
|
ref_audio = ref_audio.mean(0).unsqueeze(0) |
|
if sr != 24000: |
|
ref_audio = resample(ref_audio, sr) |
|
|
|
|
|
mel2 = mel_fn(ref_audio.to(dtype)) |
|
mel2 = norm_spec(mel2) |
|
|
|
|
|
T_min = min(mel2.shape[2], fea_ref.shape[2]) |
|
mel2 = mel2[:, :, :T_min] |
|
fea_ref = fea_ref[:, :, :T_min] |
|
|
|
if T_min > 468: |
|
mel2 = mel2[:, :, -468:] |
|
fea_ref = fea_ref[:, :, -468:] |
|
T_min = 468 |
|
|
|
|
|
fea_todo, ge = vq_model.decode_encp(semantic, phoneme_ids, refer, ge) |
|
|
|
|
|
chunk_len = 934 - T_min |
|
cfm_resss = [] |
|
idx = 0 |
|
|
|
while True: |
|
fea_todo_chunk = fea_todo[:, :, idx:idx + chunk_len] |
|
if fea_todo_chunk.shape[-1] == 0: |
|
break |
|
|
|
idx += chunk_len |
|
fea = torch.cat([fea_ref, fea_todo_chunk], 2).transpose(2, 1) |
|
cfm_res = vq_model.cfm.inference( |
|
fea, |
|
torch.LongTensor([fea.size(1)]).to(fea.device), |
|
mel2, |
|
sample_steps, |
|
inference_cfg_rate=0 |
|
) |
|
|
|
cfm_res = cfm_res[:, :, mel2.shape[2]:] |
|
mel2 = cfm_res[:, :, -T_min:] |
|
fea_ref = fea_todo_chunk[:, :, -T_min:] |
|
cfm_resss.append(cfm_res) |
|
|
|
|
|
cmf_res = torch.cat(cfm_resss, 2) |
|
cmf_res = denorm_spec(cmf_res) |
|
|
|
with torch.inference_mode(): |
|
wav_gen = model(cmf_res) |
|
audio = wav_gen[0][0].cpu().detach().numpy() |
|
|
|
|
|
max_audio = np.abs(audio).max() |
|
if max_audio > 1: |
|
audio /= max_audio |
|
|
|
sr = hps.data.sampling_rate if model_version != "v3" else 24000 |
|
return sr, (audio * 32768).astype(np.int16) |
|
|
|
|
|
def launch_vc_ui(): |
|
with gr.Blocks(title="GPT-SoVITS Voice Conversion") as vc_app: |
|
gr.Markdown("# GPT-SoVITS Voice Conversion") |
|
gr.Markdown(f"Current Model Version: {model_version}") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
source_audio = gr.Audio(type="filepath", label="Source Audio (to be converted)") |
|
text_input = gr.Textbox(label="Text content of the source audio") |
|
language_input = gr.Dropdown( |
|
choices=list(dict_language.keys()), |
|
value=i18n("中文"), |
|
label=i18n("语言 / Language") |
|
) |
|
target_audio = gr.Audio(type="filepath", label="Target Voice (reference)") |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
with gr.Row(): |
|
speed = gr.Slider( |
|
minimum=0.1, maximum=5, value=1, step=0.1, |
|
label=i18n("语速 / Speed") |
|
) |
|
|
|
if model_version != "v3": |
|
noise_scale = gr.Slider( |
|
minimum=0.1, maximum=1.0, value=0.5, step=0.1, |
|
label="Noise Scale (V2 models only)" |
|
) |
|
else: |
|
noise_scale = gr.Slider( |
|
minimum=0.1, maximum=1.0, value=0.5, step=0.1, |
|
label="Noise Scale (ignored for V3)", |
|
visible=False |
|
) |
|
|
|
if model_version == "v3": |
|
sample_steps = gr.Slider( |
|
minimum=1, maximum=30, value=8, step=1, |
|
label=i18n("采样步数 / Sample Steps") |
|
) |
|
top_k = gr.Slider( |
|
minimum=1, maximum=100, value=20, step=1, |
|
label=i18n("Top K") |
|
) |
|
top_p = gr.Slider( |
|
minimum=0.1, maximum=1.0, value=0.6, step=0.1, |
|
label=i18n("Top P") |
|
) |
|
temperature = gr.Slider( |
|
minimum=0.1, maximum=1.0, value=0.6, step=0.1, |
|
label=i18n("Temperature") |
|
) |
|
else: |
|
sample_steps = gr.Slider( |
|
minimum=1, maximum=30, value=8, step=1, |
|
label=i18n("采样步数 / Sample Steps"), |
|
visible=False |
|
) |
|
top_k = gr.Slider( |
|
minimum=1, maximum=100, value=20, step=1, |
|
label=i18n("Top K"), |
|
visible=False |
|
) |
|
top_p = gr.Slider( |
|
minimum=0.1, maximum=1.0, value=0.6, step=0.1, |
|
label=i18n("Top P"), |
|
visible=False |
|
) |
|
temperature = gr.Slider( |
|
minimum=0.1, maximum=1.0, value=0.6, step=0.1, |
|
label=i18n("Temperature"), |
|
visible=False |
|
) |
|
|
|
go_btn = gr.Button(i18n("开始转换 / Start Conversion"), variant="primary") |
|
|
|
with gr.Column(): |
|
output_audio = gr.Audio(label=i18n("转换后的声音 / Converted Audio")) |
|
status_output = gr.Markdown("Ready") |
|
|
|
def process_vc(source_path, text, lang, target_path, noise, k, p, temp, spd, steps): |
|
try: |
|
if not source_path: |
|
return None, "Error: Source audio is required" |
|
if not target_path: |
|
return None, "Error: Target audio is required" |
|
if not text: |
|
return None, "Error: Text content is required" |
|
|
|
return vc_main( |
|
source_path, text, lang, target_path, |
|
noise_scale=noise, |
|
top_k=k, |
|
top_p=p, |
|
temperature=temp, |
|
speed=spd, |
|
sample_steps=steps |
|
), "Conversion completed successfully" |
|
except Exception as e: |
|
import traceback |
|
return None, f"Error: {str(e)}\n{traceback.format_exc()}" |
|
|
|
go_btn.click( |
|
fn=process_vc, |
|
inputs=[ |
|
source_audio, text_input, language_input, target_audio, |
|
noise_scale, top_k, top_p, temperature, speed, sample_steps |
|
], |
|
outputs=[output_audio, status_output] |
|
) |
|
|
|
|
|
vc_app.launch( |
|
share=True, |
|
) |
|
|
|
if __name__ == "__main__": |
|
print(f"Launching Voice Conversion UI with model version: {model_version}") |
|
launch_vc_ui() |