Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +8 -0
- CosyVoice2-0.5B-RWKV-7-1.5B-Instruct-CHENJPKO/flow.decoder.estimator.fp16.a10.plan +3 -0
- CosyVoice2-0.5B-RWKV-7-1.5B-Instruct-CHENJPKO/flow.decoder.estimator.fp16.l20.plan +3 -0
- CosyVoice2-0.5B-RWKV-7-1.5B-Instruct-CHENJPKO/flow.decoder.estimator.fp16.v100.plan +3 -0
- CosyVoice2-0.5B-RWKV-7-1.5B-Instruct-CHENJPKO/flow.decoder.estimator.fp32.onnx +3 -0
- CosyVoice2-0.5B-RWKV-7-1.5B-Instruct-CHENJPKO/flow.encoder.fp32.zip +3 -0
- CosyVoice2-0.5B-RWKV-7-1.5B-Instruct-CHENJPKO/flow.pt +3 -0
- CosyVoice2-0.5B-RWKV-7-1.5B-Instruct-CHENJPKO/speech_tokenizer_v2.onnx +3 -0
- third_party/1new_zero_0_0.wav +3 -0
- third_party/cosyvoice/cli/__init__.py +0 -0
- third_party/cosyvoice/cli/__pycache__/__init__.cpython-311.pyc +0 -0
- third_party/cosyvoice/cli/__pycache__/cosyvoice.cpython-311.pyc +0 -0
- third_party/cosyvoice/cli/__pycache__/frontend.cpython-311.pyc +0 -0
- third_party/cosyvoice/cli/__pycache__/model.cpython-311.pyc +0 -0
- third_party/cosyvoice/cli/cosyvoice.py +188 -0
- third_party/cosyvoice/cli/frontend.py +218 -0
- third_party/cosyvoice/cli/model.py +412 -0
- third_party/cosyvoice/llm/__pycache__/llm.cpython-311.pyc +0 -0
- third_party/cosyvoice/llm/llm.py +434 -0
- third_party/cosyvoice/tokenizer/tokenizer.py +279 -0
- third_party/cosyvoice/transformer/__pycache__/__init__.cpython-311.pyc +0 -0
- third_party/cosyvoice/transformer/__pycache__/activation.cpython-311.pyc +0 -0
- third_party/cosyvoice/transformer/__pycache__/attention.cpython-311.pyc +0 -0
- third_party/cosyvoice/transformer/__pycache__/convolution.cpython-311.pyc +0 -0
- third_party/cosyvoice/transformer/__pycache__/embedding.cpython-311.pyc +0 -0
- third_party/cosyvoice/transformer/__pycache__/encoder_layer.cpython-311.pyc +0 -0
- third_party/cosyvoice/transformer/__pycache__/label_smoothing_loss.cpython-311.pyc +0 -0
- third_party/cosyvoice/transformer/__pycache__/positionwise_feed_forward.cpython-311.pyc +0 -0
- third_party/cosyvoice/transformer/__pycache__/subsampling.cpython-311.pyc +0 -0
- third_party/cosyvoice/transformer/__pycache__/upsample_encoder.cpython-311.pyc +0 -0
- third_party/cosyvoice/transformer/attention.py +330 -0
- third_party/cosyvoice/transformer/decoder.py +396 -0
- third_party/cosyvoice/transformer/decoder_layer.py +132 -0
- third_party/cosyvoice/transformer/embedding.py +294 -0
- third_party/cosyvoice/transformer/encoder.py +474 -0
- third_party/cosyvoice/utils/__init__.py +0 -0
- third_party/cosyvoice/utils/__pycache__/__init__.cpython-311.pyc +0 -0
- third_party/cosyvoice/utils/__pycache__/class_utils.cpython-311.pyc +0 -0
- third_party/cosyvoice/utils/__pycache__/common.cpython-311.pyc +0 -0
- third_party/cosyvoice/utils/__pycache__/file_utils.cpython-311.pyc +0 -0
- third_party/cosyvoice/utils/__pycache__/frontend_utils.cpython-311.pyc +0 -0
- third_party/cosyvoice/utils/__pycache__/mask.cpython-311.pyc +0 -0
- third_party/cosyvoice/utils/class_utils.py +83 -0
- third_party/cosyvoice/utils/common.py +166 -0
- third_party/cosyvoice/utils/executor.py +172 -0
- third_party/cosyvoice/utils/file_utils.py +89 -0
- third_party/cosyvoice/utils/frontend_utils.py +136 -0
- third_party/cosyvoice/utils/losses.py +20 -0
- third_party/cosyvoice/utils/mask.py +267 -0
- third_party/cosyvoice/utils/scheduler.py +738 -0
.gitattributes
CHANGED
@@ -44,3 +44,11 @@ zero_shot_0.wav filter=lfs diff=lfs merge=lfs -text
|
|
44 |
zero_1_0.wav filter=lfs diff=lfs merge=lfs -text
|
45 |
zero_3_0.wav filter=lfs diff=lfs merge=lfs -text
|
46 |
zero_0_0.wav filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
zero_1_0.wav filter=lfs diff=lfs merge=lfs -text
|
45 |
zero_3_0.wav filter=lfs diff=lfs merge=lfs -text
|
46 |
zero_0_0.wav filter=lfs diff=lfs merge=lfs -text
|
47 |
+
third_party/new_zero_0_0.wav filter=lfs diff=lfs merge=lfs -text
|
48 |
+
third_party/new_zero_3_0.wav filter=lfs diff=lfs merge=lfs -text
|
49 |
+
third_party/new_zero_2_0.wav filter=lfs diff=lfs merge=lfs -text
|
50 |
+
third_party/1new_zero_0_0.wav filter=lfs diff=lfs merge=lfs -text
|
51 |
+
CosyVoice2-0.5B-RWKV-7-1.5B-Instruct-CHENJPKO/flow.decoder.estimator.fp16.v100.plan filter=lfs diff=lfs merge=lfs -text
|
52 |
+
CosyVoice2-0.5B-RWKV-7-1.5B-Instruct-CHENJPKO/flow.decoder.estimator.fp16.l20.plan filter=lfs diff=lfs merge=lfs -text
|
53 |
+
third_party/new_zero_1_0.wav filter=lfs diff=lfs merge=lfs -text
|
54 |
+
CosyVoice2-0.5B-RWKV-7-1.5B-Instruct-CHENJPKO/flow.decoder.estimator.fp16.a10.plan filter=lfs diff=lfs merge=lfs -text
|
CosyVoice2-0.5B-RWKV-7-1.5B-Instruct-CHENJPKO/flow.decoder.estimator.fp16.a10.plan
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f6b9073bd9e7b8ac5bef0a21431391cbc32376b9265ec73935d6f28a0d32d01
|
3 |
+
size 168597292
|
CosyVoice2-0.5B-RWKV-7-1.5B-Instruct-CHENJPKO/flow.decoder.estimator.fp16.l20.plan
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:012df9e730e36e1cb61bf2780378c15ae92c536ae87518b7a54a90026cb99385
|
3 |
+
size 166520788
|
CosyVoice2-0.5B-RWKV-7-1.5B-Instruct-CHENJPKO/flow.decoder.estimator.fp16.v100.plan
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f231edf01451fafbc3dc0498a51feb3a264afad43275536c8151fff954ef3c56
|
3 |
+
size 161799540
|
CosyVoice2-0.5B-RWKV-7-1.5B-Instruct-CHENJPKO/flow.decoder.estimator.fp32.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51aed3efa2c153898ea53a780893c920e968dab1d7aec25402bd6c9815d94702
|
3 |
+
size 286521895
|
CosyVoice2-0.5B-RWKV-7-1.5B-Instruct-CHENJPKO/flow.encoder.fp32.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32ac668741e1358123d3c066cfd1f68a81bd386028755be9831509e304bfd98c
|
3 |
+
size 192365750
|
CosyVoice2-0.5B-RWKV-7-1.5B-Instruct-CHENJPKO/flow.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff4c2f867674411e0a08cee702996df13fa67c1cd864c06108da88d16d088541
|
3 |
+
size 450575567
|
CosyVoice2-0.5B-RWKV-7-1.5B-Instruct-CHENJPKO/speech_tokenizer_v2.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d43342aa12163a80bf07bffb94c9de2e120a8df2f9917cd2f642e7f4219c6f71
|
3 |
+
size 496082973
|
third_party/1new_zero_0_0.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29edea6d2bc42701b6905a23fd607129fbe5a377368d90fdce1b3a5a98ecff60
|
3 |
+
size 871758
|
third_party/cosyvoice/cli/__init__.py
ADDED
File without changes
|
third_party/cosyvoice/cli/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (163 Bytes). View file
|
|
third_party/cosyvoice/cli/__pycache__/cosyvoice.cpython-311.pyc
ADDED
Binary file (16.7 kB). View file
|
|
third_party/cosyvoice/cli/__pycache__/frontend.cpython-311.pyc
ADDED
Binary file (17 kB). View file
|
|
third_party/cosyvoice/cli/__pycache__/model.cpython-311.pyc
ADDED
Binary file (30.3 kB). View file
|
|
third_party/cosyvoice/cli/cosyvoice.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import os
|
15 |
+
import time
|
16 |
+
from typing import Generator
|
17 |
+
from tqdm import tqdm
|
18 |
+
from hyperpyyaml import load_hyperpyyaml
|
19 |
+
from modelscope import snapshot_download
|
20 |
+
import torch
|
21 |
+
from cosyvoice.cli.frontend import CosyVoiceFrontEnd
|
22 |
+
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
|
23 |
+
from cosyvoice.utils.file_utils import logging
|
24 |
+
from cosyvoice.utils.class_utils import get_model_type
|
25 |
+
|
26 |
+
|
27 |
+
class CosyVoice:
|
28 |
+
|
29 |
+
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False):
|
30 |
+
self.instruct = True if '-Instruct' in model_dir else False
|
31 |
+
self.model_dir = model_dir
|
32 |
+
self.fp16 = fp16
|
33 |
+
if not os.path.exists(model_dir):
|
34 |
+
model_dir = snapshot_download(model_dir)
|
35 |
+
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
36 |
+
configs = load_hyperpyyaml(f)
|
37 |
+
assert get_model_type(configs) != CosyVoice2Model, 'do not use {} for CosyVoice initialization!'.format(model_dir)
|
38 |
+
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
39 |
+
configs['feat_extractor'],
|
40 |
+
'{}/campplus.onnx'.format(model_dir),
|
41 |
+
'{}/speech_tokenizer_v1.onnx'.format(model_dir),
|
42 |
+
'{}/spk2info.pt'.format(model_dir),
|
43 |
+
configs['allowed_special'])
|
44 |
+
self.sample_rate = configs['sample_rate']
|
45 |
+
if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
|
46 |
+
load_jit, load_trt, fp16 = False, False, False
|
47 |
+
logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
|
48 |
+
self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16)
|
49 |
+
self.model.load('{}/llm.pt'.format(model_dir),
|
50 |
+
'{}/flow.pt'.format(model_dir),
|
51 |
+
'{}/hift.pt'.format(model_dir))
|
52 |
+
if load_jit:
|
53 |
+
self.model.load_jit('{}/llm.text_encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
54 |
+
'{}/llm.llm.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
55 |
+
'{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
|
56 |
+
if load_trt:
|
57 |
+
self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
58 |
+
'{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
|
59 |
+
self.fp16)
|
60 |
+
del configs
|
61 |
+
|
62 |
+
def list_available_spks(self):
|
63 |
+
spks = list(self.frontend.spk2info.keys())
|
64 |
+
return spks
|
65 |
+
|
66 |
+
def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
|
67 |
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
68 |
+
model_input = self.frontend.frontend_sft(i, spk_id)
|
69 |
+
start_time = time.time()
|
70 |
+
logging.info('synthesis text {}'.format(i))
|
71 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
72 |
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
73 |
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
74 |
+
yield model_output
|
75 |
+
start_time = time.time()
|
76 |
+
|
77 |
+
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
78 |
+
if prompt_text is not None:
|
79 |
+
prompt_text = self.frontend.text_normalize(prompt_text, split=False, text_frontend=text_frontend)
|
80 |
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
81 |
+
if (not isinstance(i, Generator)) and len(i) < 0.5 * len(prompt_text):
|
82 |
+
logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
|
83 |
+
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate)
|
84 |
+
start_time = time.time()
|
85 |
+
logging.info('synthesis text {}'.format(i))
|
86 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
87 |
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
88 |
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
89 |
+
yield model_output
|
90 |
+
start_time = time.time()
|
91 |
+
else:
|
92 |
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
93 |
+
if (not isinstance(i, Generator)) and len(i) < 0.5 * len(prompt_text):
|
94 |
+
logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
|
95 |
+
model_input = self.frontend.frontend_tts(i)
|
96 |
+
start_time = time.time()
|
97 |
+
logging.info('synthesis text {}'.format(i))
|
98 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
99 |
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
100 |
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
101 |
+
yield model_output
|
102 |
+
start_time = time.time()
|
103 |
+
|
104 |
+
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
105 |
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
106 |
+
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
|
107 |
+
start_time = time.time()
|
108 |
+
logging.info('synthesis text {}'.format(i))
|
109 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
110 |
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
111 |
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
112 |
+
yield model_output
|
113 |
+
start_time = time.time()
|
114 |
+
|
115 |
+
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0, text_frontend=True):
|
116 |
+
assert isinstance(self.model, CosyVoiceModel), 'inference_instruct is only implemented for CosyVoice!'
|
117 |
+
if self.instruct is False:
|
118 |
+
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
119 |
+
instruct_text = self.frontend.text_normalize(instruct_text, split=False, text_frontend=text_frontend)
|
120 |
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
121 |
+
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
122 |
+
start_time = time.time()
|
123 |
+
logging.info('synthesis text {}'.format(i))
|
124 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
125 |
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
126 |
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
127 |
+
yield model_output
|
128 |
+
start_time = time.time()
|
129 |
+
|
130 |
+
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
|
131 |
+
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
|
132 |
+
start_time = time.time()
|
133 |
+
for model_output in self.model.vc(**model_input, stream=stream, speed=speed):
|
134 |
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
135 |
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
136 |
+
yield model_output
|
137 |
+
start_time = time.time()
|
138 |
+
|
139 |
+
|
140 |
+
class CosyVoice2(CosyVoice):
|
141 |
+
|
142 |
+
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False,device:str='cuda:0'):
|
143 |
+
self.instruct = True if '-Instruct' in model_dir else False
|
144 |
+
self.model_dir = model_dir
|
145 |
+
self.fp16 = fp16
|
146 |
+
self.device = device
|
147 |
+
if not os.path.exists(model_dir):
|
148 |
+
model_dir = snapshot_download(model_dir)
|
149 |
+
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
150 |
+
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
|
151 |
+
# assert get_model_type(configs) == CosyVoice2Model, 'do not use {} for CosyVoice2 initialization!'.format(model_dir)
|
152 |
+
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
153 |
+
configs['feat_extractor'],
|
154 |
+
'{}/campplus.onnx'.format(model_dir),
|
155 |
+
'{}/speech_tokenizer_v2.onnx'.format(model_dir),
|
156 |
+
'{}/spk2info.pt'.format(model_dir),
|
157 |
+
configs['allowed_special'],
|
158 |
+
device)
|
159 |
+
self.sample_rate = configs['sample_rate']
|
160 |
+
if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
|
161 |
+
load_jit, load_trt, fp16 = False, False, False
|
162 |
+
logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
|
163 |
+
self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16,device)
|
164 |
+
self.model.load('{}/llm.pt'.format(model_dir),
|
165 |
+
'{}/flow.pt'.format(model_dir),
|
166 |
+
'{}/hift.pt'.format(model_dir))
|
167 |
+
if load_jit:
|
168 |
+
self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
|
169 |
+
if load_trt:
|
170 |
+
self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
|
171 |
+
'{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
|
172 |
+
self.fp16)
|
173 |
+
del configs
|
174 |
+
|
175 |
+
def inference_instruct(self, *args, **kwargs):
|
176 |
+
raise NotImplementedError('inference_instruct is not implemented for CosyVoice2!')
|
177 |
+
|
178 |
+
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
179 |
+
assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
|
180 |
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
181 |
+
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
|
182 |
+
start_time = time.time()
|
183 |
+
logging.info('synthesis text {}'.format(i))
|
184 |
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
185 |
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
186 |
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
187 |
+
yield model_output
|
188 |
+
start_time = time.time()
|
third_party/cosyvoice/cli/frontend.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from functools import partial
|
15 |
+
from typing import Generator
|
16 |
+
import json
|
17 |
+
import onnxruntime
|
18 |
+
import torch
|
19 |
+
import numpy as np
|
20 |
+
import whisper
|
21 |
+
from typing import Callable
|
22 |
+
import torchaudio.compliance.kaldi as kaldi
|
23 |
+
import torchaudio
|
24 |
+
import os
|
25 |
+
import re
|
26 |
+
import inflect
|
27 |
+
try:
|
28 |
+
import ttsfrd
|
29 |
+
use_ttsfrd = True
|
30 |
+
except ImportError:
|
31 |
+
print("failed to import ttsfrd, use WeTextProcessing instead")
|
32 |
+
from tn.chinese.normalizer import Normalizer as ZhNormalizer
|
33 |
+
from tn.english.normalizer import Normalizer as EnNormalizer
|
34 |
+
use_ttsfrd = False
|
35 |
+
from cosyvoice.utils.file_utils import logging
|
36 |
+
from cosyvoice.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph, is_only_punctuation
|
37 |
+
|
38 |
+
|
39 |
+
class CosyVoiceFrontEnd:
|
40 |
+
|
41 |
+
def __init__(self,
|
42 |
+
get_tokenizer: Callable,
|
43 |
+
feat_extractor: Callable,
|
44 |
+
campplus_model: str,
|
45 |
+
speech_tokenizer_model: str,
|
46 |
+
spk2info: str = '',
|
47 |
+
allowed_special: str = 'all',
|
48 |
+
device: str = None):
|
49 |
+
self.tokenizer = get_tokenizer()
|
50 |
+
self.feat_extractor = feat_extractor
|
51 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else torch.device(device)
|
52 |
+
option = onnxruntime.SessionOptions()
|
53 |
+
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
54 |
+
option.intra_op_num_threads = 1
|
55 |
+
self.campplus_session = onnxruntime.InferenceSession(campplus_model, sess_options=option, providers=["CPUExecutionProvider"])
|
56 |
+
cuda_idx = int(device.split(':')[-1] if device is not None and 'cuda' in device else '0')
|
57 |
+
|
58 |
+
self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option,
|
59 |
+
providers=[("CUDAExecutionProvider", {"device_id": cuda_idx}) if torch.cuda.is_available() else
|
60 |
+
"CPUExecutionProvider"])
|
61 |
+
if os.path.exists(spk2info):
|
62 |
+
self.spk2info = torch.load(spk2info, map_location=self.device)
|
63 |
+
else:
|
64 |
+
self.spk2info = {}
|
65 |
+
self.allowed_special = allowed_special
|
66 |
+
self.use_ttsfrd = use_ttsfrd
|
67 |
+
if self.use_ttsfrd:
|
68 |
+
self.frd = ttsfrd.TtsFrontendEngine()
|
69 |
+
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
70 |
+
assert self.frd.initialize('{}/../../pretrained_models/CosyVoice-ttsfrd/resource'.format(ROOT_DIR)) is True, \
|
71 |
+
'failed to initialize ttsfrd resource'
|
72 |
+
self.frd.set_lang_type('pinyinvg')
|
73 |
+
else:
|
74 |
+
self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False, overwrite_cache=True, remove_interjections=False)
|
75 |
+
self.en_tn_model = EnNormalizer()
|
76 |
+
self.inflect_parser = inflect.engine()
|
77 |
+
|
78 |
+
def _extract_text_token(self, text):
|
79 |
+
if isinstance(text, Generator):
|
80 |
+
logging.info('get tts_text generator, will return _extract_text_token_generator!')
|
81 |
+
# NOTE add a dummy text_token_len for compatibility
|
82 |
+
return self._extract_text_token_generator(text), torch.tensor([0], dtype=torch.int32).to(self.device)
|
83 |
+
else:
|
84 |
+
text_token = self.tokenizer.encode(text, allowed_special=self.allowed_special)
|
85 |
+
text_token = torch.tensor([text_token], dtype=torch.int32).to(self.device)
|
86 |
+
text_token_len = torch.tensor([text_token.shape[1]], dtype=torch.int32).to(self.device)
|
87 |
+
return text_token, text_token_len
|
88 |
+
|
89 |
+
def _extract_text_token_generator(self, text_generator):
|
90 |
+
for text in text_generator:
|
91 |
+
text_token, _ = self._extract_text_token(text)
|
92 |
+
for i in range(text_token.shape[1]):
|
93 |
+
yield text_token[:, i: i + 1]
|
94 |
+
|
95 |
+
def _extract_speech_token(self, speech):
|
96 |
+
assert speech.shape[1] / 16000 <= 30, 'do not support extract speech token for audio longer than 30s'
|
97 |
+
feat = whisper.log_mel_spectrogram(speech, n_mels=128)
|
98 |
+
speech_token = self.speech_tokenizer_session.run(None,
|
99 |
+
{self.speech_tokenizer_session.get_inputs()[0].name:
|
100 |
+
feat.detach().cpu().numpy(),
|
101 |
+
self.speech_tokenizer_session.get_inputs()[1].name:
|
102 |
+
np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
103 |
+
speech_token = torch.tensor([speech_token], dtype=torch.int32).to(self.device)
|
104 |
+
speech_token_len = torch.tensor([speech_token.shape[1]], dtype=torch.int32).to(self.device)
|
105 |
+
return speech_token, speech_token_len
|
106 |
+
|
107 |
+
def _extract_spk_embedding(self, speech):
|
108 |
+
feat = kaldi.fbank(speech,
|
109 |
+
num_mel_bins=80,
|
110 |
+
dither=0,
|
111 |
+
sample_frequency=16000)
|
112 |
+
feat = feat - feat.mean(dim=0, keepdim=True)
|
113 |
+
embedding = self.campplus_session.run(None,
|
114 |
+
{self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
115 |
+
embedding = torch.tensor([embedding]).to(self.device)
|
116 |
+
return embedding
|
117 |
+
|
118 |
+
def _extract_speech_feat(self, speech):
|
119 |
+
speech_feat = self.feat_extractor(speech).squeeze(dim=0).transpose(0, 1).to(self.device)
|
120 |
+
speech_feat = speech_feat.unsqueeze(dim=0)
|
121 |
+
speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device)
|
122 |
+
return speech_feat, speech_feat_len
|
123 |
+
|
124 |
+
def text_normalize(self, text, split=True, text_frontend=True):
|
125 |
+
if isinstance(text, Generator):
|
126 |
+
logging.info('get tts_text generator, will skip text_normalize!')
|
127 |
+
return [text]
|
128 |
+
if text_frontend is False:
|
129 |
+
return [text] if split is True else text
|
130 |
+
text = text.strip()
|
131 |
+
if self.use_ttsfrd:
|
132 |
+
texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
|
133 |
+
text = ''.join(texts)
|
134 |
+
else:
|
135 |
+
if contains_chinese(text):
|
136 |
+
text = self.zh_tn_model.normalize(text)
|
137 |
+
text = text.replace("\n", "")
|
138 |
+
text = replace_blank(text)
|
139 |
+
text = replace_corner_mark(text)
|
140 |
+
text = text.replace(".", "。")
|
141 |
+
text = text.replace(" - ", ",")
|
142 |
+
text = remove_bracket(text)
|
143 |
+
text = re.sub(r'[,,、]+$', '。', text)
|
144 |
+
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
|
145 |
+
token_min_n=60, merge_len=20, comma_split=False))
|
146 |
+
else:
|
147 |
+
text = self.en_tn_model.normalize(text)
|
148 |
+
text = spell_out_number(text, self.inflect_parser)
|
149 |
+
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
|
150 |
+
token_min_n=60, merge_len=20, comma_split=False))
|
151 |
+
texts = [i for i in texts if not is_only_punctuation(i)]
|
152 |
+
return texts if split is True else text
|
153 |
+
|
154 |
+
def frontend_sft(self, tts_text, spk_id):
|
155 |
+
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
156 |
+
embedding = self.spk2info[spk_id]['embedding']
|
157 |
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding}
|
158 |
+
return model_input
|
159 |
+
|
160 |
+
def frontend_tts(self, tts_text):
|
161 |
+
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
162 |
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len}
|
163 |
+
return model_input
|
164 |
+
def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, resample_rate):
|
165 |
+
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
166 |
+
prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text)
|
167 |
+
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
168 |
+
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
|
169 |
+
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
170 |
+
if resample_rate == 24000:
|
171 |
+
# cosyvoice2, force speech_feat % speech_token = 2
|
172 |
+
token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
|
173 |
+
speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2 * token_len
|
174 |
+
speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
|
175 |
+
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
176 |
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
177 |
+
'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
|
178 |
+
'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
|
179 |
+
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
180 |
+
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
181 |
+
'llm_embedding': embedding, 'flow_embedding': embedding}
|
182 |
+
return model_input
|
183 |
+
|
184 |
+
def frontend_cross_lingual(self, tts_text, prompt_speech_16k, resample_rate):
|
185 |
+
model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k, resample_rate)
|
186 |
+
# in cross lingual mode, we remove prompt in llm
|
187 |
+
del model_input['prompt_text']
|
188 |
+
del model_input['prompt_text_len']
|
189 |
+
del model_input['llm_prompt_speech_token']
|
190 |
+
del model_input['llm_prompt_speech_token_len']
|
191 |
+
return model_input
|
192 |
+
|
193 |
+
def frontend_instruct(self, tts_text, spk_id, instruct_text):
|
194 |
+
model_input = self.frontend_sft(tts_text, spk_id)
|
195 |
+
# in instruct mode, we remove spk_embedding in llm due to information leakage
|
196 |
+
del model_input['llm_embedding']
|
197 |
+
instruct_text_token, instruct_text_token_len = self._extract_text_token(instruct_text + '<endofprompt>')
|
198 |
+
model_input['prompt_text'] = instruct_text_token
|
199 |
+
model_input['prompt_text_len'] = instruct_text_token_len
|
200 |
+
return model_input
|
201 |
+
|
202 |
+
def frontend_instruct2(self, tts_text, instruct_text, prompt_speech_16k, resample_rate):
|
203 |
+
model_input = self.frontend_zero_shot(tts_text, instruct_text + '<|endofprompt|>', prompt_speech_16k, resample_rate)
|
204 |
+
del model_input['llm_prompt_speech_token']
|
205 |
+
del model_input['llm_prompt_speech_token_len']
|
206 |
+
return model_input
|
207 |
+
|
208 |
+
def frontend_vc(self, source_speech_16k, prompt_speech_16k, resample_rate):
|
209 |
+
prompt_speech_token, prompt_speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
210 |
+
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
211 |
+
prompt_speech_feat, prompt_speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
|
212 |
+
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
213 |
+
source_speech_token, source_speech_token_len = self._extract_speech_token(source_speech_16k)
|
214 |
+
model_input = {'source_speech_token': source_speech_token, 'source_speech_token_len': source_speech_token_len,
|
215 |
+
'flow_prompt_speech_token': prompt_speech_token, 'flow_prompt_speech_token_len': prompt_speech_token_len,
|
216 |
+
'prompt_speech_feat': prompt_speech_feat, 'prompt_speech_feat_len': prompt_speech_feat_len,
|
217 |
+
'flow_embedding': embedding}
|
218 |
+
return model_input
|
third_party/cosyvoice/cli/model.py
ADDED
@@ -0,0 +1,412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import os
|
15 |
+
from typing import Generator
|
16 |
+
import torch
|
17 |
+
import numpy as np
|
18 |
+
import threading
|
19 |
+
import time
|
20 |
+
from torch.nn import functional as F
|
21 |
+
from contextlib import nullcontext
|
22 |
+
import uuid
|
23 |
+
from cosyvoice.utils.common import fade_in_out
|
24 |
+
from cosyvoice.utils.file_utils import convert_onnx_to_trt
|
25 |
+
|
26 |
+
|
27 |
+
class CosyVoiceModel:
|
28 |
+
|
29 |
+
def __init__(self,
|
30 |
+
llm: torch.nn.Module,
|
31 |
+
flow: torch.nn.Module,
|
32 |
+
hift: torch.nn.Module,
|
33 |
+
fp16: bool):
|
34 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
35 |
+
self.llm = llm
|
36 |
+
self.flow = flow
|
37 |
+
self.hift = hift
|
38 |
+
self.fp16 = fp16
|
39 |
+
self.llm.fp16 = fp16
|
40 |
+
self.flow.fp16 = fp16
|
41 |
+
if self.fp16 is True:
|
42 |
+
self.llm.half()
|
43 |
+
self.flow.half()
|
44 |
+
self.token_min_hop_len = 2 * self.flow.input_frame_rate
|
45 |
+
self.token_max_hop_len = 4 * self.flow.input_frame_rate
|
46 |
+
self.token_overlap_len = 20
|
47 |
+
# here we fix set flow.decoder.estimator.static_chunk_size = 0 for compatibability
|
48 |
+
self.flow.decoder.estimator.static_chunk_size = 0
|
49 |
+
# mel fade in out
|
50 |
+
self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
|
51 |
+
self.mel_window = np.hamming(2 * self.mel_overlap_len)
|
52 |
+
# hift cache
|
53 |
+
self.mel_cache_len = 20
|
54 |
+
self.source_cache_len = int(self.mel_cache_len * 256)
|
55 |
+
# speech fade in out
|
56 |
+
self.speech_window = np.hamming(2 * self.source_cache_len)
|
57 |
+
# rtf and decoding related
|
58 |
+
self.stream_scale_factor = 1
|
59 |
+
assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
|
60 |
+
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
61 |
+
self.lock = threading.Lock()
|
62 |
+
# dict used to store session related variable
|
63 |
+
self.tts_speech_token_dict = {}
|
64 |
+
self.llm_end_dict = {}
|
65 |
+
self.mel_overlap_dict = {}
|
66 |
+
self.flow_cache_dict = {}
|
67 |
+
self.hift_cache_dict = {}
|
68 |
+
|
69 |
+
def load(self, llm_model, flow_model, hift_model):
|
70 |
+
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
|
71 |
+
self.llm.to(self.device).eval()
|
72 |
+
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True)
|
73 |
+
self.flow.to(self.device).eval()
|
74 |
+
# in case hift_model is a hifigan model
|
75 |
+
hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
|
76 |
+
self.hift.load_state_dict(hift_state_dict, strict=True)
|
77 |
+
self.hift.to(self.device).eval()
|
78 |
+
|
79 |
+
def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model):
|
80 |
+
llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device)
|
81 |
+
self.llm.text_encoder = llm_text_encoder
|
82 |
+
llm_llm = torch.jit.load(llm_llm_model, map_location=self.device)
|
83 |
+
self.llm.llm = llm_llm
|
84 |
+
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
85 |
+
self.flow.encoder = flow_encoder
|
86 |
+
|
87 |
+
def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, fp16):
|
88 |
+
assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
|
89 |
+
if not os.path.exists(flow_decoder_estimator_model):
|
90 |
+
convert_onnx_to_trt(flow_decoder_estimator_model, flow_decoder_onnx_model, fp16)
|
91 |
+
if os.path.getsize(flow_decoder_estimator_model) == 0:
|
92 |
+
raise ValueError('{} is empty file, delete it and export again!'.format(flow_decoder_estimator_model))
|
93 |
+
del self.flow.decoder.estimator
|
94 |
+
import tensorrt as trt
|
95 |
+
with open(flow_decoder_estimator_model, 'rb') as f:
|
96 |
+
self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
|
97 |
+
if self.flow.decoder.estimator_engine is None:
|
98 |
+
raise ValueError('failed to load trt {}'.format(flow_decoder_estimator_model))
|
99 |
+
self.flow.decoder.estimator = self.flow.decoder.estimator_engine.create_execution_context()
|
100 |
+
|
101 |
+
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
102 |
+
with self.llm_context:
|
103 |
+
if isinstance(text, Generator):
|
104 |
+
assert isinstance(self, CosyVoice2Model), 'streaming input text is only implemented for CosyVoice2!'
|
105 |
+
for i in self.llm.inference_bistream(text=text,
|
106 |
+
prompt_text=prompt_text.to(self.device),
|
107 |
+
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
108 |
+
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
109 |
+
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
110 |
+
embedding=llm_embedding.to(self.device)):
|
111 |
+
self.tts_speech_token_dict[uuid].append(i)
|
112 |
+
else:
|
113 |
+
for i in self.llm.inference(text=text.to(self.device),
|
114 |
+
text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
|
115 |
+
prompt_text=prompt_text.to(self.device),
|
116 |
+
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
117 |
+
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
118 |
+
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
119 |
+
embedding=llm_embedding.to(self.device)):
|
120 |
+
self.tts_speech_token_dict[uuid].append(i)
|
121 |
+
self.llm_end_dict[uuid] = True
|
122 |
+
|
123 |
+
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
|
124 |
+
tts_mel, flow_cache = self.flow.inference(token=token.to(self.device),
|
125 |
+
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
126 |
+
prompt_token=prompt_token.to(self.device),
|
127 |
+
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
128 |
+
prompt_feat=prompt_feat.to(self.device),
|
129 |
+
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
130 |
+
embedding=embedding.to(self.device),
|
131 |
+
flow_cache=self.flow_cache_dict[uuid])
|
132 |
+
self.flow_cache_dict[uuid] = flow_cache
|
133 |
+
|
134 |
+
# mel overlap fade in out
|
135 |
+
if self.mel_overlap_dict[uuid].shape[2] != 0:
|
136 |
+
tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
|
137 |
+
# append hift cache
|
138 |
+
if self.hift_cache_dict[uuid] is not None:
|
139 |
+
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
140 |
+
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
141 |
+
else:
|
142 |
+
hift_cache_source = torch.zeros(1, 1, 0)
|
143 |
+
# keep overlap mel and hift cache
|
144 |
+
if finalize is False:
|
145 |
+
self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
|
146 |
+
tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
|
147 |
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
148 |
+
if self.hift_cache_dict[uuid] is not None:
|
149 |
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
150 |
+
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
|
151 |
+
'source': tts_source[:, :, -self.source_cache_len:],
|
152 |
+
'speech': tts_speech[:, -self.source_cache_len:]}
|
153 |
+
tts_speech = tts_speech[:, :-self.source_cache_len]
|
154 |
+
else:
|
155 |
+
if speed != 1.0:
|
156 |
+
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
|
157 |
+
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
|
158 |
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
159 |
+
if self.hift_cache_dict[uuid] is not None:
|
160 |
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
161 |
+
return tts_speech
|
162 |
+
|
163 |
+
def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
164 |
+
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
|
165 |
+
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
166 |
+
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
167 |
+
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
|
168 |
+
# this_uuid is used to track variables related to this inference thread
|
169 |
+
this_uuid = str(uuid.uuid1())
|
170 |
+
with self.lock:
|
171 |
+
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
172 |
+
self.hift_cache_dict[this_uuid] = None
|
173 |
+
self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
|
174 |
+
self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
|
175 |
+
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
176 |
+
p.start()
|
177 |
+
if stream is True:
|
178 |
+
token_hop_len = self.token_min_hop_len
|
179 |
+
while True:
|
180 |
+
time.sleep(0.1)
|
181 |
+
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
|
182 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
|
183 |
+
.unsqueeze(dim=0)
|
184 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
185 |
+
prompt_token=flow_prompt_speech_token,
|
186 |
+
prompt_feat=prompt_speech_feat,
|
187 |
+
embedding=flow_embedding,
|
188 |
+
uuid=this_uuid,
|
189 |
+
finalize=False)
|
190 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
191 |
+
with self.lock:
|
192 |
+
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
|
193 |
+
# increase token_hop_len for better speech quality
|
194 |
+
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
|
195 |
+
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
|
196 |
+
break
|
197 |
+
p.join()
|
198 |
+
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
199 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
200 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
201 |
+
prompt_token=flow_prompt_speech_token,
|
202 |
+
prompt_feat=prompt_speech_feat,
|
203 |
+
embedding=flow_embedding,
|
204 |
+
uuid=this_uuid,
|
205 |
+
finalize=True)
|
206 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
207 |
+
else:
|
208 |
+
# deal with all tokens
|
209 |
+
p.join()
|
210 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
211 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
212 |
+
prompt_token=flow_prompt_speech_token,
|
213 |
+
prompt_feat=prompt_speech_feat,
|
214 |
+
embedding=flow_embedding,
|
215 |
+
uuid=this_uuid,
|
216 |
+
finalize=True,
|
217 |
+
speed=speed)
|
218 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
219 |
+
with self.lock:
|
220 |
+
self.tts_speech_token_dict.pop(this_uuid)
|
221 |
+
self.llm_end_dict.pop(this_uuid)
|
222 |
+
self.mel_overlap_dict.pop(this_uuid)
|
223 |
+
self.hift_cache_dict.pop(this_uuid)
|
224 |
+
self.flow_cache_dict.pop(this_uuid)
|
225 |
+
torch.cuda.empty_cache()
|
226 |
+
|
227 |
+
def vc(self, source_speech_token, flow_prompt_speech_token, prompt_speech_feat, flow_embedding, stream=False, speed=1.0, **kwargs):
|
228 |
+
# this_uuid is used to track variables related to this inference thread
|
229 |
+
this_uuid = str(uuid.uuid1())
|
230 |
+
with self.lock:
|
231 |
+
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = source_speech_token.flatten().tolist(), True
|
232 |
+
self.hift_cache_dict[this_uuid] = None
|
233 |
+
self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
|
234 |
+
self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
|
235 |
+
if stream is True:
|
236 |
+
token_hop_len = self.token_min_hop_len
|
237 |
+
while True:
|
238 |
+
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
|
239 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
|
240 |
+
.unsqueeze(dim=0)
|
241 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
242 |
+
prompt_token=flow_prompt_speech_token,
|
243 |
+
prompt_feat=prompt_speech_feat,
|
244 |
+
embedding=flow_embedding,
|
245 |
+
uuid=this_uuid,
|
246 |
+
finalize=False)
|
247 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
248 |
+
with self.lock:
|
249 |
+
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
|
250 |
+
# increase token_hop_len for better speech quality
|
251 |
+
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
|
252 |
+
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
|
253 |
+
break
|
254 |
+
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
255 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
256 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
257 |
+
prompt_token=flow_prompt_speech_token,
|
258 |
+
prompt_feat=prompt_speech_feat,
|
259 |
+
embedding=flow_embedding,
|
260 |
+
uuid=this_uuid,
|
261 |
+
finalize=True)
|
262 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
263 |
+
else:
|
264 |
+
# deal with all tokens
|
265 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
266 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
267 |
+
prompt_token=flow_prompt_speech_token,
|
268 |
+
prompt_feat=prompt_speech_feat,
|
269 |
+
embedding=flow_embedding,
|
270 |
+
uuid=this_uuid,
|
271 |
+
finalize=True,
|
272 |
+
speed=speed)
|
273 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
274 |
+
with self.lock:
|
275 |
+
self.tts_speech_token_dict.pop(this_uuid)
|
276 |
+
self.llm_end_dict.pop(this_uuid)
|
277 |
+
self.mel_overlap_dict.pop(this_uuid)
|
278 |
+
self.hift_cache_dict.pop(this_uuid)
|
279 |
+
torch.cuda.empty_cache()
|
280 |
+
|
281 |
+
|
282 |
+
class CosyVoice2Model(CosyVoiceModel):
|
283 |
+
|
284 |
+
def __init__(self,
|
285 |
+
llm: torch.nn.Module,
|
286 |
+
flow: torch.nn.Module,
|
287 |
+
hift: torch.nn.Module,
|
288 |
+
fp16: bool,
|
289 |
+
device: str):
|
290 |
+
self.device = torch.device(device)
|
291 |
+
self.llm = llm
|
292 |
+
self.flow = flow
|
293 |
+
self.hift = hift
|
294 |
+
self.fp16 = fp16
|
295 |
+
self.llm.fp16 = fp16
|
296 |
+
self.flow.fp16 = fp16
|
297 |
+
if self.fp16 is True:
|
298 |
+
self.llm.half()
|
299 |
+
self.flow.half()
|
300 |
+
self.token_hop_len = 2 * self.flow.input_frame_rate
|
301 |
+
# here we fix flow encoder/decoder decoding_chunk_size, in the future we will send it as arguments, or use cache
|
302 |
+
self.flow.encoder.static_chunk_size = 2 * self.flow.input_frame_rate
|
303 |
+
self.flow.decoder.estimator.static_chunk_size = 2 * self.flow.input_frame_rate * self.flow.token_mel_ratio
|
304 |
+
# hift cache
|
305 |
+
self.mel_cache_len = 8
|
306 |
+
self.source_cache_len = int(self.mel_cache_len * 480)
|
307 |
+
# speech fade in out
|
308 |
+
self.speech_window = np.hamming(2 * self.source_cache_len)
|
309 |
+
# rtf and decoding related
|
310 |
+
self.stream_scale_factor = 1
|
311 |
+
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
312 |
+
self.lock = threading.Lock()
|
313 |
+
# dict used to store session related variable
|
314 |
+
self.tts_speech_token_dict = {}
|
315 |
+
self.llm_end_dict = {}
|
316 |
+
self.hift_cache_dict = {}
|
317 |
+
|
318 |
+
def load_jit(self, flow_encoder_model):
|
319 |
+
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
320 |
+
self.flow.encoder = flow_encoder
|
321 |
+
|
322 |
+
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, token_offset, finalize=False, speed=1.0):
|
323 |
+
tts_mel, _ = self.flow.inference(token=token.to(self.device),
|
324 |
+
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
325 |
+
prompt_token=prompt_token.to(self.device),
|
326 |
+
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
327 |
+
prompt_feat=prompt_feat.to(self.device),
|
328 |
+
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
329 |
+
embedding=embedding.to(self.device),
|
330 |
+
finalize=finalize)
|
331 |
+
tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
|
332 |
+
# append hift cache
|
333 |
+
if self.hift_cache_dict[uuid] is not None:
|
334 |
+
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
335 |
+
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
336 |
+
else:
|
337 |
+
hift_cache_source = torch.zeros(1, 1, 0)
|
338 |
+
# keep overlap mel and hift cache
|
339 |
+
if finalize is False:
|
340 |
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
341 |
+
if self.hift_cache_dict[uuid] is not None:
|
342 |
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
343 |
+
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
|
344 |
+
'source': tts_source[:, :, -self.source_cache_len:],
|
345 |
+
'speech': tts_speech[:, -self.source_cache_len:]}
|
346 |
+
tts_speech = tts_speech[:, :-self.source_cache_len]
|
347 |
+
else:
|
348 |
+
if speed != 1.0:
|
349 |
+
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
|
350 |
+
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
|
351 |
+
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
352 |
+
if self.hift_cache_dict[uuid] is not None:
|
353 |
+
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
354 |
+
return tts_speech
|
355 |
+
|
356 |
+
def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
357 |
+
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
|
358 |
+
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
359 |
+
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
360 |
+
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
|
361 |
+
# this_uuid is used to track variables related to this inference thread
|
362 |
+
this_uuid = str(uuid.uuid1())
|
363 |
+
with self.lock:
|
364 |
+
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
365 |
+
self.hift_cache_dict[this_uuid] = None
|
366 |
+
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
367 |
+
p.start()
|
368 |
+
if stream is True:
|
369 |
+
token_offset = 0
|
370 |
+
while True:
|
371 |
+
time.sleep(0.1)
|
372 |
+
if len(self.tts_speech_token_dict[this_uuid]) - token_offset >= self.token_hop_len + self.flow.pre_lookahead_len:
|
373 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_offset + self.token_hop_len + self.flow.pre_lookahead_len]).unsqueeze(dim=0)
|
374 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
375 |
+
prompt_token=flow_prompt_speech_token,
|
376 |
+
prompt_feat=prompt_speech_feat,
|
377 |
+
embedding=flow_embedding,
|
378 |
+
uuid=this_uuid,
|
379 |
+
token_offset=token_offset,
|
380 |
+
finalize=False)
|
381 |
+
token_offset += self.token_hop_len
|
382 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
383 |
+
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < self.token_hop_len + self.flow.pre_lookahead_len:
|
384 |
+
break
|
385 |
+
p.join()
|
386 |
+
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
387 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
388 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
389 |
+
prompt_token=flow_prompt_speech_token,
|
390 |
+
prompt_feat=prompt_speech_feat,
|
391 |
+
embedding=flow_embedding,
|
392 |
+
uuid=this_uuid,
|
393 |
+
token_offset=token_offset,
|
394 |
+
finalize=True)
|
395 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
396 |
+
else:
|
397 |
+
# deal with all tokens
|
398 |
+
p.join()
|
399 |
+
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
400 |
+
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
401 |
+
prompt_token=flow_prompt_speech_token,
|
402 |
+
prompt_feat=prompt_speech_feat,
|
403 |
+
embedding=flow_embedding,
|
404 |
+
uuid=this_uuid,
|
405 |
+
token_offset=0,
|
406 |
+
finalize=True,
|
407 |
+
speed=speed)
|
408 |
+
yield {'tts_speech': this_tts_speech.cpu()}
|
409 |
+
with self.lock:
|
410 |
+
self.tts_speech_token_dict.pop(this_uuid)
|
411 |
+
self.llm_end_dict.pop(this_uuid)
|
412 |
+
torch.cuda.empty_cache()
|
third_party/cosyvoice/llm/__pycache__/llm.cpython-311.pyc
ADDED
Binary file (27 kB). View file
|
|
third_party/cosyvoice/llm/llm.py
ADDED
@@ -0,0 +1,434 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Dict, Optional, Callable, List, Generator
|
15 |
+
import torch
|
16 |
+
from torch import nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from transformers import Qwen2ForCausalLM
|
19 |
+
from torch.nn.utils.rnn import pad_sequence, unpad_sequence
|
20 |
+
from cosyvoice.utils.common import IGNORE_ID
|
21 |
+
from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
|
22 |
+
from cosyvoice.utils.common import th_accuracy
|
23 |
+
from cosyvoice.utils.file_utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
class TransformerLM(torch.nn.Module):
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
text_encoder_input_size: int,
|
30 |
+
llm_input_size: int,
|
31 |
+
llm_output_size: int,
|
32 |
+
text_token_size: int,
|
33 |
+
speech_token_size: int,
|
34 |
+
text_encoder: torch.nn.Module,
|
35 |
+
llm: torch.nn.Module,
|
36 |
+
sampling: Callable,
|
37 |
+
length_normalized_loss: bool = True,
|
38 |
+
lsm_weight: float = 0.0,
|
39 |
+
spk_embed_dim: int = 192,
|
40 |
+
):
|
41 |
+
super().__init__()
|
42 |
+
self.llm_input_size = llm_input_size
|
43 |
+
self.speech_token_size = speech_token_size
|
44 |
+
# 1. build text token inputs related modules
|
45 |
+
self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size)
|
46 |
+
self.text_encoder = text_encoder
|
47 |
+
self.text_encoder_affine_layer = nn.Linear(
|
48 |
+
self.text_encoder.output_size(),
|
49 |
+
llm_input_size
|
50 |
+
)
|
51 |
+
|
52 |
+
# 2. build speech token language model related modules
|
53 |
+
self.sos_eos = 0
|
54 |
+
self.task_id = 1
|
55 |
+
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
|
56 |
+
self.llm = llm
|
57 |
+
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1)
|
58 |
+
self.criterion_ce = LabelSmoothingLoss(
|
59 |
+
size=speech_token_size + 1,
|
60 |
+
padding_idx=IGNORE_ID,
|
61 |
+
smoothing=lsm_weight,
|
62 |
+
normalize_length=length_normalized_loss,
|
63 |
+
)
|
64 |
+
|
65 |
+
# 3. [Optional] build speech token related modules
|
66 |
+
self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size)
|
67 |
+
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size)
|
68 |
+
|
69 |
+
# 4. sampling method
|
70 |
+
self.sampling = sampling
|
71 |
+
|
72 |
+
def encode(
|
73 |
+
self,
|
74 |
+
text: torch.Tensor,
|
75 |
+
text_lengths: torch.Tensor,
|
76 |
+
):
|
77 |
+
encoder_out, encoder_mask = self.text_encoder(text, text_lengths, decoding_chunk_size=1, num_decoding_left_chunks=-1)
|
78 |
+
encoder_out_lens = encoder_mask.squeeze(1).sum(1)
|
79 |
+
encoder_out = self.text_encoder_affine_layer(encoder_out)
|
80 |
+
return encoder_out, encoder_out_lens
|
81 |
+
|
82 |
+
def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
|
83 |
+
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
|
84 |
+
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
85 |
+
lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0)
|
86 |
+
for i in range(len(text_token))]
|
87 |
+
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
|
88 |
+
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
|
89 |
+
return lm_input, lm_input_len
|
90 |
+
|
91 |
+
def forward(
|
92 |
+
self,
|
93 |
+
batch: dict,
|
94 |
+
device: torch.device,
|
95 |
+
) -> Dict[str, Optional[torch.Tensor]]:
|
96 |
+
"""
|
97 |
+
Args:
|
98 |
+
text: (B, L, D)
|
99 |
+
text_lengths: (B,)
|
100 |
+
audio: (B, T, N) or (B, T)
|
101 |
+
audio_lengths: (B,)
|
102 |
+
"""
|
103 |
+
text_token = batch['text_token'].to(device)
|
104 |
+
text_token_len = batch['text_token_len'].to(device)
|
105 |
+
speech_token = batch['speech_token'].to(device)
|
106 |
+
speech_token_len = batch['speech_token_len'].to(device)
|
107 |
+
embedding = batch['embedding'].to(device)
|
108 |
+
|
109 |
+
# 1. prepare llm_target
|
110 |
+
lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() +
|
111 |
+
[self.speech_token_size]) for i in range(text_token.size(0))]
|
112 |
+
lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)
|
113 |
+
|
114 |
+
# 1. encode text_token
|
115 |
+
text_token = self.text_embedding(text_token)
|
116 |
+
text_token, text_token_len = self.encode(text_token, text_token_len)
|
117 |
+
|
118 |
+
# 2. embedding projection
|
119 |
+
embedding = F.normalize(embedding, dim=1)
|
120 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
121 |
+
embedding = embedding.unsqueeze(1)
|
122 |
+
|
123 |
+
# 3. eos and task_id
|
124 |
+
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
125 |
+
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
126 |
+
|
127 |
+
# 4. encode speech_token
|
128 |
+
speech_token = self.speech_embedding(speech_token)
|
129 |
+
|
130 |
+
# 5. unpad and pad
|
131 |
+
lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len,
|
132 |
+
task_id_emb, speech_token, speech_token_len)
|
133 |
+
|
134 |
+
# 6. run lm forward
|
135 |
+
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
|
136 |
+
logits = self.llm_decoder(lm_output)
|
137 |
+
loss = self.criterion_ce(logits, lm_target)
|
138 |
+
acc = th_accuracy(logits.view(-1, self.speech_token_size + 1), lm_target, ignore_label=IGNORE_ID)
|
139 |
+
return {'loss': loss, 'acc': acc}
|
140 |
+
|
141 |
+
def sampling_ids(
|
142 |
+
self,
|
143 |
+
weighted_scores: torch.Tensor,
|
144 |
+
decoded_tokens: List,
|
145 |
+
sampling: int,
|
146 |
+
ignore_eos: bool = True,
|
147 |
+
):
|
148 |
+
num_trials, max_trials = 0, 100
|
149 |
+
while True:
|
150 |
+
top_ids = self.sampling(weighted_scores, decoded_tokens, sampling)
|
151 |
+
if (not ignore_eos) or (self.speech_token_size not in top_ids):
|
152 |
+
break
|
153 |
+
num_trials += 1
|
154 |
+
if num_trials > max_trials:
|
155 |
+
raise RuntimeError('sampling reaches max_trials {} and still get eos when ignore_eos is True, check your input!'.format(max_trials))
|
156 |
+
return top_ids
|
157 |
+
|
158 |
+
@torch.inference_mode()
|
159 |
+
def inference(
|
160 |
+
self,
|
161 |
+
text: torch.Tensor,
|
162 |
+
text_len: torch.Tensor,
|
163 |
+
prompt_text: torch.Tensor,
|
164 |
+
prompt_text_len: torch.Tensor,
|
165 |
+
prompt_speech_token: torch.Tensor,
|
166 |
+
prompt_speech_token_len: torch.Tensor,
|
167 |
+
embedding: torch.Tensor,
|
168 |
+
sampling: int = 25,
|
169 |
+
max_token_text_ratio: float = 20,
|
170 |
+
min_token_text_ratio: float = 2,
|
171 |
+
) -> Generator[torch.Tensor, None, None]:
|
172 |
+
if self.fp16 is True:
|
173 |
+
embedding = embedding.half()
|
174 |
+
|
175 |
+
device = text.device
|
176 |
+
text = torch.concat([prompt_text, text], dim=1)
|
177 |
+
text_len += prompt_text_len
|
178 |
+
text = self.text_embedding(text)
|
179 |
+
|
180 |
+
# 1. encode text
|
181 |
+
text, text_len = self.encode(text, text_len)
|
182 |
+
|
183 |
+
# 2. encode embedding
|
184 |
+
if embedding.shape[0] != 0:
|
185 |
+
embedding = F.normalize(embedding, dim=1)
|
186 |
+
embedding = self.spk_embed_affine_layer(embedding)
|
187 |
+
embedding = embedding.unsqueeze(dim=1)
|
188 |
+
else:
|
189 |
+
embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device).to(text.dtype)
|
190 |
+
|
191 |
+
# 3. concat llm_input
|
192 |
+
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
193 |
+
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
194 |
+
if prompt_speech_token_len != 0:
|
195 |
+
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
196 |
+
else:
|
197 |
+
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
198 |
+
lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
199 |
+
|
200 |
+
# 4. cal min/max_length
|
201 |
+
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
202 |
+
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
|
203 |
+
|
204 |
+
# 5. step by step decode
|
205 |
+
out_tokens = []
|
206 |
+
offset = 0
|
207 |
+
att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device)
|
208 |
+
for i in range(max_len):
|
209 |
+
y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=offset, required_cache_size=-1,
|
210 |
+
att_cache=att_cache, cnn_cache=cnn_cache,
|
211 |
+
att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]),
|
212 |
+
device=lm_input.device)).to(torch.bool))
|
213 |
+
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
214 |
+
# force continue decode first token
|
215 |
+
if i == 0:
|
216 |
+
logp[:, self.speech_token_size] = -float('inf')
|
217 |
+
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
|
218 |
+
if top_ids == self.speech_token_size:
|
219 |
+
break
|
220 |
+
# in stream mode, yield token one by one
|
221 |
+
yield top_ids
|
222 |
+
out_tokens.append(top_ids)
|
223 |
+
offset += lm_input.size(1)
|
224 |
+
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
225 |
+
|
226 |
+
|
227 |
+
class Qwen2Encoder(torch.nn.Module):
|
228 |
+
def __init__(self, pretrain_path):
|
229 |
+
super().__init__()
|
230 |
+
self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path)
|
231 |
+
|
232 |
+
def forward_one_step(self, xs, masks, cache=None):
|
233 |
+
input_masks = masks[:, -1, :]
|
234 |
+
outs = self.model(
|
235 |
+
inputs_embeds=xs,
|
236 |
+
attention_mask=input_masks,
|
237 |
+
output_hidden_states=True,
|
238 |
+
return_dict=True,
|
239 |
+
use_cache=True,
|
240 |
+
past_key_values=cache,
|
241 |
+
)
|
242 |
+
xs = outs.hidden_states[-1]
|
243 |
+
new_cache = outs.past_key_values
|
244 |
+
return xs, new_cache
|
245 |
+
|
246 |
+
|
247 |
+
class Qwen2LM(TransformerLM):
|
248 |
+
def __init__(
|
249 |
+
self,
|
250 |
+
llm_input_size: int,
|
251 |
+
llm_output_size: int,
|
252 |
+
speech_token_size: int,
|
253 |
+
llm: torch.nn.Module,
|
254 |
+
sampling: Callable,
|
255 |
+
length_normalized_loss: bool = True,
|
256 |
+
lsm_weight: float = 0.0,
|
257 |
+
mix_ratio: List[int] = [5, 15],
|
258 |
+
):
|
259 |
+
torch.nn.Module.__init__(self)
|
260 |
+
self.llm_input_size = llm_input_size
|
261 |
+
self.llm_output_size = llm_output_size
|
262 |
+
self.speech_token_size = speech_token_size
|
263 |
+
|
264 |
+
# 2. build speech token language model related modules
|
265 |
+
self.sos_eos = 0
|
266 |
+
self.task_id = 1
|
267 |
+
self.fill_token = 2
|
268 |
+
|
269 |
+
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
|
270 |
+
self.llm = llm
|
271 |
+
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 3)
|
272 |
+
self.criterion_ce = LabelSmoothingLoss(
|
273 |
+
size=speech_token_size + 3,
|
274 |
+
padding_idx=IGNORE_ID,
|
275 |
+
smoothing=lsm_weight,
|
276 |
+
normalize_length=length_normalized_loss,
|
277 |
+
)
|
278 |
+
|
279 |
+
# 3. [Optional] build speech token related modules
|
280 |
+
self.speech_embedding = torch.nn.Embedding(speech_token_size + 3, llm_input_size)
|
281 |
+
|
282 |
+
# 4. sampling method
|
283 |
+
self.sampling = sampling
|
284 |
+
self.mix_ratio = mix_ratio
|
285 |
+
|
286 |
+
@torch.inference_mode()
|
287 |
+
def inference(
|
288 |
+
self,
|
289 |
+
text: torch.Tensor,
|
290 |
+
text_len: torch.Tensor,
|
291 |
+
prompt_text: torch.Tensor,
|
292 |
+
prompt_text_len: torch.Tensor,
|
293 |
+
prompt_speech_token: torch.Tensor,
|
294 |
+
prompt_speech_token_len: torch.Tensor,
|
295 |
+
embedding: torch.Tensor,
|
296 |
+
sampling: int = 25,
|
297 |
+
max_token_text_ratio: float = 20,
|
298 |
+
min_token_text_ratio: float = 2,
|
299 |
+
) -> Generator[torch.Tensor, None, None]:
|
300 |
+
device = text.device
|
301 |
+
text = torch.concat([prompt_text, text], dim=1)
|
302 |
+
text_len += prompt_text_len
|
303 |
+
text = self.llm.model.model.embed_tokens(text)
|
304 |
+
|
305 |
+
# 3. concat llm_input
|
306 |
+
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
307 |
+
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
308 |
+
if prompt_speech_token_len != 0:
|
309 |
+
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
310 |
+
else:
|
311 |
+
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
312 |
+
lm_input = torch.concat([sos_eos_emb, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
313 |
+
|
314 |
+
# 4. cal min/max_length
|
315 |
+
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
316 |
+
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
|
317 |
+
|
318 |
+
# 5. step by step decode
|
319 |
+
out_tokens = []
|
320 |
+
cache = None
|
321 |
+
for i in range(max_len):
|
322 |
+
y_pred, cache = self.llm.forward_one_step(lm_input,
|
323 |
+
masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool),
|
324 |
+
cache=cache)
|
325 |
+
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
326 |
+
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
|
327 |
+
if top_ids == self.speech_token_size:
|
328 |
+
break
|
329 |
+
if top_ids > self.speech_token_size:
|
330 |
+
continue
|
331 |
+
# in stream mode, yield token one by one
|
332 |
+
yield top_ids
|
333 |
+
out_tokens.append(top_ids)
|
334 |
+
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
335 |
+
|
336 |
+
@torch.inference_mode()
|
337 |
+
def inference_bistream(
|
338 |
+
self,
|
339 |
+
text: Generator,
|
340 |
+
prompt_text: torch.Tensor,
|
341 |
+
prompt_text_len: torch.Tensor,
|
342 |
+
prompt_speech_token: torch.Tensor,
|
343 |
+
prompt_speech_token_len: torch.Tensor,
|
344 |
+
embedding: torch.Tensor,
|
345 |
+
sampling: int = 25,
|
346 |
+
max_token_text_ratio: float = 20,
|
347 |
+
min_token_text_ratio: float = 2,
|
348 |
+
) -> Generator[torch.Tensor, None, None]:
|
349 |
+
|
350 |
+
device = prompt_text.device
|
351 |
+
# 1. prepare input
|
352 |
+
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
353 |
+
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
354 |
+
if prompt_speech_token_len != 0:
|
355 |
+
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
356 |
+
else:
|
357 |
+
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=prompt_text.dtype).to(device)
|
358 |
+
lm_input = torch.concat([sos_eos_emb], dim=1)
|
359 |
+
|
360 |
+
# 2. iterate text
|
361 |
+
out_tokens = []
|
362 |
+
cache = None
|
363 |
+
# NOTE init prompt_text as text_cache as it is basically impossible prompt_speech_token/prompt_text < 15/5
|
364 |
+
text_cache = self.llm.model.model.embed_tokens(prompt_text)
|
365 |
+
next_fill_index = -1
|
366 |
+
for this_text in text:
|
367 |
+
text_cache = torch.concat([text_cache, self.llm.model.model.embed_tokens(this_text)], dim=1)
|
368 |
+
# prompt_speech_token_emb not empty, try append to lm_input
|
369 |
+
while prompt_speech_token_emb.size(1) != 0:
|
370 |
+
if text_cache.size(1) >= self.mix_ratio[0]:
|
371 |
+
lm_input_text, lm_input_speech = text_cache[:, :self.mix_ratio[0]], prompt_speech_token_emb[:, :self.mix_ratio[1]]
|
372 |
+
logging.info('append {} text token {} speech token'.format(lm_input_text.size(1), lm_input_speech.size(1)))
|
373 |
+
lm_input = torch.concat([lm_input, lm_input_text, lm_input_speech], dim=1)
|
374 |
+
text_cache, prompt_speech_token_emb = text_cache[:, self.mix_ratio[0]:], prompt_speech_token_emb[:, self.mix_ratio[1]:]
|
375 |
+
else:
|
376 |
+
logging.info('not enough text token to decode, wait for more')
|
377 |
+
break
|
378 |
+
# no prompt_speech_token_emb remain, can decode some speech token
|
379 |
+
if prompt_speech_token_emb.size(1) == 0:
|
380 |
+
if (len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2) or (len(out_tokens) == 0 and lm_input.size(1) == 1):
|
381 |
+
logging.info('get fill token, need to append more text token')
|
382 |
+
if text_cache.size(1) >= self.mix_ratio[0]:
|
383 |
+
lm_input_text = text_cache[:, :self.mix_ratio[0]]
|
384 |
+
logging.info('append {} text token'.format(lm_input_text.size(1)))
|
385 |
+
if len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2:
|
386 |
+
lm_input = lm_input_text
|
387 |
+
else:
|
388 |
+
lm_input = torch.concat([lm_input, lm_input_text], dim=1)
|
389 |
+
text_cache = text_cache[:, self.mix_ratio[0]:]
|
390 |
+
else:
|
391 |
+
logging.info('not enough text token to decode, wait for more')
|
392 |
+
continue
|
393 |
+
while True:
|
394 |
+
seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
|
395 |
+
y_pred, cache = self.llm.forward_one_step(lm_input,
|
396 |
+
masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
|
397 |
+
cache=cache)
|
398 |
+
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
399 |
+
if next_fill_index != -1 and len(out_tokens) == next_fill_index:
|
400 |
+
top_ids = self.speech_token_size + 2
|
401 |
+
next_fill_index += (self.mix_ratio[1] + 1)
|
402 |
+
else:
|
403 |
+
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True).item()
|
404 |
+
if top_ids == self.speech_token_size + 2:
|
405 |
+
next_fill_index = len(out_tokens) + self.mix_ratio[1] + 1
|
406 |
+
logging.info('fill_token index {} next fill_token index {}'.format(len(out_tokens), next_fill_index))
|
407 |
+
out_tokens.append(top_ids)
|
408 |
+
if top_ids >= self.speech_token_size:
|
409 |
+
if top_ids == self.speech_token_size + 2:
|
410 |
+
break
|
411 |
+
else:
|
412 |
+
raise ValueError('should not get token {}'.format(top_ids))
|
413 |
+
yield top_ids
|
414 |
+
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
415 |
+
|
416 |
+
# 3. final decode
|
417 |
+
lm_input = torch.concat([lm_input, text_cache, task_id_emb], dim=1)
|
418 |
+
logging.info('no more text token, decode until met eos')
|
419 |
+
while True:
|
420 |
+
seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
|
421 |
+
y_pred, cache = self.llm.forward_one_step(lm_input,
|
422 |
+
masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
|
423 |
+
cache=cache)
|
424 |
+
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
425 |
+
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=False).item()
|
426 |
+
out_tokens.append(top_ids)
|
427 |
+
if top_ids >= self.speech_token_size:
|
428 |
+
if top_ids == self.speech_token_size:
|
429 |
+
break
|
430 |
+
else:
|
431 |
+
raise ValueError('should not get token {}'.format(top_ids))
|
432 |
+
# in stream mode, yield token one by one
|
433 |
+
yield top_ids
|
434 |
+
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
third_party/cosyvoice/tokenizer/tokenizer.py
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import os
|
3 |
+
from functools import lru_cache
|
4 |
+
from typing import Optional
|
5 |
+
import torch
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
from whisper.tokenizer import Tokenizer
|
8 |
+
|
9 |
+
import tiktoken
|
10 |
+
|
11 |
+
LANGUAGES = {
|
12 |
+
"en": "english",
|
13 |
+
"zh": "chinese",
|
14 |
+
"de": "german",
|
15 |
+
"es": "spanish",
|
16 |
+
"ru": "russian",
|
17 |
+
"ko": "korean",
|
18 |
+
"fr": "french",
|
19 |
+
"ja": "japanese",
|
20 |
+
"pt": "portuguese",
|
21 |
+
"tr": "turkish",
|
22 |
+
"pl": "polish",
|
23 |
+
"ca": "catalan",
|
24 |
+
"nl": "dutch",
|
25 |
+
"ar": "arabic",
|
26 |
+
"sv": "swedish",
|
27 |
+
"it": "italian",
|
28 |
+
"id": "indonesian",
|
29 |
+
"hi": "hindi",
|
30 |
+
"fi": "finnish",
|
31 |
+
"vi": "vietnamese",
|
32 |
+
"he": "hebrew",
|
33 |
+
"uk": "ukrainian",
|
34 |
+
"el": "greek",
|
35 |
+
"ms": "malay",
|
36 |
+
"cs": "czech",
|
37 |
+
"ro": "romanian",
|
38 |
+
"da": "danish",
|
39 |
+
"hu": "hungarian",
|
40 |
+
"ta": "tamil",
|
41 |
+
"no": "norwegian",
|
42 |
+
"th": "thai",
|
43 |
+
"ur": "urdu",
|
44 |
+
"hr": "croatian",
|
45 |
+
"bg": "bulgarian",
|
46 |
+
"lt": "lithuanian",
|
47 |
+
"la": "latin",
|
48 |
+
"mi": "maori",
|
49 |
+
"ml": "malayalam",
|
50 |
+
"cy": "welsh",
|
51 |
+
"sk": "slovak",
|
52 |
+
"te": "telugu",
|
53 |
+
"fa": "persian",
|
54 |
+
"lv": "latvian",
|
55 |
+
"bn": "bengali",
|
56 |
+
"sr": "serbian",
|
57 |
+
"az": "azerbaijani",
|
58 |
+
"sl": "slovenian",
|
59 |
+
"kn": "kannada",
|
60 |
+
"et": "estonian",
|
61 |
+
"mk": "macedonian",
|
62 |
+
"br": "breton",
|
63 |
+
"eu": "basque",
|
64 |
+
"is": "icelandic",
|
65 |
+
"hy": "armenian",
|
66 |
+
"ne": "nepali",
|
67 |
+
"mn": "mongolian",
|
68 |
+
"bs": "bosnian",
|
69 |
+
"kk": "kazakh",
|
70 |
+
"sq": "albanian",
|
71 |
+
"sw": "swahili",
|
72 |
+
"gl": "galician",
|
73 |
+
"mr": "marathi",
|
74 |
+
"pa": "punjabi",
|
75 |
+
"si": "sinhala",
|
76 |
+
"km": "khmer",
|
77 |
+
"sn": "shona",
|
78 |
+
"yo": "yoruba",
|
79 |
+
"so": "somali",
|
80 |
+
"af": "afrikaans",
|
81 |
+
"oc": "occitan",
|
82 |
+
"ka": "georgian",
|
83 |
+
"be": "belarusian",
|
84 |
+
"tg": "tajik",
|
85 |
+
"sd": "sindhi",
|
86 |
+
"gu": "gujarati",
|
87 |
+
"am": "amharic",
|
88 |
+
"yi": "yiddish",
|
89 |
+
"lo": "lao",
|
90 |
+
"uz": "uzbek",
|
91 |
+
"fo": "faroese",
|
92 |
+
"ht": "haitian creole",
|
93 |
+
"ps": "pashto",
|
94 |
+
"tk": "turkmen",
|
95 |
+
"nn": "nynorsk",
|
96 |
+
"mt": "maltese",
|
97 |
+
"sa": "sanskrit",
|
98 |
+
"lb": "luxembourgish",
|
99 |
+
"my": "myanmar",
|
100 |
+
"bo": "tibetan",
|
101 |
+
"tl": "tagalog",
|
102 |
+
"mg": "malagasy",
|
103 |
+
"as": "assamese",
|
104 |
+
"tt": "tatar",
|
105 |
+
"haw": "hawaiian",
|
106 |
+
"ln": "lingala",
|
107 |
+
"ha": "hausa",
|
108 |
+
"ba": "bashkir",
|
109 |
+
"jw": "javanese",
|
110 |
+
"su": "sundanese",
|
111 |
+
"yue": "cantonese",
|
112 |
+
"minnan": "minnan",
|
113 |
+
"wuyu": "wuyu",
|
114 |
+
"dialect": "dialect",
|
115 |
+
"zh/en": "zh/en",
|
116 |
+
"en/zh": "en/zh",
|
117 |
+
}
|
118 |
+
|
119 |
+
# language code lookup by name, with a few language aliases
|
120 |
+
TO_LANGUAGE_CODE = {
|
121 |
+
**{language: code for code, language in LANGUAGES.items()},
|
122 |
+
"burmese": "my",
|
123 |
+
"valencian": "ca",
|
124 |
+
"flemish": "nl",
|
125 |
+
"haitian": "ht",
|
126 |
+
"letzeburgesch": "lb",
|
127 |
+
"pushto": "ps",
|
128 |
+
"panjabi": "pa",
|
129 |
+
"moldavian": "ro",
|
130 |
+
"moldovan": "ro",
|
131 |
+
"sinhalese": "si",
|
132 |
+
"castilian": "es",
|
133 |
+
"mandarin": "zh",
|
134 |
+
}
|
135 |
+
|
136 |
+
AUDIO_EVENT = {
|
137 |
+
"ASR": "ASR",
|
138 |
+
"AED": "AED",
|
139 |
+
"SER": "SER",
|
140 |
+
"Speech": "Speech",
|
141 |
+
"/Speech": "/Speech",
|
142 |
+
"BGM": "BGM",
|
143 |
+
"/BGM": "/BGM",
|
144 |
+
"Laughter": "Laughter",
|
145 |
+
"/Laughter": "/Laughter",
|
146 |
+
"Applause": "Applause",
|
147 |
+
"/Applause": "/Applause",
|
148 |
+
}
|
149 |
+
|
150 |
+
EMOTION = {
|
151 |
+
"HAPPY": "HAPPY",
|
152 |
+
"SAD": "SAD",
|
153 |
+
"ANGRY": "ANGRY",
|
154 |
+
"NEUTRAL": "NEUTRAL",
|
155 |
+
}
|
156 |
+
|
157 |
+
TTS_Vocal_Token = {
|
158 |
+
"TTS/B": "TTS/B",
|
159 |
+
"TTS/O": "TTS/O",
|
160 |
+
"TTS/Q": "TTS/Q",
|
161 |
+
"TTS/A": "TTS/A",
|
162 |
+
"TTS/CO": "TTS/CO",
|
163 |
+
"TTS/CL": "TTS/CL",
|
164 |
+
"TTS/H": "TTS/H",
|
165 |
+
**{f"TTS/SP{i:02d}": f"TTS/SP{i:02d}" for i in range(1, 14)}
|
166 |
+
}
|
167 |
+
|
168 |
+
|
169 |
+
@lru_cache(maxsize=None)
|
170 |
+
def get_encoding(name: str = "gpt2", num_languages: int = 99):
|
171 |
+
vocab_path = os.path.join(os.path.dirname(__file__), "assets", f"{name}.tiktoken")
|
172 |
+
ranks = {
|
173 |
+
base64.b64decode(token): int(rank)
|
174 |
+
for token, rank in (line.split() for line in open(vocab_path) if line)
|
175 |
+
}
|
176 |
+
n_vocab = len(ranks)
|
177 |
+
special_tokens = {}
|
178 |
+
|
179 |
+
specials = [
|
180 |
+
"<|endoftext|>",
|
181 |
+
"<|startoftranscript|>",
|
182 |
+
*[f"<|{lang}|>" for lang in list(LANGUAGES.keys())[:num_languages]],
|
183 |
+
*[f"<|{audio_event}|>" for audio_event in list(AUDIO_EVENT.keys())],
|
184 |
+
*[f"<|{emotion}|>" for emotion in list(EMOTION.keys())],
|
185 |
+
"<|translate|>",
|
186 |
+
"<|transcribe|>",
|
187 |
+
"<|startoflm|>",
|
188 |
+
"<|startofprev|>",
|
189 |
+
"<|nospeech|>",
|
190 |
+
"<|notimestamps|>",
|
191 |
+
*[f"<|SPECIAL_TOKEN_{i}|>" for i in range(1, 31)], # register special tokens for ASR
|
192 |
+
*[f"<|{tts}|>" for tts in list(TTS_Vocal_Token.keys())], # register special tokens for TTS
|
193 |
+
*[f"<|{i * 0.02:.2f}|>" for i in range(1501)],
|
194 |
+
]
|
195 |
+
|
196 |
+
for token in specials:
|
197 |
+
special_tokens[token] = n_vocab
|
198 |
+
n_vocab += 1
|
199 |
+
|
200 |
+
return tiktoken.Encoding(
|
201 |
+
name=os.path.basename(vocab_path),
|
202 |
+
explicit_n_vocab=n_vocab,
|
203 |
+
pat_str=r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""",
|
204 |
+
mergeable_ranks=ranks,
|
205 |
+
special_tokens=special_tokens,
|
206 |
+
)
|
207 |
+
|
208 |
+
|
209 |
+
@lru_cache(maxsize=None)
|
210 |
+
def get_tokenizer(
|
211 |
+
multilingual: bool,
|
212 |
+
*,
|
213 |
+
num_languages: int = 99,
|
214 |
+
language: Optional[str] = None,
|
215 |
+
task: Optional[str] = None, # Literal["transcribe", "translate", None]
|
216 |
+
) -> Tokenizer:
|
217 |
+
if language is not None:
|
218 |
+
language = language.lower()
|
219 |
+
if language not in LANGUAGES:
|
220 |
+
if language in TO_LANGUAGE_CODE:
|
221 |
+
language = TO_LANGUAGE_CODE[language]
|
222 |
+
else:
|
223 |
+
raise ValueError(f"Unsupported language: {language}")
|
224 |
+
|
225 |
+
if multilingual:
|
226 |
+
encoding_name = "multilingual_zh_ja_yue_char_del"
|
227 |
+
language = language or "en"
|
228 |
+
task = task or "transcribe"
|
229 |
+
else:
|
230 |
+
encoding_name = "gpt2"
|
231 |
+
language = None
|
232 |
+
task = None
|
233 |
+
|
234 |
+
encoding = get_encoding(name=encoding_name, num_languages=num_languages)
|
235 |
+
|
236 |
+
return Tokenizer(
|
237 |
+
encoding=encoding, num_languages=num_languages, language=language, task=task
|
238 |
+
)
|
239 |
+
|
240 |
+
|
241 |
+
class QwenTokenizer():
|
242 |
+
def __init__(self, token_path, skip_special_tokens=True):
|
243 |
+
super().__init__()
|
244 |
+
# NOTE: non-chat model, all these special tokens keep randomly initialized.
|
245 |
+
special_tokens = {
|
246 |
+
'eos_token': '<|endoftext|>',
|
247 |
+
'pad_token': '<|endoftext|>',
|
248 |
+
'additional_special_tokens': [
|
249 |
+
'<|im_start|>', '<|im_end|>', '<|endofprompt|>',
|
250 |
+
'[breath]', '<strong>', '</strong>', '[noise]',
|
251 |
+
'[laughter]', '[cough]', '[clucking]', '[accent]',
|
252 |
+
'[quick_breath]',
|
253 |
+
"<laughter>", "</laughter>",
|
254 |
+
"[hissing]", "[sigh]", "[vocalized-noise]",
|
255 |
+
"[lipsmack]", "[mn]"
|
256 |
+
]
|
257 |
+
}
|
258 |
+
self.special_tokens = special_tokens
|
259 |
+
self.tokenizer = AutoTokenizer.from_pretrained(token_path)
|
260 |
+
self.tokenizer.add_special_tokens(special_tokens)
|
261 |
+
self.skip_special_tokens = skip_special_tokens
|
262 |
+
|
263 |
+
def encode(self, text, **kwargs):
|
264 |
+
tokens = self.tokenizer([text], return_tensors="pt")
|
265 |
+
tokens = tokens["input_ids"][0].cpu().tolist()
|
266 |
+
return tokens
|
267 |
+
|
268 |
+
def decode(self, tokens):
|
269 |
+
tokens = torch.tensor(tokens, dtype=torch.int64)
|
270 |
+
text = self.tokenizer.batch_decode([tokens], skip_special_tokens=self.skip_special_tokens)[0]
|
271 |
+
return text
|
272 |
+
|
273 |
+
|
274 |
+
@lru_cache(maxsize=None)
|
275 |
+
def get_qwen_tokenizer(
|
276 |
+
token_path: str,
|
277 |
+
skip_special_tokens: bool
|
278 |
+
) -> QwenTokenizer:
|
279 |
+
return QwenTokenizer(token_path=token_path, skip_special_tokens=skip_special_tokens)
|
third_party/cosyvoice/transformer/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (171 Bytes). View file
|
|
third_party/cosyvoice/transformer/__pycache__/activation.cpython-311.pyc
ADDED
Binary file (3.56 kB). View file
|
|
third_party/cosyvoice/transformer/__pycache__/attention.cpython-311.pyc
ADDED
Binary file (15.6 kB). View file
|
|
third_party/cosyvoice/transformer/__pycache__/convolution.cpython-311.pyc
ADDED
Binary file (5.52 kB). View file
|
|
third_party/cosyvoice/transformer/__pycache__/embedding.cpython-311.pyc
ADDED
Binary file (17.3 kB). View file
|
|
third_party/cosyvoice/transformer/__pycache__/encoder_layer.cpython-311.pyc
ADDED
Binary file (11.2 kB). View file
|
|
third_party/cosyvoice/transformer/__pycache__/label_smoothing_loss.cpython-311.pyc
ADDED
Binary file (4.36 kB). View file
|
|
third_party/cosyvoice/transformer/__pycache__/positionwise_feed_forward.cpython-311.pyc
ADDED
Binary file (6.22 kB). View file
|
|
third_party/cosyvoice/transformer/__pycache__/subsampling.cpython-311.pyc
ADDED
Binary file (18.9 kB). View file
|
|
third_party/cosyvoice/transformer/__pycache__/upsample_encoder.cpython-311.pyc
ADDED
Binary file (15.6 kB). View file
|
|
third_party/cosyvoice/transformer/attention.py
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019 Shigeki Karita
|
2 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
3 |
+
# 2022 Xingchen Song ([email protected])
|
4 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
"""Multi-Head Attention layer definition."""
|
18 |
+
|
19 |
+
import math
|
20 |
+
from typing import Tuple
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from torch import nn
|
24 |
+
|
25 |
+
|
26 |
+
class MultiHeadedAttention(nn.Module):
|
27 |
+
"""Multi-Head Attention layer.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
n_head (int): The number of heads.
|
31 |
+
n_feat (int): The number of features.
|
32 |
+
dropout_rate (float): Dropout rate.
|
33 |
+
|
34 |
+
"""
|
35 |
+
|
36 |
+
def __init__(self,
|
37 |
+
n_head: int,
|
38 |
+
n_feat: int,
|
39 |
+
dropout_rate: float,
|
40 |
+
key_bias: bool = True):
|
41 |
+
"""Construct an MultiHeadedAttention object."""
|
42 |
+
super().__init__()
|
43 |
+
assert n_feat % n_head == 0
|
44 |
+
# We assume d_v always equals d_k
|
45 |
+
self.d_k = n_feat // n_head
|
46 |
+
self.h = n_head
|
47 |
+
self.linear_q = nn.Linear(n_feat, n_feat)
|
48 |
+
self.linear_k = nn.Linear(n_feat, n_feat, bias=key_bias)
|
49 |
+
self.linear_v = nn.Linear(n_feat, n_feat)
|
50 |
+
self.linear_out = nn.Linear(n_feat, n_feat)
|
51 |
+
self.dropout = nn.Dropout(p=dropout_rate)
|
52 |
+
|
53 |
+
def forward_qkv(
|
54 |
+
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
|
55 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
56 |
+
"""Transform query, key and value.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
query (torch.Tensor): Query tensor (#batch, time1, size).
|
60 |
+
key (torch.Tensor): Key tensor (#batch, time2, size).
|
61 |
+
value (torch.Tensor): Value tensor (#batch, time2, size).
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
torch.Tensor: Transformed query tensor, size
|
65 |
+
(#batch, n_head, time1, d_k).
|
66 |
+
torch.Tensor: Transformed key tensor, size
|
67 |
+
(#batch, n_head, time2, d_k).
|
68 |
+
torch.Tensor: Transformed value tensor, size
|
69 |
+
(#batch, n_head, time2, d_k).
|
70 |
+
|
71 |
+
"""
|
72 |
+
n_batch = query.size(0)
|
73 |
+
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
|
74 |
+
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
|
75 |
+
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
|
76 |
+
q = q.transpose(1, 2) # (batch, head, time1, d_k)
|
77 |
+
k = k.transpose(1, 2) # (batch, head, time2, d_k)
|
78 |
+
v = v.transpose(1, 2) # (batch, head, time2, d_k)
|
79 |
+
|
80 |
+
return q, k, v
|
81 |
+
|
82 |
+
def forward_attention(
|
83 |
+
self,
|
84 |
+
value: torch.Tensor,
|
85 |
+
scores: torch.Tensor,
|
86 |
+
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool)
|
87 |
+
) -> torch.Tensor:
|
88 |
+
"""Compute attention context vector.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
value (torch.Tensor): Transformed value, size
|
92 |
+
(#batch, n_head, time2, d_k).
|
93 |
+
scores (torch.Tensor): Attention score, size
|
94 |
+
(#batch, n_head, time1, time2).
|
95 |
+
mask (torch.Tensor): Mask, size (#batch, 1, time2) or
|
96 |
+
(#batch, time1, time2), (0, 0, 0) means fake mask.
|
97 |
+
|
98 |
+
Returns:
|
99 |
+
torch.Tensor: Transformed value (#batch, time1, d_model)
|
100 |
+
weighted by the attention score (#batch, time1, time2).
|
101 |
+
|
102 |
+
"""
|
103 |
+
n_batch = value.size(0)
|
104 |
+
# NOTE(xcsong): When will `if mask.size(2) > 0` be True?
|
105 |
+
# 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the
|
106 |
+
# 1st chunk to ease the onnx export.]
|
107 |
+
# 2. pytorch training
|
108 |
+
if mask.size(2) > 0: # time2 > 0
|
109 |
+
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
|
110 |
+
# For last chunk, time2 might be larger than scores.size(-1)
|
111 |
+
mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2)
|
112 |
+
scores = scores.masked_fill(mask, -float('inf'))
|
113 |
+
attn = torch.softmax(scores, dim=-1).masked_fill(
|
114 |
+
mask, 0.0) # (batch, head, time1, time2)
|
115 |
+
# NOTE(xcsong): When will `if mask.size(2) > 0` be False?
|
116 |
+
# 1. onnx(16/-1, -1/-1, 16/0)
|
117 |
+
# 2. jit (16/-1, -1/-1, 16/0, 16/4)
|
118 |
+
else:
|
119 |
+
attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
|
120 |
+
|
121 |
+
p_attn = self.dropout(attn)
|
122 |
+
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
|
123 |
+
x = (x.transpose(1, 2).contiguous().view(n_batch, -1,
|
124 |
+
self.h * self.d_k)
|
125 |
+
) # (batch, time1, d_model)
|
126 |
+
|
127 |
+
return self.linear_out(x) # (batch, time1, d_model)
|
128 |
+
|
129 |
+
def forward(
|
130 |
+
self,
|
131 |
+
query: torch.Tensor,
|
132 |
+
key: torch.Tensor,
|
133 |
+
value: torch.Tensor,
|
134 |
+
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
135 |
+
pos_emb: torch.Tensor = torch.empty(0),
|
136 |
+
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
|
137 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
138 |
+
"""Compute scaled dot product attention.
|
139 |
+
|
140 |
+
Args:
|
141 |
+
query (torch.Tensor): Query tensor (#batch, time1, size).
|
142 |
+
key (torch.Tensor): Key tensor (#batch, time2, size).
|
143 |
+
value (torch.Tensor): Value tensor (#batch, time2, size).
|
144 |
+
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
145 |
+
(#batch, time1, time2).
|
146 |
+
1.When applying cross attention between decoder and encoder,
|
147 |
+
the batch padding mask for input is in (#batch, 1, T) shape.
|
148 |
+
2.When applying self attention of encoder,
|
149 |
+
the mask is in (#batch, T, T) shape.
|
150 |
+
3.When applying self attention of decoder,
|
151 |
+
the mask is in (#batch, L, L) shape.
|
152 |
+
4.If the different position in decoder see different block
|
153 |
+
of the encoder, such as Mocha, the passed in mask could be
|
154 |
+
in (#batch, L, T) shape. But there is no such case in current
|
155 |
+
CosyVoice.
|
156 |
+
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
|
157 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
158 |
+
and `head * d_k == size`
|
159 |
+
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
torch.Tensor: Output tensor (#batch, time1, d_model).
|
163 |
+
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
|
164 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
165 |
+
and `head * d_k == size`
|
166 |
+
|
167 |
+
"""
|
168 |
+
q, k, v = self.forward_qkv(query, key, value)
|
169 |
+
|
170 |
+
# NOTE(xcsong):
|
171 |
+
# when export onnx model, for 1st chunk, we feed
|
172 |
+
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
|
173 |
+
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
|
174 |
+
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
|
175 |
+
# and we will always do splitting and
|
176 |
+
# concatnation(this will simplify onnx export). Note that
|
177 |
+
# it's OK to concat & split zero-shaped tensors(see code below).
|
178 |
+
# when export jit model, for 1st chunk, we always feed
|
179 |
+
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
|
180 |
+
# >>> a = torch.ones((1, 2, 0, 4))
|
181 |
+
# >>> b = torch.ones((1, 2, 3, 4))
|
182 |
+
# >>> c = torch.cat((a, b), dim=2)
|
183 |
+
# >>> torch.equal(b, c) # True
|
184 |
+
# >>> d = torch.split(a, 2, dim=-1)
|
185 |
+
# >>> torch.equal(d[0], d[1]) # True
|
186 |
+
if cache.size(0) > 0:
|
187 |
+
key_cache, value_cache = torch.split(cache,
|
188 |
+
cache.size(-1) // 2,
|
189 |
+
dim=-1)
|
190 |
+
k = torch.cat([key_cache, k], dim=2)
|
191 |
+
v = torch.cat([value_cache, v], dim=2)
|
192 |
+
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
|
193 |
+
# non-trivial to calculate `next_cache_start` here.
|
194 |
+
new_cache = torch.cat((k, v), dim=-1)
|
195 |
+
|
196 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
|
197 |
+
return self.forward_attention(v, scores, mask), new_cache
|
198 |
+
|
199 |
+
|
200 |
+
class RelPositionMultiHeadedAttention(MultiHeadedAttention):
|
201 |
+
"""Multi-Head Attention layer with relative position encoding.
|
202 |
+
Paper: https://arxiv.org/abs/1901.02860
|
203 |
+
Args:
|
204 |
+
n_head (int): The number of heads.
|
205 |
+
n_feat (int): The number of features.
|
206 |
+
dropout_rate (float): Dropout rate.
|
207 |
+
"""
|
208 |
+
|
209 |
+
def __init__(self,
|
210 |
+
n_head: int,
|
211 |
+
n_feat: int,
|
212 |
+
dropout_rate: float,
|
213 |
+
key_bias: bool = True):
|
214 |
+
"""Construct an RelPositionMultiHeadedAttention object."""
|
215 |
+
super().__init__(n_head, n_feat, dropout_rate, key_bias)
|
216 |
+
# linear transformation for positional encoding
|
217 |
+
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
|
218 |
+
# these two learnable bias are used in matrix c and matrix d
|
219 |
+
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
220 |
+
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
221 |
+
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
|
222 |
+
torch.nn.init.xavier_uniform_(self.pos_bias_u)
|
223 |
+
torch.nn.init.xavier_uniform_(self.pos_bias_v)
|
224 |
+
|
225 |
+
def rel_shift(self, x: torch.Tensor) -> torch.Tensor:
|
226 |
+
"""Compute relative positional encoding.
|
227 |
+
|
228 |
+
Args:
|
229 |
+
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
|
230 |
+
time1 means the length of query vector.
|
231 |
+
|
232 |
+
Returns:
|
233 |
+
torch.Tensor: Output tensor.
|
234 |
+
|
235 |
+
"""
|
236 |
+
zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1),
|
237 |
+
device=x.device,
|
238 |
+
dtype=x.dtype)
|
239 |
+
x_padded = torch.cat([zero_pad, x], dim=-1)
|
240 |
+
|
241 |
+
x_padded = x_padded.view(x.size()[0],
|
242 |
+
x.size()[1],
|
243 |
+
x.size(3) + 1, x.size(2))
|
244 |
+
x = x_padded[:, :, 1:].view_as(x)[
|
245 |
+
:, :, :, : x.size(-1) // 2 + 1
|
246 |
+
] # only keep the positions from 0 to time2
|
247 |
+
return x
|
248 |
+
|
249 |
+
def forward(
|
250 |
+
self,
|
251 |
+
query: torch.Tensor,
|
252 |
+
key: torch.Tensor,
|
253 |
+
value: torch.Tensor,
|
254 |
+
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
255 |
+
pos_emb: torch.Tensor = torch.empty(0),
|
256 |
+
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
|
257 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
258 |
+
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
|
259 |
+
Args:
|
260 |
+
query (torch.Tensor): Query tensor (#batch, time1, size).
|
261 |
+
key (torch.Tensor): Key tensor (#batch, time2, size).
|
262 |
+
value (torch.Tensor): Value tensor (#batch, time2, size).
|
263 |
+
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
264 |
+
(#batch, time1, time2), (0, 0, 0) means fake mask.
|
265 |
+
pos_emb (torch.Tensor): Positional embedding tensor
|
266 |
+
(#batch, time2, size).
|
267 |
+
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
|
268 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
269 |
+
and `head * d_k == size`
|
270 |
+
Returns:
|
271 |
+
torch.Tensor: Output tensor (#batch, time1, d_model).
|
272 |
+
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
|
273 |
+
where `cache_t == chunk_size * num_decoding_left_chunks`
|
274 |
+
and `head * d_k == size`
|
275 |
+
"""
|
276 |
+
q, k, v = self.forward_qkv(query, key, value)
|
277 |
+
q = q.transpose(1, 2) # (batch, time1, head, d_k)
|
278 |
+
|
279 |
+
# NOTE(xcsong):
|
280 |
+
# when export onnx model, for 1st chunk, we feed
|
281 |
+
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
|
282 |
+
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
|
283 |
+
# In all modes, `if cache.size(0) > 0` will alwayse be `True`
|
284 |
+
# and we will always do splitting and
|
285 |
+
# concatnation(this will simplify onnx export). Note that
|
286 |
+
# it's OK to concat & split zero-shaped tensors(see code below).
|
287 |
+
# when export jit model, for 1st chunk, we always feed
|
288 |
+
# cache(0, 0, 0, 0) since jit supports dynamic if-branch.
|
289 |
+
# >>> a = torch.ones((1, 2, 0, 4))
|
290 |
+
# >>> b = torch.ones((1, 2, 3, 4))
|
291 |
+
# >>> c = torch.cat((a, b), dim=2)
|
292 |
+
# >>> torch.equal(b, c) # True
|
293 |
+
# >>> d = torch.split(a, 2, dim=-1)
|
294 |
+
# >>> torch.equal(d[0], d[1]) # True
|
295 |
+
if cache.size(0) > 0:
|
296 |
+
key_cache, value_cache = torch.split(cache,
|
297 |
+
cache.size(-1) // 2,
|
298 |
+
dim=-1)
|
299 |
+
k = torch.cat([key_cache, k], dim=2)
|
300 |
+
v = torch.cat([value_cache, v], dim=2)
|
301 |
+
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
|
302 |
+
# non-trivial to calculate `next_cache_start` here.
|
303 |
+
new_cache = torch.cat((k, v), dim=-1)
|
304 |
+
|
305 |
+
n_batch_pos = pos_emb.size(0)
|
306 |
+
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
|
307 |
+
p = p.transpose(1, 2) # (batch, head, time1, d_k)
|
308 |
+
|
309 |
+
# (batch, head, time1, d_k)
|
310 |
+
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
|
311 |
+
# (batch, head, time1, d_k)
|
312 |
+
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
|
313 |
+
|
314 |
+
# compute attention score
|
315 |
+
# first compute matrix a and matrix c
|
316 |
+
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
317 |
+
# (batch, head, time1, time2)
|
318 |
+
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
|
319 |
+
|
320 |
+
# compute matrix b and matrix d
|
321 |
+
# (batch, head, time1, time2)
|
322 |
+
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
|
323 |
+
# NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used
|
324 |
+
if matrix_ac.shape != matrix_bd.shape:
|
325 |
+
matrix_bd = self.rel_shift(matrix_bd)
|
326 |
+
|
327 |
+
scores = (matrix_ac + matrix_bd) / math.sqrt(
|
328 |
+
self.d_k) # (batch, head, time1, time2)
|
329 |
+
|
330 |
+
return self.forward_attention(v, scores, mask), new_cache
|
third_party/cosyvoice/transformer/decoder.py
ADDED
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
|
2 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""Decoder definition."""
|
17 |
+
from typing import Tuple, List, Optional
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.utils.checkpoint as ckpt
|
21 |
+
import logging
|
22 |
+
|
23 |
+
from cosyvoice.transformer.decoder_layer import DecoderLayer
|
24 |
+
from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
|
25 |
+
from cosyvoice.utils.class_utils import (
|
26 |
+
COSYVOICE_EMB_CLASSES,
|
27 |
+
COSYVOICE_ATTENTION_CLASSES,
|
28 |
+
COSYVOICE_ACTIVATION_CLASSES,
|
29 |
+
)
|
30 |
+
from cosyvoice.utils.mask import (subsequent_mask, make_pad_mask)
|
31 |
+
|
32 |
+
|
33 |
+
class TransformerDecoder(torch.nn.Module):
|
34 |
+
"""Base class of Transfomer decoder module.
|
35 |
+
Args:
|
36 |
+
vocab_size: output dim
|
37 |
+
encoder_output_size: dimension of attention
|
38 |
+
attention_heads: the number of heads of multi head attention
|
39 |
+
linear_units: the hidden units number of position-wise feedforward
|
40 |
+
num_blocks: the number of decoder blocks
|
41 |
+
dropout_rate: dropout rate
|
42 |
+
self_attention_dropout_rate: dropout rate for attention
|
43 |
+
input_layer: input layer type
|
44 |
+
use_output_layer: whether to use output layer
|
45 |
+
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
|
46 |
+
normalize_before:
|
47 |
+
True: use layer_norm before each sub-block of a layer.
|
48 |
+
False: use layer_norm after each sub-block of a layer.
|
49 |
+
src_attention: if false, encoder-decoder cross attention is not
|
50 |
+
applied, such as CIF model
|
51 |
+
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
52 |
+
gradient_checkpointing: rerunning a forward-pass segment for each
|
53 |
+
checkpointed segment during backward.
|
54 |
+
tie_word_embedding: Tie or clone module weights depending of whether we are
|
55 |
+
using TorchScript or not
|
56 |
+
"""
|
57 |
+
|
58 |
+
def __init__(
|
59 |
+
self,
|
60 |
+
vocab_size: int,
|
61 |
+
encoder_output_size: int,
|
62 |
+
attention_heads: int = 4,
|
63 |
+
linear_units: int = 2048,
|
64 |
+
num_blocks: int = 6,
|
65 |
+
dropout_rate: float = 0.1,
|
66 |
+
positional_dropout_rate: float = 0.1,
|
67 |
+
self_attention_dropout_rate: float = 0.0,
|
68 |
+
src_attention_dropout_rate: float = 0.0,
|
69 |
+
input_layer: str = "embed",
|
70 |
+
use_output_layer: bool = True,
|
71 |
+
normalize_before: bool = True,
|
72 |
+
src_attention: bool = True,
|
73 |
+
key_bias: bool = True,
|
74 |
+
activation_type: str = "relu",
|
75 |
+
gradient_checkpointing: bool = False,
|
76 |
+
tie_word_embedding: bool = False,
|
77 |
+
):
|
78 |
+
super().__init__()
|
79 |
+
attention_dim = encoder_output_size
|
80 |
+
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
81 |
+
|
82 |
+
self.embed = torch.nn.Sequential(
|
83 |
+
torch.nn.Identity() if input_layer == "no_pos" else
|
84 |
+
torch.nn.Embedding(vocab_size, attention_dim),
|
85 |
+
COSYVOICE_EMB_CLASSES[input_layer](attention_dim,
|
86 |
+
positional_dropout_rate),
|
87 |
+
)
|
88 |
+
|
89 |
+
self.normalize_before = normalize_before
|
90 |
+
self.after_norm = torch.nn.LayerNorm(attention_dim, eps=1e-5)
|
91 |
+
self.use_output_layer = use_output_layer
|
92 |
+
if use_output_layer:
|
93 |
+
self.output_layer = torch.nn.Linear(attention_dim, vocab_size)
|
94 |
+
else:
|
95 |
+
self.output_layer = torch.nn.Identity()
|
96 |
+
self.num_blocks = num_blocks
|
97 |
+
self.decoders = torch.nn.ModuleList([
|
98 |
+
DecoderLayer(
|
99 |
+
attention_dim,
|
100 |
+
COSYVOICE_ATTENTION_CLASSES["selfattn"](
|
101 |
+
attention_heads, attention_dim,
|
102 |
+
self_attention_dropout_rate, key_bias),
|
103 |
+
COSYVOICE_ATTENTION_CLASSES["selfattn"](
|
104 |
+
attention_heads, attention_dim, src_attention_dropout_rate,
|
105 |
+
key_bias) if src_attention else None,
|
106 |
+
PositionwiseFeedForward(attention_dim, linear_units,
|
107 |
+
dropout_rate, activation),
|
108 |
+
dropout_rate,
|
109 |
+
normalize_before,
|
110 |
+
) for _ in range(self.num_blocks)
|
111 |
+
])
|
112 |
+
|
113 |
+
self.gradient_checkpointing = gradient_checkpointing
|
114 |
+
self.tie_word_embedding = tie_word_embedding
|
115 |
+
|
116 |
+
def forward(
|
117 |
+
self,
|
118 |
+
memory: torch.Tensor,
|
119 |
+
memory_mask: torch.Tensor,
|
120 |
+
ys_in_pad: torch.Tensor,
|
121 |
+
ys_in_lens: torch.Tensor,
|
122 |
+
r_ys_in_pad: torch.Tensor = torch.empty(0),
|
123 |
+
reverse_weight: float = 0.0,
|
124 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
125 |
+
"""Forward decoder.
|
126 |
+
Args:
|
127 |
+
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
128 |
+
memory_mask: encoder memory mask, (batch, 1, maxlen_in)
|
129 |
+
ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
|
130 |
+
ys_in_lens: input lengths of this batch (batch)
|
131 |
+
r_ys_in_pad: not used in transformer decoder, in order to unify api
|
132 |
+
with bidirectional decoder
|
133 |
+
reverse_weight: not used in transformer decoder, in order to unify
|
134 |
+
api with bidirectional decode
|
135 |
+
Returns:
|
136 |
+
(tuple): tuple containing:
|
137 |
+
x: decoded token score before softmax (batch, maxlen_out,
|
138 |
+
vocab_size) if use_output_layer is True,
|
139 |
+
torch.tensor(0.0), in order to unify api with bidirectional decoder
|
140 |
+
olens: (batch, )
|
141 |
+
NOTE(xcsong):
|
142 |
+
We pass the `__call__` method of the modules instead of `forward` to the
|
143 |
+
checkpointing API because `__call__` attaches all the hooks of the module.
|
144 |
+
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
145 |
+
"""
|
146 |
+
tgt = ys_in_pad
|
147 |
+
maxlen = tgt.size(1)
|
148 |
+
# tgt_mask: (B, 1, L)
|
149 |
+
tgt_mask = ~make_pad_mask(ys_in_lens, maxlen).unsqueeze(1)
|
150 |
+
tgt_mask = tgt_mask.to(tgt.device)
|
151 |
+
# m: (1, L, L)
|
152 |
+
m = subsequent_mask(tgt_mask.size(-1),
|
153 |
+
device=tgt_mask.device).unsqueeze(0)
|
154 |
+
# tgt_mask: (B, L, L)
|
155 |
+
tgt_mask = tgt_mask & m
|
156 |
+
x, _ = self.embed(tgt)
|
157 |
+
if self.gradient_checkpointing and self.training:
|
158 |
+
x = self.forward_layers_checkpointed(x, tgt_mask, memory,
|
159 |
+
memory_mask)
|
160 |
+
else:
|
161 |
+
x = self.forward_layers(x, tgt_mask, memory, memory_mask)
|
162 |
+
if self.normalize_before:
|
163 |
+
x = self.after_norm(x)
|
164 |
+
if self.use_output_layer:
|
165 |
+
x = self.output_layer(x)
|
166 |
+
olens = tgt_mask.sum(1)
|
167 |
+
return x, torch.tensor(0.0), olens
|
168 |
+
|
169 |
+
def forward_layers(self, x: torch.Tensor, tgt_mask: torch.Tensor,
|
170 |
+
memory: torch.Tensor,
|
171 |
+
memory_mask: torch.Tensor) -> torch.Tensor:
|
172 |
+
for layer in self.decoders:
|
173 |
+
x, tgt_mask, memory, memory_mask = layer(x, tgt_mask, memory,
|
174 |
+
memory_mask)
|
175 |
+
return x
|
176 |
+
|
177 |
+
@torch.jit.unused
|
178 |
+
def forward_layers_checkpointed(self, x: torch.Tensor,
|
179 |
+
tgt_mask: torch.Tensor,
|
180 |
+
memory: torch.Tensor,
|
181 |
+
memory_mask: torch.Tensor) -> torch.Tensor:
|
182 |
+
for layer in self.decoders:
|
183 |
+
x, tgt_mask, memory, memory_mask = ckpt.checkpoint(
|
184 |
+
layer.__call__, x, tgt_mask, memory, memory_mask)
|
185 |
+
return x
|
186 |
+
|
187 |
+
def forward_one_step(
|
188 |
+
self,
|
189 |
+
memory: torch.Tensor,
|
190 |
+
memory_mask: torch.Tensor,
|
191 |
+
tgt: torch.Tensor,
|
192 |
+
tgt_mask: torch.Tensor,
|
193 |
+
cache: Optional[List[torch.Tensor]] = None,
|
194 |
+
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
195 |
+
"""Forward one step.
|
196 |
+
This is only used for decoding.
|
197 |
+
Args:
|
198 |
+
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
199 |
+
memory_mask: encoded memory mask, (batch, 1, maxlen_in)
|
200 |
+
tgt: input token ids, int64 (batch, maxlen_out)
|
201 |
+
tgt_mask: input token mask, (batch, maxlen_out)
|
202 |
+
dtype=torch.uint8 in PyTorch 1.2-
|
203 |
+
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
|
204 |
+
cache: cached output list of (batch, max_time_out-1, size)
|
205 |
+
Returns:
|
206 |
+
y, cache: NN output value and cache per `self.decoders`.
|
207 |
+
y.shape` is (batch, maxlen_out, token)
|
208 |
+
"""
|
209 |
+
x, _ = self.embed(tgt)
|
210 |
+
new_cache = []
|
211 |
+
for i, decoder in enumerate(self.decoders):
|
212 |
+
if cache is None:
|
213 |
+
c = None
|
214 |
+
else:
|
215 |
+
c = cache[i]
|
216 |
+
x, tgt_mask, memory, memory_mask = decoder(x,
|
217 |
+
tgt_mask,
|
218 |
+
memory,
|
219 |
+
memory_mask,
|
220 |
+
cache=c)
|
221 |
+
new_cache.append(x)
|
222 |
+
if self.normalize_before:
|
223 |
+
y = self.after_norm(x[:, -1])
|
224 |
+
else:
|
225 |
+
y = x[:, -1]
|
226 |
+
if self.use_output_layer:
|
227 |
+
y = torch.log_softmax(self.output_layer(y), dim=-1)
|
228 |
+
return y, new_cache
|
229 |
+
|
230 |
+
def tie_or_clone_weights(self, jit_mode: bool = True):
|
231 |
+
"""Tie or clone module weights (between word_emb and output_layer)
|
232 |
+
depending of whether we are using TorchScript or not"""
|
233 |
+
if not self.use_output_layer:
|
234 |
+
return
|
235 |
+
if jit_mode:
|
236 |
+
logging.info("clone emb.weight to output.weight")
|
237 |
+
self.output_layer.weight = torch.nn.Parameter(
|
238 |
+
self.embed[0].weight.clone())
|
239 |
+
else:
|
240 |
+
logging.info("tie emb.weight with output.weight")
|
241 |
+
self.output_layer.weight = self.embed[0].weight
|
242 |
+
|
243 |
+
if getattr(self.output_layer, "bias", None) is not None:
|
244 |
+
self.output_layer.bias.data = torch.nn.functional.pad(
|
245 |
+
self.output_layer.bias.data,
|
246 |
+
(
|
247 |
+
0,
|
248 |
+
self.output_layer.weight.shape[0] -
|
249 |
+
self.output_layer.bias.shape[0],
|
250 |
+
),
|
251 |
+
"constant",
|
252 |
+
0,
|
253 |
+
)
|
254 |
+
|
255 |
+
|
256 |
+
class BiTransformerDecoder(torch.nn.Module):
|
257 |
+
"""Base class of Transfomer decoder module.
|
258 |
+
Args:
|
259 |
+
vocab_size: output dim
|
260 |
+
encoder_output_size: dimension of attention
|
261 |
+
attention_heads: the number of heads of multi head attention
|
262 |
+
linear_units: the hidden units number of position-wise feedforward
|
263 |
+
num_blocks: the number of decoder blocks
|
264 |
+
r_num_blocks: the number of right to left decoder blocks
|
265 |
+
dropout_rate: dropout rate
|
266 |
+
self_attention_dropout_rate: dropout rate for attention
|
267 |
+
input_layer: input layer type
|
268 |
+
use_output_layer: whether to use output layer
|
269 |
+
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
|
270 |
+
normalize_before:
|
271 |
+
True: use layer_norm before each sub-block of a layer.
|
272 |
+
False: use layer_norm after each sub-block of a layer.
|
273 |
+
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
274 |
+
"""
|
275 |
+
|
276 |
+
def __init__(
|
277 |
+
self,
|
278 |
+
vocab_size: int,
|
279 |
+
encoder_output_size: int,
|
280 |
+
attention_heads: int = 4,
|
281 |
+
linear_units: int = 2048,
|
282 |
+
num_blocks: int = 6,
|
283 |
+
r_num_blocks: int = 0,
|
284 |
+
dropout_rate: float = 0.1,
|
285 |
+
positional_dropout_rate: float = 0.1,
|
286 |
+
self_attention_dropout_rate: float = 0.0,
|
287 |
+
src_attention_dropout_rate: float = 0.0,
|
288 |
+
input_layer: str = "embed",
|
289 |
+
use_output_layer: bool = True,
|
290 |
+
normalize_before: bool = True,
|
291 |
+
key_bias: bool = True,
|
292 |
+
gradient_checkpointing: bool = False,
|
293 |
+
tie_word_embedding: bool = False,
|
294 |
+
):
|
295 |
+
|
296 |
+
super().__init__()
|
297 |
+
self.tie_word_embedding = tie_word_embedding
|
298 |
+
self.left_decoder = TransformerDecoder(
|
299 |
+
vocab_size,
|
300 |
+
encoder_output_size,
|
301 |
+
attention_heads,
|
302 |
+
linear_units,
|
303 |
+
num_blocks,
|
304 |
+
dropout_rate,
|
305 |
+
positional_dropout_rate,
|
306 |
+
self_attention_dropout_rate,
|
307 |
+
src_attention_dropout_rate,
|
308 |
+
input_layer,
|
309 |
+
use_output_layer,
|
310 |
+
normalize_before,
|
311 |
+
key_bias=key_bias,
|
312 |
+
gradient_checkpointing=gradient_checkpointing,
|
313 |
+
tie_word_embedding=tie_word_embedding)
|
314 |
+
|
315 |
+
self.right_decoder = TransformerDecoder(
|
316 |
+
vocab_size,
|
317 |
+
encoder_output_size,
|
318 |
+
attention_heads,
|
319 |
+
linear_units,
|
320 |
+
r_num_blocks,
|
321 |
+
dropout_rate,
|
322 |
+
positional_dropout_rate,
|
323 |
+
self_attention_dropout_rate,
|
324 |
+
src_attention_dropout_rate,
|
325 |
+
input_layer,
|
326 |
+
use_output_layer,
|
327 |
+
normalize_before,
|
328 |
+
key_bias=key_bias,
|
329 |
+
gradient_checkpointing=gradient_checkpointing,
|
330 |
+
tie_word_embedding=tie_word_embedding)
|
331 |
+
|
332 |
+
def forward(
|
333 |
+
self,
|
334 |
+
memory: torch.Tensor,
|
335 |
+
memory_mask: torch.Tensor,
|
336 |
+
ys_in_pad: torch.Tensor,
|
337 |
+
ys_in_lens: torch.Tensor,
|
338 |
+
r_ys_in_pad: torch.Tensor,
|
339 |
+
reverse_weight: float = 0.0,
|
340 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
341 |
+
"""Forward decoder.
|
342 |
+
Args:
|
343 |
+
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
344 |
+
memory_mask: encoder memory mask, (batch, 1, maxlen_in)
|
345 |
+
ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
|
346 |
+
ys_in_lens: input lengths of this batch (batch)
|
347 |
+
r_ys_in_pad: padded input token ids, int64 (batch, maxlen_out),
|
348 |
+
used for right to left decoder
|
349 |
+
reverse_weight: used for right to left decoder
|
350 |
+
Returns:
|
351 |
+
(tuple): tuple containing:
|
352 |
+
x: decoded token score before softmax (batch, maxlen_out,
|
353 |
+
vocab_size) if use_output_layer is True,
|
354 |
+
r_x: x: decoded token score (right to left decoder)
|
355 |
+
before softmax (batch, maxlen_out, vocab_size)
|
356 |
+
if use_output_layer is True,
|
357 |
+
olens: (batch, )
|
358 |
+
"""
|
359 |
+
l_x, _, olens = self.left_decoder(memory, memory_mask, ys_in_pad,
|
360 |
+
ys_in_lens)
|
361 |
+
r_x = torch.tensor(0.0)
|
362 |
+
if reverse_weight > 0.0:
|
363 |
+
r_x, _, olens = self.right_decoder(memory, memory_mask,
|
364 |
+
r_ys_in_pad, ys_in_lens)
|
365 |
+
return l_x, r_x, olens
|
366 |
+
|
367 |
+
def forward_one_step(
|
368 |
+
self,
|
369 |
+
memory: torch.Tensor,
|
370 |
+
memory_mask: torch.Tensor,
|
371 |
+
tgt: torch.Tensor,
|
372 |
+
tgt_mask: torch.Tensor,
|
373 |
+
cache: Optional[List[torch.Tensor]] = None,
|
374 |
+
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
375 |
+
"""Forward one step.
|
376 |
+
This is only used for decoding.
|
377 |
+
Args:
|
378 |
+
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
379 |
+
memory_mask: encoded memory mask, (batch, 1, maxlen_in)
|
380 |
+
tgt: input token ids, int64 (batch, maxlen_out)
|
381 |
+
tgt_mask: input token mask, (batch, maxlen_out)
|
382 |
+
dtype=torch.uint8 in PyTorch 1.2-
|
383 |
+
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
|
384 |
+
cache: cached output list of (batch, max_time_out-1, size)
|
385 |
+
Returns:
|
386 |
+
y, cache: NN output value and cache per `self.decoders`.
|
387 |
+
y.shape` is (batch, maxlen_out, token)
|
388 |
+
"""
|
389 |
+
return self.left_decoder.forward_one_step(memory, memory_mask, tgt,
|
390 |
+
tgt_mask, cache)
|
391 |
+
|
392 |
+
def tie_or_clone_weights(self, jit_mode: bool = True):
|
393 |
+
"""Tie or clone module weights (between word_emb and output_layer)
|
394 |
+
depending of whether we are using TorchScript or not"""
|
395 |
+
self.left_decoder.tie_or_clone_weights(jit_mode)
|
396 |
+
self.right_decoder.tie_or_clone_weights(jit_mode)
|
third_party/cosyvoice/transformer/decoder_layer.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019 Shigeki Karita
|
2 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Decoder self-attention layer definition."""
|
16 |
+
from typing import Optional, Tuple
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
|
22 |
+
class DecoderLayer(nn.Module):
|
23 |
+
"""Single decoder layer module.
|
24 |
+
|
25 |
+
Args:
|
26 |
+
size (int): Input dimension.
|
27 |
+
self_attn (torch.nn.Module): Self-attention module instance.
|
28 |
+
`MultiHeadedAttention` instance can be used as the argument.
|
29 |
+
src_attn (torch.nn.Module): Inter-attention module instance.
|
30 |
+
`MultiHeadedAttention` instance can be used as the argument.
|
31 |
+
If `None` is passed, Inter-attention is not used, such as
|
32 |
+
CIF, GPT, and other decoder only model.
|
33 |
+
feed_forward (torch.nn.Module): Feed-forward module instance.
|
34 |
+
`PositionwiseFeedForward` instance can be used as the argument.
|
35 |
+
dropout_rate (float): Dropout rate.
|
36 |
+
normalize_before (bool):
|
37 |
+
True: use layer_norm before each sub-block.
|
38 |
+
False: to use layer_norm after each sub-block.
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
size: int,
|
44 |
+
self_attn: nn.Module,
|
45 |
+
src_attn: Optional[nn.Module],
|
46 |
+
feed_forward: nn.Module,
|
47 |
+
dropout_rate: float,
|
48 |
+
normalize_before: bool = True,
|
49 |
+
):
|
50 |
+
"""Construct an DecoderLayer object."""
|
51 |
+
super().__init__()
|
52 |
+
self.size = size
|
53 |
+
self.self_attn = self_attn
|
54 |
+
self.src_attn = src_attn
|
55 |
+
self.feed_forward = feed_forward
|
56 |
+
self.norm1 = nn.LayerNorm(size, eps=1e-5)
|
57 |
+
self.norm2 = nn.LayerNorm(size, eps=1e-5)
|
58 |
+
self.norm3 = nn.LayerNorm(size, eps=1e-5)
|
59 |
+
self.dropout = nn.Dropout(dropout_rate)
|
60 |
+
self.normalize_before = normalize_before
|
61 |
+
|
62 |
+
def forward(
|
63 |
+
self,
|
64 |
+
tgt: torch.Tensor,
|
65 |
+
tgt_mask: torch.Tensor,
|
66 |
+
memory: torch.Tensor,
|
67 |
+
memory_mask: torch.Tensor,
|
68 |
+
cache: Optional[torch.Tensor] = None
|
69 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
70 |
+
"""Compute decoded features.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
|
74 |
+
tgt_mask (torch.Tensor): Mask for input tensor
|
75 |
+
(#batch, maxlen_out).
|
76 |
+
memory (torch.Tensor): Encoded memory
|
77 |
+
(#batch, maxlen_in, size).
|
78 |
+
memory_mask (torch.Tensor): Encoded memory mask
|
79 |
+
(#batch, maxlen_in).
|
80 |
+
cache (torch.Tensor): cached tensors.
|
81 |
+
(#batch, maxlen_out - 1, size).
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
torch.Tensor: Output tensor (#batch, maxlen_out, size).
|
85 |
+
torch.Tensor: Mask for output tensor (#batch, maxlen_out).
|
86 |
+
torch.Tensor: Encoded memory (#batch, maxlen_in, size).
|
87 |
+
torch.Tensor: Encoded memory mask (#batch, maxlen_in).
|
88 |
+
|
89 |
+
"""
|
90 |
+
residual = tgt
|
91 |
+
if self.normalize_before:
|
92 |
+
tgt = self.norm1(tgt)
|
93 |
+
|
94 |
+
if cache is None:
|
95 |
+
tgt_q = tgt
|
96 |
+
tgt_q_mask = tgt_mask
|
97 |
+
else:
|
98 |
+
# compute only the last frame query keeping dim: max_time_out -> 1
|
99 |
+
assert cache.shape == (
|
100 |
+
tgt.shape[0],
|
101 |
+
tgt.shape[1] - 1,
|
102 |
+
self.size,
|
103 |
+
), "{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}"
|
104 |
+
tgt_q = tgt[:, -1:, :]
|
105 |
+
residual = residual[:, -1:, :]
|
106 |
+
tgt_q_mask = tgt_mask[:, -1:, :]
|
107 |
+
|
108 |
+
x = residual + self.dropout(
|
109 |
+
self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)[0])
|
110 |
+
if not self.normalize_before:
|
111 |
+
x = self.norm1(x)
|
112 |
+
|
113 |
+
if self.src_attn is not None:
|
114 |
+
residual = x
|
115 |
+
if self.normalize_before:
|
116 |
+
x = self.norm2(x)
|
117 |
+
x = residual + self.dropout(
|
118 |
+
self.src_attn(x, memory, memory, memory_mask)[0])
|
119 |
+
if not self.normalize_before:
|
120 |
+
x = self.norm2(x)
|
121 |
+
|
122 |
+
residual = x
|
123 |
+
if self.normalize_before:
|
124 |
+
x = self.norm3(x)
|
125 |
+
x = residual + self.dropout(self.feed_forward(x))
|
126 |
+
if not self.normalize_before:
|
127 |
+
x = self.norm3(x)
|
128 |
+
|
129 |
+
if cache is not None:
|
130 |
+
x = torch.cat([cache, x], dim=1)
|
131 |
+
|
132 |
+
return x, tgt_mask, memory, memory_mask
|
third_party/cosyvoice/transformer/embedding.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
|
2 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""Positonal Encoding Module."""
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn.functional as F
|
23 |
+
import numpy as np
|
24 |
+
|
25 |
+
|
26 |
+
class PositionalEncoding(torch.nn.Module):
|
27 |
+
"""Positional encoding.
|
28 |
+
|
29 |
+
:param int d_model: embedding dim
|
30 |
+
:param float dropout_rate: dropout rate
|
31 |
+
:param int max_len: maximum input length
|
32 |
+
|
33 |
+
PE(pos, 2i) = sin(pos/(10000^(2i/dmodel)))
|
34 |
+
PE(pos, 2i+1) = cos(pos/(10000^(2i/dmodel)))
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(self,
|
38 |
+
d_model: int,
|
39 |
+
dropout_rate: float,
|
40 |
+
max_len: int = 5000,
|
41 |
+
reverse: bool = False):
|
42 |
+
"""Construct an PositionalEncoding object."""
|
43 |
+
super().__init__()
|
44 |
+
self.d_model = d_model
|
45 |
+
self.xscale = math.sqrt(self.d_model)
|
46 |
+
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
47 |
+
self.max_len = max_len
|
48 |
+
|
49 |
+
self.pe = torch.zeros(self.max_len, self.d_model)
|
50 |
+
position = torch.arange(0, self.max_len,
|
51 |
+
dtype=torch.float32).unsqueeze(1)
|
52 |
+
div_term = torch.exp(
|
53 |
+
torch.arange(0, self.d_model, 2, dtype=torch.float32) *
|
54 |
+
-(math.log(10000.0) / self.d_model))
|
55 |
+
self.pe[:, 0::2] = torch.sin(position * div_term)
|
56 |
+
self.pe[:, 1::2] = torch.cos(position * div_term)
|
57 |
+
self.pe = self.pe.unsqueeze(0)
|
58 |
+
|
59 |
+
def forward(self,
|
60 |
+
x: torch.Tensor,
|
61 |
+
offset: Union[int, torch.Tensor] = 0) \
|
62 |
+
-> Tuple[torch.Tensor, torch.Tensor]:
|
63 |
+
"""Add positional encoding.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
x (torch.Tensor): Input. Its shape is (batch, time, ...)
|
67 |
+
offset (int, torch.tensor): position offset
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
torch.Tensor: Encoded tensor. Its shape is (batch, time, ...)
|
71 |
+
torch.Tensor: for compatibility to RelPositionalEncoding
|
72 |
+
"""
|
73 |
+
|
74 |
+
self.pe = self.pe.to(x.device)
|
75 |
+
pos_emb = self.position_encoding(offset, x.size(1), False)
|
76 |
+
x = x * self.xscale + pos_emb
|
77 |
+
return self.dropout(x), self.dropout(pos_emb)
|
78 |
+
|
79 |
+
def position_encoding(self,
|
80 |
+
offset: Union[int, torch.Tensor],
|
81 |
+
size: int,
|
82 |
+
apply_dropout: bool = True) -> torch.Tensor:
|
83 |
+
""" For getting encoding in a streaming fashion
|
84 |
+
|
85 |
+
Attention!!!!!
|
86 |
+
we apply dropout only once at the whole utterance level in a none
|
87 |
+
streaming way, but will call this function several times with
|
88 |
+
increasing input size in a streaming scenario, so the dropout will
|
89 |
+
be applied several times.
|
90 |
+
|
91 |
+
Args:
|
92 |
+
offset (int or torch.tensor): start offset
|
93 |
+
size (int): required size of position encoding
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
torch.Tensor: Corresponding encoding
|
97 |
+
"""
|
98 |
+
# How to subscript a Union type:
|
99 |
+
# https://github.com/pytorch/pytorch/issues/69434
|
100 |
+
if isinstance(offset, int):
|
101 |
+
assert offset + size <= self.max_len
|
102 |
+
pos_emb = self.pe[:, offset:offset + size]
|
103 |
+
elif isinstance(offset, torch.Tensor) and offset.dim() == 0: # scalar
|
104 |
+
assert offset + size <= self.max_len
|
105 |
+
pos_emb = self.pe[:, offset:offset + size]
|
106 |
+
else: # for batched streaming decoding on GPU
|
107 |
+
assert torch.max(offset) + size <= self.max_len
|
108 |
+
index = offset.unsqueeze(1) + \
|
109 |
+
torch.arange(0, size).to(offset.device) # B X T
|
110 |
+
flag = index > 0
|
111 |
+
# remove negative offset
|
112 |
+
index = index * flag
|
113 |
+
pos_emb = F.embedding(index, self.pe[0]) # B X T X d_model
|
114 |
+
|
115 |
+
if apply_dropout:
|
116 |
+
pos_emb = self.dropout(pos_emb)
|
117 |
+
return pos_emb
|
118 |
+
|
119 |
+
|
120 |
+
class RelPositionalEncoding(PositionalEncoding):
|
121 |
+
"""Relative positional encoding module.
|
122 |
+
See : Appendix B in https://arxiv.org/abs/1901.02860
|
123 |
+
Args:
|
124 |
+
d_model (int): Embedding dimension.
|
125 |
+
dropout_rate (float): Dropout rate.
|
126 |
+
max_len (int): Maximum input length.
|
127 |
+
"""
|
128 |
+
|
129 |
+
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000):
|
130 |
+
"""Initialize class."""
|
131 |
+
super().__init__(d_model, dropout_rate, max_len, reverse=True)
|
132 |
+
|
133 |
+
def forward(self,
|
134 |
+
x: torch.Tensor,
|
135 |
+
offset: Union[int, torch.Tensor] = 0) \
|
136 |
+
-> Tuple[torch.Tensor, torch.Tensor]:
|
137 |
+
"""Compute positional encoding.
|
138 |
+
Args:
|
139 |
+
x (torch.Tensor): Input tensor (batch, time, `*`).
|
140 |
+
Returns:
|
141 |
+
torch.Tensor: Encoded tensor (batch, time, `*`).
|
142 |
+
torch.Tensor: Positional embedding tensor (1, time, `*`).
|
143 |
+
"""
|
144 |
+
self.pe = self.pe.to(x.device)
|
145 |
+
x = x * self.xscale
|
146 |
+
pos_emb = self.position_encoding(offset, x.size(1), False)
|
147 |
+
return self.dropout(x), self.dropout(pos_emb)
|
148 |
+
|
149 |
+
|
150 |
+
class WhisperPositionalEncoding(PositionalEncoding):
|
151 |
+
""" Sinusoids position encoding used in openai-whisper.encoder
|
152 |
+
"""
|
153 |
+
|
154 |
+
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 1500):
|
155 |
+
super().__init__(d_model, dropout_rate, max_len)
|
156 |
+
self.xscale = 1.0
|
157 |
+
log_timescale_increment = np.log(10000) / (d_model // 2 - 1)
|
158 |
+
inv_timescales = torch.exp(-log_timescale_increment *
|
159 |
+
torch.arange(d_model // 2))
|
160 |
+
scaled_time = torch.arange(max_len)[:, np.newaxis] * \
|
161 |
+
inv_timescales[np.newaxis, :]
|
162 |
+
pe = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
|
163 |
+
delattr(self, "pe")
|
164 |
+
self.register_buffer("pe", pe.unsqueeze(0))
|
165 |
+
|
166 |
+
|
167 |
+
class LearnablePositionalEncoding(PositionalEncoding):
|
168 |
+
""" Learnable position encoding used in openai-whisper.decoder
|
169 |
+
"""
|
170 |
+
|
171 |
+
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 448):
|
172 |
+
super().__init__(d_model, dropout_rate, max_len)
|
173 |
+
# NOTE(xcsong): overwrite self.pe & self.xscale
|
174 |
+
self.pe = torch.nn.Parameter(torch.empty(1, max_len, d_model))
|
175 |
+
self.xscale = 1.0
|
176 |
+
|
177 |
+
|
178 |
+
class NoPositionalEncoding(torch.nn.Module):
|
179 |
+
""" No position encoding
|
180 |
+
"""
|
181 |
+
|
182 |
+
def __init__(self, d_model: int, dropout_rate: float):
|
183 |
+
super().__init__()
|
184 |
+
self.d_model = d_model
|
185 |
+
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
186 |
+
|
187 |
+
def forward(self,
|
188 |
+
x: torch.Tensor,
|
189 |
+
offset: Union[int, torch.Tensor] = 0) \
|
190 |
+
-> Tuple[torch.Tensor, torch.Tensor]:
|
191 |
+
""" Just return zero vector for interface compatibility
|
192 |
+
"""
|
193 |
+
pos_emb = torch.zeros(1, x.size(1), self.d_model).to(x.device)
|
194 |
+
return self.dropout(x), pos_emb
|
195 |
+
|
196 |
+
def position_encoding(self, offset: Union[int, torch.Tensor],
|
197 |
+
size: int) -> torch.Tensor:
|
198 |
+
return torch.zeros(1, size, self.d_model)
|
199 |
+
|
200 |
+
|
201 |
+
class EspnetRelPositionalEncoding(torch.nn.Module):
|
202 |
+
"""Relative positional encoding module (new implementation).
|
203 |
+
|
204 |
+
Details can be found in https://github.com/espnet/espnet/pull/2816.
|
205 |
+
|
206 |
+
See : Appendix B in https://arxiv.org/abs/1901.02860
|
207 |
+
|
208 |
+
Args:
|
209 |
+
d_model (int): Embedding dimension.
|
210 |
+
dropout_rate (float): Dropout rate.
|
211 |
+
max_len (int): Maximum input length.
|
212 |
+
|
213 |
+
"""
|
214 |
+
|
215 |
+
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000):
|
216 |
+
"""Construct an PositionalEncoding object."""
|
217 |
+
super(EspnetRelPositionalEncoding, self).__init__()
|
218 |
+
self.d_model = d_model
|
219 |
+
self.xscale = math.sqrt(self.d_model)
|
220 |
+
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
221 |
+
self.pe = None
|
222 |
+
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
223 |
+
|
224 |
+
def extend_pe(self, x: torch.Tensor):
|
225 |
+
"""Reset the positional encodings."""
|
226 |
+
if self.pe is not None:
|
227 |
+
# self.pe contains both positive and negative parts
|
228 |
+
# the length of self.pe is 2 * input_len - 1
|
229 |
+
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
230 |
+
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
231 |
+
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
232 |
+
return
|
233 |
+
# Suppose `i` means to the position of query vecotr and `j` means the
|
234 |
+
# position of key vector. We use position relative positions when keys
|
235 |
+
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
236 |
+
pe_positive = torch.zeros(x.size(1), self.d_model)
|
237 |
+
pe_negative = torch.zeros(x.size(1), self.d_model)
|
238 |
+
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
239 |
+
div_term = torch.exp(
|
240 |
+
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
241 |
+
* -(math.log(10000.0) / self.d_model)
|
242 |
+
)
|
243 |
+
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
244 |
+
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
245 |
+
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
246 |
+
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
247 |
+
|
248 |
+
# Reserve the order of positive indices and concat both positive and
|
249 |
+
# negative indices. This is used to support the shifting trick
|
250 |
+
# as in https://arxiv.org/abs/1901.02860
|
251 |
+
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
252 |
+
pe_negative = pe_negative[1:].unsqueeze(0)
|
253 |
+
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
254 |
+
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
255 |
+
|
256 |
+
def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0) \
|
257 |
+
-> Tuple[torch.Tensor, torch.Tensor]:
|
258 |
+
"""Add positional encoding.
|
259 |
+
|
260 |
+
Args:
|
261 |
+
x (torch.Tensor): Input tensor (batch, time, `*`).
|
262 |
+
|
263 |
+
Returns:
|
264 |
+
torch.Tensor: Encoded tensor (batch, time, `*`).
|
265 |
+
|
266 |
+
"""
|
267 |
+
self.extend_pe(x)
|
268 |
+
x = x * self.xscale
|
269 |
+
pos_emb = self.position_encoding(size=x.size(1), offset=offset)
|
270 |
+
return self.dropout(x), self.dropout(pos_emb)
|
271 |
+
|
272 |
+
def position_encoding(self,
|
273 |
+
offset: Union[int, torch.Tensor],
|
274 |
+
size: int) -> torch.Tensor:
|
275 |
+
""" For getting encoding in a streaming fashion
|
276 |
+
|
277 |
+
Attention!!!!!
|
278 |
+
we apply dropout only once at the whole utterance level in a none
|
279 |
+
streaming way, but will call this function several times with
|
280 |
+
increasing input size in a streaming scenario, so the dropout will
|
281 |
+
be applied several times.
|
282 |
+
|
283 |
+
Args:
|
284 |
+
offset (int or torch.tensor): start offset
|
285 |
+
size (int): required size of position encoding
|
286 |
+
|
287 |
+
Returns:
|
288 |
+
torch.Tensor: Corresponding encoding
|
289 |
+
"""
|
290 |
+
pos_emb = self.pe[
|
291 |
+
:,
|
292 |
+
self.pe.size(1) // 2 - size + 1: self.pe.size(1) // 2 + size,
|
293 |
+
]
|
294 |
+
return pos_emb
|
third_party/cosyvoice/transformer/encoder.py
ADDED
@@ -0,0 +1,474 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
|
2 |
+
# 2022 Xingchen Song ([email protected])
|
3 |
+
# 2024 Alibaba Inc (Xiang Lyu)
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
17 |
+
"""Encoder definition."""
|
18 |
+
from typing import Tuple
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint as ckpt
|
22 |
+
|
23 |
+
from cosyvoice.transformer.convolution import ConvolutionModule
|
24 |
+
from cosyvoice.transformer.encoder_layer import TransformerEncoderLayer
|
25 |
+
from cosyvoice.transformer.encoder_layer import ConformerEncoderLayer
|
26 |
+
from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
|
27 |
+
from cosyvoice.utils.class_utils import (
|
28 |
+
COSYVOICE_EMB_CLASSES,
|
29 |
+
COSYVOICE_SUBSAMPLE_CLASSES,
|
30 |
+
COSYVOICE_ATTENTION_CLASSES,
|
31 |
+
COSYVOICE_ACTIVATION_CLASSES,
|
32 |
+
)
|
33 |
+
from cosyvoice.utils.mask import make_pad_mask
|
34 |
+
from cosyvoice.utils.mask import add_optional_chunk_mask
|
35 |
+
|
36 |
+
|
37 |
+
class BaseEncoder(torch.nn.Module):
|
38 |
+
|
39 |
+
def __init__(
|
40 |
+
self,
|
41 |
+
input_size: int,
|
42 |
+
output_size: int = 256,
|
43 |
+
attention_heads: int = 4,
|
44 |
+
linear_units: int = 2048,
|
45 |
+
num_blocks: int = 6,
|
46 |
+
dropout_rate: float = 0.1,
|
47 |
+
positional_dropout_rate: float = 0.1,
|
48 |
+
attention_dropout_rate: float = 0.0,
|
49 |
+
input_layer: str = "conv2d",
|
50 |
+
pos_enc_layer_type: str = "abs_pos",
|
51 |
+
normalize_before: bool = True,
|
52 |
+
static_chunk_size: int = 0,
|
53 |
+
use_dynamic_chunk: bool = False,
|
54 |
+
global_cmvn: torch.nn.Module = None,
|
55 |
+
use_dynamic_left_chunk: bool = False,
|
56 |
+
gradient_checkpointing: bool = False,
|
57 |
+
):
|
58 |
+
"""
|
59 |
+
Args:
|
60 |
+
input_size (int): input dim
|
61 |
+
output_size (int): dimension of attention
|
62 |
+
attention_heads (int): the number of heads of multi head attention
|
63 |
+
linear_units (int): the hidden units number of position-wise feed
|
64 |
+
forward
|
65 |
+
num_blocks (int): the number of decoder blocks
|
66 |
+
dropout_rate (float): dropout rate
|
67 |
+
attention_dropout_rate (float): dropout rate in attention
|
68 |
+
positional_dropout_rate (float): dropout rate after adding
|
69 |
+
positional encoding
|
70 |
+
input_layer (str): input layer type.
|
71 |
+
optional [linear, conv2d, conv2d6, conv2d8]
|
72 |
+
pos_enc_layer_type (str): Encoder positional encoding layer type.
|
73 |
+
opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos]
|
74 |
+
normalize_before (bool):
|
75 |
+
True: use layer_norm before each sub-block of a layer.
|
76 |
+
False: use layer_norm after each sub-block of a layer.
|
77 |
+
static_chunk_size (int): chunk size for static chunk training and
|
78 |
+
decoding
|
79 |
+
use_dynamic_chunk (bool): whether use dynamic chunk size for
|
80 |
+
training or not, You can only use fixed chunk(chunk_size > 0)
|
81 |
+
or dyanmic chunk size(use_dynamic_chunk = True)
|
82 |
+
global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module
|
83 |
+
use_dynamic_left_chunk (bool): whether use dynamic left chunk in
|
84 |
+
dynamic chunk training
|
85 |
+
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
86 |
+
gradient_checkpointing: rerunning a forward-pass segment for each
|
87 |
+
checkpointed segment during backward.
|
88 |
+
"""
|
89 |
+
super().__init__()
|
90 |
+
self._output_size = output_size
|
91 |
+
|
92 |
+
self.global_cmvn = global_cmvn
|
93 |
+
self.embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
|
94 |
+
input_size,
|
95 |
+
output_size,
|
96 |
+
dropout_rate,
|
97 |
+
COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
|
98 |
+
positional_dropout_rate),
|
99 |
+
)
|
100 |
+
|
101 |
+
self.normalize_before = normalize_before
|
102 |
+
self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5)
|
103 |
+
self.static_chunk_size = static_chunk_size
|
104 |
+
self.use_dynamic_chunk = use_dynamic_chunk
|
105 |
+
self.use_dynamic_left_chunk = use_dynamic_left_chunk
|
106 |
+
self.gradient_checkpointing = gradient_checkpointing
|
107 |
+
|
108 |
+
def output_size(self) -> int:
|
109 |
+
return self._output_size
|
110 |
+
|
111 |
+
def forward(
|
112 |
+
self,
|
113 |
+
xs: torch.Tensor,
|
114 |
+
xs_lens: torch.Tensor,
|
115 |
+
decoding_chunk_size: int = 0,
|
116 |
+
num_decoding_left_chunks: int = -1,
|
117 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
118 |
+
"""Embed positions in tensor.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
xs: padded input tensor (B, T, D)
|
122 |
+
xs_lens: input length (B)
|
123 |
+
decoding_chunk_size: decoding chunk size for dynamic chunk
|
124 |
+
0: default for training, use random dynamic chunk.
|
125 |
+
<0: for decoding, use full chunk.
|
126 |
+
>0: for decoding, use fixed chunk size as set.
|
127 |
+
num_decoding_left_chunks: number of left chunks, this is for decoding,
|
128 |
+
the chunk size is decoding_chunk_size.
|
129 |
+
>=0: use num_decoding_left_chunks
|
130 |
+
<0: use all left chunks
|
131 |
+
Returns:
|
132 |
+
encoder output tensor xs, and subsampled masks
|
133 |
+
xs: padded output tensor (B, T' ~= T/subsample_rate, D)
|
134 |
+
masks: torch.Tensor batch padding mask after subsample
|
135 |
+
(B, 1, T' ~= T/subsample_rate)
|
136 |
+
NOTE(xcsong):
|
137 |
+
We pass the `__call__` method of the modules instead of `forward` to the
|
138 |
+
checkpointing API because `__call__` attaches all the hooks of the module.
|
139 |
+
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
140 |
+
"""
|
141 |
+
T = xs.size(1)
|
142 |
+
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
|
143 |
+
if self.global_cmvn is not None:
|
144 |
+
xs = self.global_cmvn(xs)
|
145 |
+
xs, pos_emb, masks = self.embed(xs, masks)
|
146 |
+
mask_pad = masks # (B, 1, T/subsample_rate)
|
147 |
+
chunk_masks = add_optional_chunk_mask(xs, masks,
|
148 |
+
self.use_dynamic_chunk,
|
149 |
+
self.use_dynamic_left_chunk,
|
150 |
+
decoding_chunk_size,
|
151 |
+
self.static_chunk_size,
|
152 |
+
num_decoding_left_chunks)
|
153 |
+
if self.gradient_checkpointing and self.training:
|
154 |
+
xs = self.forward_layers_checkpointed(xs, chunk_masks, pos_emb,
|
155 |
+
mask_pad)
|
156 |
+
else:
|
157 |
+
xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
|
158 |
+
if self.normalize_before:
|
159 |
+
xs = self.after_norm(xs)
|
160 |
+
# Here we assume the mask is not changed in encoder layers, so just
|
161 |
+
# return the masks before encoder layers, and the masks will be used
|
162 |
+
# for cross attention with decoder later
|
163 |
+
return xs, masks
|
164 |
+
|
165 |
+
def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
|
166 |
+
pos_emb: torch.Tensor,
|
167 |
+
mask_pad: torch.Tensor) -> torch.Tensor:
|
168 |
+
for layer in self.encoders:
|
169 |
+
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
170 |
+
return xs
|
171 |
+
|
172 |
+
@torch.jit.unused
|
173 |
+
def forward_layers_checkpointed(self, xs: torch.Tensor,
|
174 |
+
chunk_masks: torch.Tensor,
|
175 |
+
pos_emb: torch.Tensor,
|
176 |
+
mask_pad: torch.Tensor) -> torch.Tensor:
|
177 |
+
for layer in self.encoders:
|
178 |
+
xs, chunk_masks, _, _ = ckpt.checkpoint(layer.__call__, xs,
|
179 |
+
chunk_masks, pos_emb,
|
180 |
+
mask_pad)
|
181 |
+
return xs
|
182 |
+
|
183 |
+
@torch.jit.export
|
184 |
+
def forward_chunk(
|
185 |
+
self,
|
186 |
+
xs: torch.Tensor,
|
187 |
+
offset: int,
|
188 |
+
required_cache_size: int,
|
189 |
+
att_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
190 |
+
cnn_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
191 |
+
att_mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
192 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
193 |
+
""" Forward just one chunk
|
194 |
+
|
195 |
+
Args:
|
196 |
+
xs (torch.Tensor): chunk input, with shape (b=1, time, mel-dim),
|
197 |
+
where `time == (chunk_size - 1) * subsample_rate + \
|
198 |
+
subsample.right_context + 1`
|
199 |
+
offset (int): current offset in encoder output time stamp
|
200 |
+
required_cache_size (int): cache size required for next chunk
|
201 |
+
compuation
|
202 |
+
>=0: actual cache size
|
203 |
+
<0: means all history cache is required
|
204 |
+
att_cache (torch.Tensor): cache tensor for KEY & VALUE in
|
205 |
+
transformer/conformer attention, with shape
|
206 |
+
(elayers, head, cache_t1, d_k * 2), where
|
207 |
+
`head * d_k == hidden-dim` and
|
208 |
+
`cache_t1 == chunk_size * num_decoding_left_chunks`.
|
209 |
+
cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer,
|
210 |
+
(elayers, b=1, hidden-dim, cache_t2), where
|
211 |
+
`cache_t2 == cnn.lorder - 1`
|
212 |
+
|
213 |
+
Returns:
|
214 |
+
torch.Tensor: output of current input xs,
|
215 |
+
with shape (b=1, chunk_size, hidden-dim).
|
216 |
+
torch.Tensor: new attention cache required for next chunk, with
|
217 |
+
dynamic shape (elayers, head, ?, d_k * 2)
|
218 |
+
depending on required_cache_size.
|
219 |
+
torch.Tensor: new conformer cnn cache required for next chunk, with
|
220 |
+
same shape as the original cnn_cache.
|
221 |
+
|
222 |
+
"""
|
223 |
+
assert xs.size(0) == 1
|
224 |
+
# tmp_masks is just for interface compatibility
|
225 |
+
tmp_masks = torch.ones(1,
|
226 |
+
xs.size(1),
|
227 |
+
device=xs.device,
|
228 |
+
dtype=torch.bool)
|
229 |
+
tmp_masks = tmp_masks.unsqueeze(1)
|
230 |
+
if self.global_cmvn is not None:
|
231 |
+
xs = self.global_cmvn(xs)
|
232 |
+
# NOTE(xcsong): Before embed, shape(xs) is (b=1, time, mel-dim)
|
233 |
+
xs, pos_emb, _ = self.embed(xs, tmp_masks, offset)
|
234 |
+
# NOTE(xcsong): After embed, shape(xs) is (b=1, chunk_size, hidden-dim)
|
235 |
+
elayers, cache_t1 = att_cache.size(0), att_cache.size(2)
|
236 |
+
chunk_size = xs.size(1)
|
237 |
+
attention_key_size = cache_t1 + chunk_size
|
238 |
+
pos_emb = self.embed.position_encoding(offset=offset - cache_t1,
|
239 |
+
size=attention_key_size)
|
240 |
+
if required_cache_size < 0:
|
241 |
+
next_cache_start = 0
|
242 |
+
elif required_cache_size == 0:
|
243 |
+
next_cache_start = attention_key_size
|
244 |
+
else:
|
245 |
+
next_cache_start = max(attention_key_size - required_cache_size, 0)
|
246 |
+
r_att_cache = []
|
247 |
+
r_cnn_cache = []
|
248 |
+
for i, layer in enumerate(self.encoders):
|
249 |
+
# NOTE(xcsong): Before layer.forward
|
250 |
+
# shape(att_cache[i:i + 1]) is (1, head, cache_t1, d_k * 2),
|
251 |
+
# shape(cnn_cache[i]) is (b=1, hidden-dim, cache_t2)
|
252 |
+
xs, _, new_att_cache, new_cnn_cache = layer(
|
253 |
+
xs,
|
254 |
+
att_mask,
|
255 |
+
pos_emb,
|
256 |
+
att_cache=att_cache[i:i + 1] if elayers > 0 else att_cache,
|
257 |
+
cnn_cache=cnn_cache[i] if cnn_cache.size(0) > 0 else cnn_cache)
|
258 |
+
# NOTE(xcsong): After layer.forward
|
259 |
+
# shape(new_att_cache) is (1, head, attention_key_size, d_k * 2),
|
260 |
+
# shape(new_cnn_cache) is (b=1, hidden-dim, cache_t2)
|
261 |
+
r_att_cache.append(new_att_cache[:, :, next_cache_start:, :])
|
262 |
+
r_cnn_cache.append(new_cnn_cache.unsqueeze(0))
|
263 |
+
if self.normalize_before:
|
264 |
+
xs = self.after_norm(xs)
|
265 |
+
|
266 |
+
# NOTE(xcsong): shape(r_att_cache) is (elayers, head, ?, d_k * 2),
|
267 |
+
# ? may be larger than cache_t1, it depends on required_cache_size
|
268 |
+
r_att_cache = torch.cat(r_att_cache, dim=0)
|
269 |
+
# NOTE(xcsong): shape(r_cnn_cache) is (e, b=1, hidden-dim, cache_t2)
|
270 |
+
r_cnn_cache = torch.cat(r_cnn_cache, dim=0)
|
271 |
+
|
272 |
+
return (xs, r_att_cache, r_cnn_cache)
|
273 |
+
|
274 |
+
@torch.jit.unused
|
275 |
+
def forward_chunk_by_chunk(
|
276 |
+
self,
|
277 |
+
xs: torch.Tensor,
|
278 |
+
decoding_chunk_size: int,
|
279 |
+
num_decoding_left_chunks: int = -1,
|
280 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
281 |
+
""" Forward input chunk by chunk with chunk_size like a streaming
|
282 |
+
fashion
|
283 |
+
|
284 |
+
Here we should pay special attention to computation cache in the
|
285 |
+
streaming style forward chunk by chunk. Three things should be taken
|
286 |
+
into account for computation in the current network:
|
287 |
+
1. transformer/conformer encoder layers output cache
|
288 |
+
2. convolution in conformer
|
289 |
+
3. convolution in subsampling
|
290 |
+
|
291 |
+
However, we don't implement subsampling cache for:
|
292 |
+
1. We can control subsampling module to output the right result by
|
293 |
+
overlapping input instead of cache left context, even though it
|
294 |
+
wastes some computation, but subsampling only takes a very
|
295 |
+
small fraction of computation in the whole model.
|
296 |
+
2. Typically, there are several covolution layers with subsampling
|
297 |
+
in subsampling module, it is tricky and complicated to do cache
|
298 |
+
with different convolution layers with different subsampling
|
299 |
+
rate.
|
300 |
+
3. Currently, nn.Sequential is used to stack all the convolution
|
301 |
+
layers in subsampling, we need to rewrite it to make it work
|
302 |
+
with cache, which is not preferred.
|
303 |
+
Args:
|
304 |
+
xs (torch.Tensor): (1, max_len, dim)
|
305 |
+
chunk_size (int): decoding chunk size
|
306 |
+
"""
|
307 |
+
assert decoding_chunk_size > 0
|
308 |
+
# The model is trained by static or dynamic chunk
|
309 |
+
assert self.static_chunk_size > 0 or self.use_dynamic_chunk
|
310 |
+
subsampling = self.embed.subsampling_rate
|
311 |
+
context = self.embed.right_context + 1 # Add current frame
|
312 |
+
stride = subsampling * decoding_chunk_size
|
313 |
+
decoding_window = (decoding_chunk_size - 1) * subsampling + context
|
314 |
+
num_frames = xs.size(1)
|
315 |
+
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
|
316 |
+
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
|
317 |
+
outputs = []
|
318 |
+
offset = 0
|
319 |
+
required_cache_size = decoding_chunk_size * num_decoding_left_chunks
|
320 |
+
|
321 |
+
# Feed forward overlap input step by step
|
322 |
+
for cur in range(0, num_frames - context + 1, stride):
|
323 |
+
end = min(cur + decoding_window, num_frames)
|
324 |
+
chunk_xs = xs[:, cur:end, :]
|
325 |
+
(y, att_cache,
|
326 |
+
cnn_cache) = self.forward_chunk(chunk_xs, offset,
|
327 |
+
required_cache_size, att_cache,
|
328 |
+
cnn_cache)
|
329 |
+
outputs.append(y)
|
330 |
+
offset += y.size(1)
|
331 |
+
ys = torch.cat(outputs, 1)
|
332 |
+
masks = torch.ones((1, 1, ys.size(1)),
|
333 |
+
device=ys.device,
|
334 |
+
dtype=torch.bool)
|
335 |
+
return ys, masks
|
336 |
+
|
337 |
+
|
338 |
+
class TransformerEncoder(BaseEncoder):
|
339 |
+
"""Transformer encoder module."""
|
340 |
+
|
341 |
+
def __init__(
|
342 |
+
self,
|
343 |
+
input_size: int,
|
344 |
+
output_size: int = 256,
|
345 |
+
attention_heads: int = 4,
|
346 |
+
linear_units: int = 2048,
|
347 |
+
num_blocks: int = 6,
|
348 |
+
dropout_rate: float = 0.1,
|
349 |
+
positional_dropout_rate: float = 0.1,
|
350 |
+
attention_dropout_rate: float = 0.0,
|
351 |
+
input_layer: str = "conv2d",
|
352 |
+
pos_enc_layer_type: str = "abs_pos",
|
353 |
+
normalize_before: bool = True,
|
354 |
+
static_chunk_size: int = 0,
|
355 |
+
use_dynamic_chunk: bool = False,
|
356 |
+
global_cmvn: torch.nn.Module = None,
|
357 |
+
use_dynamic_left_chunk: bool = False,
|
358 |
+
key_bias: bool = True,
|
359 |
+
selfattention_layer_type: str = "selfattn",
|
360 |
+
activation_type: str = "relu",
|
361 |
+
gradient_checkpointing: bool = False,
|
362 |
+
):
|
363 |
+
""" Construct TransformerEncoder
|
364 |
+
|
365 |
+
See Encoder for the meaning of each parameter.
|
366 |
+
"""
|
367 |
+
super().__init__(input_size, output_size, attention_heads,
|
368 |
+
linear_units, num_blocks, dropout_rate,
|
369 |
+
positional_dropout_rate, attention_dropout_rate,
|
370 |
+
input_layer, pos_enc_layer_type, normalize_before,
|
371 |
+
static_chunk_size, use_dynamic_chunk, global_cmvn,
|
372 |
+
use_dynamic_left_chunk, gradient_checkpointing)
|
373 |
+
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
374 |
+
self.encoders = torch.nn.ModuleList([
|
375 |
+
TransformerEncoderLayer(
|
376 |
+
output_size,
|
377 |
+
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](attention_heads,
|
378 |
+
output_size,
|
379 |
+
attention_dropout_rate,
|
380 |
+
key_bias),
|
381 |
+
PositionwiseFeedForward(output_size, linear_units,
|
382 |
+
dropout_rate, activation),
|
383 |
+
dropout_rate, normalize_before) for _ in range(num_blocks)
|
384 |
+
])
|
385 |
+
|
386 |
+
|
387 |
+
class ConformerEncoder(BaseEncoder):
|
388 |
+
"""Conformer encoder module."""
|
389 |
+
|
390 |
+
def __init__(
|
391 |
+
self,
|
392 |
+
input_size: int,
|
393 |
+
output_size: int = 256,
|
394 |
+
attention_heads: int = 4,
|
395 |
+
linear_units: int = 2048,
|
396 |
+
num_blocks: int = 6,
|
397 |
+
dropout_rate: float = 0.1,
|
398 |
+
positional_dropout_rate: float = 0.1,
|
399 |
+
attention_dropout_rate: float = 0.0,
|
400 |
+
input_layer: str = "conv2d",
|
401 |
+
pos_enc_layer_type: str = "rel_pos",
|
402 |
+
normalize_before: bool = True,
|
403 |
+
static_chunk_size: int = 0,
|
404 |
+
use_dynamic_chunk: bool = False,
|
405 |
+
global_cmvn: torch.nn.Module = None,
|
406 |
+
use_dynamic_left_chunk: bool = False,
|
407 |
+
positionwise_conv_kernel_size: int = 1,
|
408 |
+
macaron_style: bool = True,
|
409 |
+
selfattention_layer_type: str = "rel_selfattn",
|
410 |
+
activation_type: str = "swish",
|
411 |
+
use_cnn_module: bool = True,
|
412 |
+
cnn_module_kernel: int = 15,
|
413 |
+
causal: bool = False,
|
414 |
+
cnn_module_norm: str = "batch_norm",
|
415 |
+
key_bias: bool = True,
|
416 |
+
gradient_checkpointing: bool = False,
|
417 |
+
):
|
418 |
+
"""Construct ConformerEncoder
|
419 |
+
|
420 |
+
Args:
|
421 |
+
input_size to use_dynamic_chunk, see in BaseEncoder
|
422 |
+
positionwise_conv_kernel_size (int): Kernel size of positionwise
|
423 |
+
conv1d layer.
|
424 |
+
macaron_style (bool): Whether to use macaron style for
|
425 |
+
positionwise layer.
|
426 |
+
selfattention_layer_type (str): Encoder attention layer type,
|
427 |
+
the parameter has no effect now, it's just for configure
|
428 |
+
compatibility.
|
429 |
+
activation_type (str): Encoder activation function type.
|
430 |
+
use_cnn_module (bool): Whether to use convolution module.
|
431 |
+
cnn_module_kernel (int): Kernel size of convolution module.
|
432 |
+
causal (bool): whether to use causal convolution or not.
|
433 |
+
key_bias: whether use bias in attention.linear_k, False for whisper models.
|
434 |
+
"""
|
435 |
+
super().__init__(input_size, output_size, attention_heads,
|
436 |
+
linear_units, num_blocks, dropout_rate,
|
437 |
+
positional_dropout_rate, attention_dropout_rate,
|
438 |
+
input_layer, pos_enc_layer_type, normalize_before,
|
439 |
+
static_chunk_size, use_dynamic_chunk, global_cmvn,
|
440 |
+
use_dynamic_left_chunk, gradient_checkpointing)
|
441 |
+
activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
442 |
+
|
443 |
+
# self-attention module definition
|
444 |
+
encoder_selfattn_layer_args = (
|
445 |
+
attention_heads,
|
446 |
+
output_size,
|
447 |
+
attention_dropout_rate,
|
448 |
+
key_bias,
|
449 |
+
)
|
450 |
+
# feed-forward module definition
|
451 |
+
positionwise_layer_args = (
|
452 |
+
output_size,
|
453 |
+
linear_units,
|
454 |
+
dropout_rate,
|
455 |
+
activation,
|
456 |
+
)
|
457 |
+
# convolution module definition
|
458 |
+
convolution_layer_args = (output_size, cnn_module_kernel, activation,
|
459 |
+
cnn_module_norm, causal)
|
460 |
+
|
461 |
+
self.encoders = torch.nn.ModuleList([
|
462 |
+
ConformerEncoderLayer(
|
463 |
+
output_size,
|
464 |
+
COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
|
465 |
+
*encoder_selfattn_layer_args),
|
466 |
+
PositionwiseFeedForward(*positionwise_layer_args),
|
467 |
+
PositionwiseFeedForward(
|
468 |
+
*positionwise_layer_args) if macaron_style else None,
|
469 |
+
ConvolutionModule(
|
470 |
+
*convolution_layer_args) if use_cnn_module else None,
|
471 |
+
dropout_rate,
|
472 |
+
normalize_before,
|
473 |
+
) for _ in range(num_blocks)
|
474 |
+
])
|
third_party/cosyvoice/utils/__init__.py
ADDED
File without changes
|
third_party/cosyvoice/utils/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (165 Bytes). View file
|
|
third_party/cosyvoice/utils/__pycache__/class_utils.cpython-311.pyc
ADDED
Binary file (3.18 kB). View file
|
|
third_party/cosyvoice/utils/__pycache__/common.cpython-311.pyc
ADDED
Binary file (8.62 kB). View file
|
|
third_party/cosyvoice/utils/__pycache__/file_utils.cpython-311.pyc
ADDED
Binary file (5.94 kB). View file
|
|
third_party/cosyvoice/utils/__pycache__/frontend_utils.cpython-311.pyc
ADDED
Binary file (6.01 kB). View file
|
|
third_party/cosyvoice/utils/__pycache__/mask.cpython-311.pyc
ADDED
Binary file (8.38 kB). View file
|
|
third_party/cosyvoice/utils/class_utils.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright [2023-11-28] <[email protected], Xingchen Song>
|
2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import torch
|
16 |
+
|
17 |
+
from cosyvoice.transformer.activation import Swish
|
18 |
+
from cosyvoice.transformer.subsampling import (
|
19 |
+
LinearNoSubsampling,
|
20 |
+
EmbedinigNoSubsampling,
|
21 |
+
Conv1dSubsampling2,
|
22 |
+
Conv2dSubsampling4,
|
23 |
+
Conv2dSubsampling6,
|
24 |
+
Conv2dSubsampling8,
|
25 |
+
)
|
26 |
+
from cosyvoice.transformer.embedding import (PositionalEncoding,
|
27 |
+
RelPositionalEncoding,
|
28 |
+
WhisperPositionalEncoding,
|
29 |
+
LearnablePositionalEncoding,
|
30 |
+
NoPositionalEncoding)
|
31 |
+
from cosyvoice.transformer.attention import (MultiHeadedAttention,
|
32 |
+
RelPositionMultiHeadedAttention)
|
33 |
+
from cosyvoice.transformer.embedding import EspnetRelPositionalEncoding
|
34 |
+
from cosyvoice.transformer.subsampling import LegacyLinearNoSubsampling
|
35 |
+
from cosyvoice.llm.llm import TransformerLM, Qwen2LM
|
36 |
+
from cosyvoice.flow.flow import MaskedDiffWithXvec, CausalMaskedDiffWithXvec
|
37 |
+
from cosyvoice.hifigan.generator import HiFTGenerator
|
38 |
+
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
|
39 |
+
|
40 |
+
|
41 |
+
COSYVOICE_ACTIVATION_CLASSES = {
|
42 |
+
"hardtanh": torch.nn.Hardtanh,
|
43 |
+
"tanh": torch.nn.Tanh,
|
44 |
+
"relu": torch.nn.ReLU,
|
45 |
+
"selu": torch.nn.SELU,
|
46 |
+
"swish": getattr(torch.nn, "SiLU", Swish),
|
47 |
+
"gelu": torch.nn.GELU,
|
48 |
+
}
|
49 |
+
|
50 |
+
COSYVOICE_SUBSAMPLE_CLASSES = {
|
51 |
+
"linear": LinearNoSubsampling,
|
52 |
+
"linear_legacy": LegacyLinearNoSubsampling,
|
53 |
+
"embed": EmbedinigNoSubsampling,
|
54 |
+
"conv1d2": Conv1dSubsampling2,
|
55 |
+
"conv2d": Conv2dSubsampling4,
|
56 |
+
"conv2d6": Conv2dSubsampling6,
|
57 |
+
"conv2d8": Conv2dSubsampling8,
|
58 |
+
'paraformer_dummy': torch.nn.Identity
|
59 |
+
}
|
60 |
+
|
61 |
+
COSYVOICE_EMB_CLASSES = {
|
62 |
+
"embed": PositionalEncoding,
|
63 |
+
"abs_pos": PositionalEncoding,
|
64 |
+
"rel_pos": RelPositionalEncoding,
|
65 |
+
"rel_pos_espnet": EspnetRelPositionalEncoding,
|
66 |
+
"no_pos": NoPositionalEncoding,
|
67 |
+
"abs_pos_whisper": WhisperPositionalEncoding,
|
68 |
+
"embed_learnable_pe": LearnablePositionalEncoding,
|
69 |
+
}
|
70 |
+
|
71 |
+
COSYVOICE_ATTENTION_CLASSES = {
|
72 |
+
"selfattn": MultiHeadedAttention,
|
73 |
+
"rel_selfattn": RelPositionMultiHeadedAttention,
|
74 |
+
}
|
75 |
+
|
76 |
+
|
77 |
+
def get_model_type(configs):
|
78 |
+
# NOTE CosyVoice2Model inherits CosyVoiceModel
|
79 |
+
if isinstance(configs['llm'], TransformerLM) and isinstance(configs['flow'], MaskedDiffWithXvec) and isinstance(configs['hift'], HiFTGenerator):
|
80 |
+
return CosyVoiceModel
|
81 |
+
if isinstance(configs['llm'], Qwen2LM) and isinstance(configs['flow'], CausalMaskedDiffWithXvec) and isinstance(configs['hift'], HiFTGenerator):
|
82 |
+
return CosyVoice2Model
|
83 |
+
raise TypeError('No valid model type found!')
|
third_party/cosyvoice/utils/common.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
|
2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
16 |
+
"""Unility functions for Transformer."""
|
17 |
+
|
18 |
+
import random
|
19 |
+
from typing import List
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
|
24 |
+
IGNORE_ID = -1
|
25 |
+
|
26 |
+
|
27 |
+
def pad_list(xs: List[torch.Tensor], pad_value: int):
|
28 |
+
"""Perform padding for the list of tensors.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
|
32 |
+
pad_value (float): Value for padding.
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
Tensor: Padded tensor (B, Tmax, `*`).
|
36 |
+
|
37 |
+
Examples:
|
38 |
+
>>> x = [torch.ones(4), torch.ones(2), torch.ones(1)]
|
39 |
+
>>> x
|
40 |
+
[tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])]
|
41 |
+
>>> pad_list(x, 0)
|
42 |
+
tensor([[1., 1., 1., 1.],
|
43 |
+
[1., 1., 0., 0.],
|
44 |
+
[1., 0., 0., 0.]])
|
45 |
+
|
46 |
+
"""
|
47 |
+
max_len = max([len(item) for item in xs])
|
48 |
+
batchs = len(xs)
|
49 |
+
ndim = xs[0].ndim
|
50 |
+
if ndim == 1:
|
51 |
+
pad_res = torch.zeros(batchs,
|
52 |
+
max_len,
|
53 |
+
dtype=xs[0].dtype,
|
54 |
+
device=xs[0].device)
|
55 |
+
elif ndim == 2:
|
56 |
+
pad_res = torch.zeros(batchs,
|
57 |
+
max_len,
|
58 |
+
xs[0].shape[1],
|
59 |
+
dtype=xs[0].dtype,
|
60 |
+
device=xs[0].device)
|
61 |
+
elif ndim == 3:
|
62 |
+
pad_res = torch.zeros(batchs,
|
63 |
+
max_len,
|
64 |
+
xs[0].shape[1],
|
65 |
+
xs[0].shape[2],
|
66 |
+
dtype=xs[0].dtype,
|
67 |
+
device=xs[0].device)
|
68 |
+
else:
|
69 |
+
raise ValueError(f"Unsupported ndim: {ndim}")
|
70 |
+
pad_res.fill_(pad_value)
|
71 |
+
for i in range(batchs):
|
72 |
+
pad_res[i, :len(xs[i])] = xs[i]
|
73 |
+
return pad_res
|
74 |
+
|
75 |
+
|
76 |
+
def th_accuracy(pad_outputs: torch.Tensor, pad_targets: torch.Tensor,
|
77 |
+
ignore_label: int) -> torch.Tensor:
|
78 |
+
"""Calculate accuracy.
|
79 |
+
|
80 |
+
Args:
|
81 |
+
pad_outputs (Tensor): Prediction tensors (B * Lmax, D).
|
82 |
+
pad_targets (LongTensor): Target label tensors (B, Lmax).
|
83 |
+
ignore_label (int): Ignore label id.
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
torch.Tensor: Accuracy value (0.0 - 1.0).
|
87 |
+
|
88 |
+
"""
|
89 |
+
pad_pred = pad_outputs.view(pad_targets.size(0), pad_targets.size(1),
|
90 |
+
pad_outputs.size(1)).argmax(2)
|
91 |
+
mask = pad_targets != ignore_label
|
92 |
+
numerator = torch.sum(
|
93 |
+
pad_pred.masked_select(mask) == pad_targets.masked_select(mask))
|
94 |
+
denominator = torch.sum(mask)
|
95 |
+
return (numerator / denominator).detach()
|
96 |
+
|
97 |
+
|
98 |
+
def get_padding(kernel_size, dilation=1):
|
99 |
+
return int((kernel_size * dilation - dilation) / 2)
|
100 |
+
|
101 |
+
|
102 |
+
def init_weights(m, mean=0.0, std=0.01):
|
103 |
+
classname = m.__class__.__name__
|
104 |
+
if classname.find("Conv") != -1:
|
105 |
+
m.weight.data.normal_(mean, std)
|
106 |
+
|
107 |
+
|
108 |
+
# Repetition Aware Sampling in VALL-E 2
|
109 |
+
def ras_sampling(weighted_scores, decoded_tokens, sampling, top_p=0.8, top_k=25, win_size=10, tau_r=0.1):
|
110 |
+
top_ids = nucleus_sampling(weighted_scores, top_p=top_p, top_k=top_k)
|
111 |
+
rep_num = (torch.tensor(decoded_tokens[-win_size:]).to(weighted_scores.device) == top_ids).sum().item()
|
112 |
+
if rep_num >= win_size * tau_r:
|
113 |
+
top_ids = random_sampling(weighted_scores, decoded_tokens, sampling)
|
114 |
+
return top_ids
|
115 |
+
|
116 |
+
|
117 |
+
def nucleus_sampling(weighted_scores, top_p=0.8, top_k=25):
|
118 |
+
prob, indices = [], []
|
119 |
+
cum_prob = 0.0
|
120 |
+
sorted_value, sorted_idx = weighted_scores.softmax(dim=0).sort(descending=True, stable=True)
|
121 |
+
for i in range(len(sorted_idx)):
|
122 |
+
# sampling both top-p and numbers.
|
123 |
+
if cum_prob < top_p and len(prob) < top_k:
|
124 |
+
cum_prob += sorted_value[i]
|
125 |
+
prob.append(sorted_value[i])
|
126 |
+
indices.append(sorted_idx[i])
|
127 |
+
else:
|
128 |
+
break
|
129 |
+
prob = torch.tensor(prob).to(weighted_scores)
|
130 |
+
indices = torch.tensor(indices, dtype=torch.long).to(weighted_scores.device)
|
131 |
+
top_ids = indices[prob.multinomial(1, replacement=True)]
|
132 |
+
return top_ids
|
133 |
+
|
134 |
+
|
135 |
+
def random_sampling(weighted_scores, decoded_tokens, sampling):
|
136 |
+
top_ids = weighted_scores.softmax(dim=0).multinomial(1, replacement=True)
|
137 |
+
return top_ids
|
138 |
+
|
139 |
+
|
140 |
+
def fade_in_out(fade_in_mel, fade_out_mel, window):
|
141 |
+
device = fade_in_mel.device
|
142 |
+
fade_in_mel, fade_out_mel = fade_in_mel.cpu(), fade_out_mel.cpu()
|
143 |
+
mel_overlap_len = int(window.shape[0] / 2)
|
144 |
+
if fade_in_mel.device == torch.device('cpu'):
|
145 |
+
fade_in_mel = fade_in_mel.clone()
|
146 |
+
fade_in_mel[..., :mel_overlap_len] = fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \
|
147 |
+
fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:]
|
148 |
+
return fade_in_mel.to(device)
|
149 |
+
|
150 |
+
|
151 |
+
def set_all_random_seed(seed):
|
152 |
+
random.seed(seed)
|
153 |
+
np.random.seed(seed)
|
154 |
+
torch.manual_seed(seed)
|
155 |
+
torch.cuda.manual_seed_all(seed)
|
156 |
+
|
157 |
+
|
158 |
+
def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
|
159 |
+
assert mask.dtype == torch.bool
|
160 |
+
assert dtype in [torch.float32, torch.bfloat16, torch.float16]
|
161 |
+
mask = mask.to(dtype)
|
162 |
+
# attention mask bias
|
163 |
+
# NOTE(Mddct): torch.finfo jit issues
|
164 |
+
# chunk_masks = (1.0 - chunk_masks) * torch.finfo(dtype).min
|
165 |
+
mask = (1.0 - mask) * -1.0e+10
|
166 |
+
return mask
|
third_party/cosyvoice/utils/executor.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
|
2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import logging
|
17 |
+
from contextlib import nullcontext
|
18 |
+
import os
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.distributed as dist
|
22 |
+
|
23 |
+
from cosyvoice.utils.train_utils import update_parameter_and_lr, log_per_step, log_per_save, batch_forward, batch_backward, save_model, cosyvoice_join
|
24 |
+
|
25 |
+
|
26 |
+
class Executor:
|
27 |
+
|
28 |
+
def __init__(self, gan: bool = False):
|
29 |
+
self.gan = gan
|
30 |
+
self.step = 0
|
31 |
+
self.epoch = 0
|
32 |
+
self.rank = int(os.environ.get('RANK', 0))
|
33 |
+
self.device = torch.device('cuda:{}'.format(self.rank))
|
34 |
+
|
35 |
+
def train_one_epoc(self, model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join):
|
36 |
+
''' Train one epoch
|
37 |
+
'''
|
38 |
+
|
39 |
+
lr = optimizer.param_groups[0]['lr']
|
40 |
+
logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
|
41 |
+
logging.info('using accumulate grad, new batch size is {} times'
|
42 |
+
' larger than before'.format(info_dict['accum_grad']))
|
43 |
+
# A context manager to be used in conjunction with an instance of
|
44 |
+
# torch.nn.parallel.DistributedDataParallel to be able to train
|
45 |
+
# with uneven inputs across participating processes.
|
46 |
+
model.train()
|
47 |
+
model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
|
48 |
+
with model_context():
|
49 |
+
for batch_idx, batch_dict in enumerate(train_data_loader):
|
50 |
+
info_dict["tag"] = "TRAIN"
|
51 |
+
info_dict["step"] = self.step
|
52 |
+
info_dict["epoch"] = self.epoch
|
53 |
+
info_dict["batch_idx"] = batch_idx
|
54 |
+
if cosyvoice_join(group_join, info_dict):
|
55 |
+
break
|
56 |
+
|
57 |
+
# Disable gradient synchronizations across DDP processes.
|
58 |
+
# Within this context, gradients will be accumulated on module
|
59 |
+
# variables, which will later be synchronized.
|
60 |
+
if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
|
61 |
+
context = model.no_sync
|
62 |
+
# Used for single gpu training and DDP gradient synchronization
|
63 |
+
# processes.
|
64 |
+
else:
|
65 |
+
context = nullcontext
|
66 |
+
|
67 |
+
with context():
|
68 |
+
info_dict = batch_forward(model, batch_dict, scaler, info_dict)
|
69 |
+
info_dict = batch_backward(model, scaler, info_dict)
|
70 |
+
|
71 |
+
info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
|
72 |
+
log_per_step(writer, info_dict)
|
73 |
+
# NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
|
74 |
+
if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
|
75 |
+
(batch_idx + 1) % info_dict["accum_grad"] == 0:
|
76 |
+
dist.barrier()
|
77 |
+
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
|
78 |
+
model.train()
|
79 |
+
if (batch_idx + 1) % info_dict["accum_grad"] == 0:
|
80 |
+
self.step += 1
|
81 |
+
dist.barrier()
|
82 |
+
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)
|
83 |
+
|
84 |
+
def train_one_epoc_gan(self, model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
|
85 |
+
writer, info_dict, scaler, group_join):
|
86 |
+
''' Train one epoch
|
87 |
+
'''
|
88 |
+
|
89 |
+
lr = optimizer.param_groups[0]['lr']
|
90 |
+
logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
|
91 |
+
logging.info('using accumulate grad, new batch size is {} times'
|
92 |
+
' larger than before'.format(info_dict['accum_grad']))
|
93 |
+
# A context manager to be used in conjunction with an instance of
|
94 |
+
# torch.nn.parallel.DistributedDataParallel to be able to train
|
95 |
+
# with uneven inputs across participating processes.
|
96 |
+
model.train()
|
97 |
+
model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
|
98 |
+
with model_context():
|
99 |
+
for batch_idx, batch_dict in enumerate(train_data_loader):
|
100 |
+
info_dict["tag"] = "TRAIN"
|
101 |
+
info_dict["step"] = self.step
|
102 |
+
info_dict["epoch"] = self.epoch
|
103 |
+
info_dict["batch_idx"] = batch_idx
|
104 |
+
if cosyvoice_join(group_join, info_dict):
|
105 |
+
break
|
106 |
+
|
107 |
+
# Disable gradient synchronizations across DDP processes.
|
108 |
+
# Within this context, gradients will be accumulated on module
|
109 |
+
# variables, which will later be synchronized.
|
110 |
+
if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
|
111 |
+
context = model.no_sync
|
112 |
+
# Used for single gpu training and DDP gradient synchronization
|
113 |
+
# processes.
|
114 |
+
else:
|
115 |
+
context = nullcontext
|
116 |
+
|
117 |
+
with context():
|
118 |
+
batch_dict['turn'] = 'discriminator'
|
119 |
+
info_dict = batch_forward(model, batch_dict, scaler, info_dict)
|
120 |
+
info_dict = batch_backward(model, scaler, info_dict)
|
121 |
+
info_dict = update_parameter_and_lr(model, optimizer_d, scheduler_d, scaler, info_dict)
|
122 |
+
optimizer.zero_grad()
|
123 |
+
log_per_step(writer, info_dict)
|
124 |
+
with context():
|
125 |
+
batch_dict['turn'] = 'generator'
|
126 |
+
info_dict = batch_forward(model, batch_dict, scaler, info_dict)
|
127 |
+
info_dict = batch_backward(model, scaler, info_dict)
|
128 |
+
info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
|
129 |
+
optimizer_d.zero_grad()
|
130 |
+
log_per_step(writer, info_dict)
|
131 |
+
# NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
|
132 |
+
if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
|
133 |
+
(batch_idx + 1) % info_dict["accum_grad"] == 0:
|
134 |
+
dist.barrier()
|
135 |
+
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
|
136 |
+
model.train()
|
137 |
+
if (batch_idx + 1) % info_dict["accum_grad"] == 0:
|
138 |
+
self.step += 1
|
139 |
+
dist.barrier()
|
140 |
+
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)
|
141 |
+
|
142 |
+
@torch.inference_mode()
|
143 |
+
def cv(self, model, cv_data_loader, writer, info_dict, on_batch_end=True):
|
144 |
+
''' Cross validation on
|
145 |
+
'''
|
146 |
+
logging.info('Epoch {} Step {} on_batch_end {} CV rank {}'.format(self.epoch, self.step + 1, on_batch_end, self.rank))
|
147 |
+
model.eval()
|
148 |
+
total_num_utts, total_loss_dict = 0, {} # avoid division by 0
|
149 |
+
for batch_idx, batch_dict in enumerate(cv_data_loader):
|
150 |
+
info_dict["tag"] = "CV"
|
151 |
+
info_dict["step"] = self.step
|
152 |
+
info_dict["epoch"] = self.epoch
|
153 |
+
info_dict["batch_idx"] = batch_idx
|
154 |
+
|
155 |
+
num_utts = len(batch_dict["utts"])
|
156 |
+
total_num_utts += num_utts
|
157 |
+
|
158 |
+
if self.gan is True:
|
159 |
+
batch_dict['turn'] = 'generator'
|
160 |
+
info_dict = batch_forward(model, batch_dict, None, info_dict)
|
161 |
+
|
162 |
+
for k, v in info_dict['loss_dict'].items():
|
163 |
+
if k not in total_loss_dict:
|
164 |
+
total_loss_dict[k] = []
|
165 |
+
total_loss_dict[k].append(v.item() * num_utts)
|
166 |
+
log_per_step(None, info_dict)
|
167 |
+
for k, v in total_loss_dict.items():
|
168 |
+
total_loss_dict[k] = sum(v) / total_num_utts
|
169 |
+
info_dict['loss_dict'] = total_loss_dict
|
170 |
+
log_per_save(writer, info_dict)
|
171 |
+
model_name = 'epoch_{}_whole'.format(self.epoch) if on_batch_end else 'epoch_{}_step_{}'.format(self.epoch, self.step + 1)
|
172 |
+
save_model(model, model_name, info_dict)
|
third_party/cosyvoice/utils/file_utils.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
2 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu, Zetao Hu)
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import json
|
17 |
+
import torchaudio
|
18 |
+
import logging
|
19 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
20 |
+
logging.basicConfig(level=logging.DEBUG,
|
21 |
+
format='%(asctime)s %(levelname)s %(message)s')
|
22 |
+
|
23 |
+
|
24 |
+
def read_lists(list_file):
|
25 |
+
lists = []
|
26 |
+
with open(list_file, 'r', encoding='utf8') as fin:
|
27 |
+
for line in fin:
|
28 |
+
lists.append(line.strip())
|
29 |
+
return lists
|
30 |
+
|
31 |
+
|
32 |
+
def read_json_lists(list_file):
|
33 |
+
lists = read_lists(list_file)
|
34 |
+
results = {}
|
35 |
+
for fn in lists:
|
36 |
+
with open(fn, 'r', encoding='utf8') as fin:
|
37 |
+
results.update(json.load(fin))
|
38 |
+
return results
|
39 |
+
|
40 |
+
|
41 |
+
def load_wav(wav, target_sr):
|
42 |
+
speech, sample_rate = torchaudio.load(wav, backend='soundfile')
|
43 |
+
speech = speech.mean(dim=0, keepdim=True)
|
44 |
+
if sample_rate != target_sr:
|
45 |
+
assert sample_rate > target_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr)
|
46 |
+
speech = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sr)(speech)
|
47 |
+
return speech
|
48 |
+
|
49 |
+
|
50 |
+
def convert_onnx_to_trt(trt_model, onnx_model, fp16):
|
51 |
+
import tensorrt as trt
|
52 |
+
_min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2,), (2, 80), (2, 80, 4)]
|
53 |
+
_opt_shape = [(2, 80, 193), (2, 1, 193), (2, 80, 193), (2,), (2, 80), (2, 80, 193)]
|
54 |
+
_max_shape = [(2, 80, 6800), (2, 1, 6800), (2, 80, 6800), (2,), (2, 80), (2, 80, 6800)]
|
55 |
+
input_names = ["x", "mask", "mu", "t", "spks", "cond"]
|
56 |
+
|
57 |
+
logging.info("Converting onnx to trt...")
|
58 |
+
network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
|
59 |
+
logger = trt.Logger(trt.Logger.INFO)
|
60 |
+
builder = trt.Builder(logger)
|
61 |
+
network = builder.create_network(network_flags)
|
62 |
+
parser = trt.OnnxParser(network, logger)
|
63 |
+
config = builder.create_builder_config()
|
64 |
+
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 33) # 8GB
|
65 |
+
if fp16:
|
66 |
+
config.set_flag(trt.BuilderFlag.FP16)
|
67 |
+
profile = builder.create_optimization_profile()
|
68 |
+
# load onnx model
|
69 |
+
with open(onnx_model, "rb") as f:
|
70 |
+
if not parser.parse(f.read()):
|
71 |
+
for error in range(parser.num_errors):
|
72 |
+
print(parser.get_error(error))
|
73 |
+
raise ValueError('failed to parse {}'.format(onnx_model))
|
74 |
+
# set input shapes
|
75 |
+
for i in range(len(input_names)):
|
76 |
+
profile.set_shape(input_names[i], _min_shape[i], _opt_shape[i], _max_shape[i])
|
77 |
+
tensor_dtype = trt.DataType.HALF if fp16 else trt.DataType.FLOAT
|
78 |
+
# set input and output data type
|
79 |
+
for i in range(network.num_inputs):
|
80 |
+
input_tensor = network.get_input(i)
|
81 |
+
input_tensor.dtype = tensor_dtype
|
82 |
+
for i in range(network.num_outputs):
|
83 |
+
output_tensor = network.get_output(i)
|
84 |
+
output_tensor.dtype = tensor_dtype
|
85 |
+
config.add_optimization_profile(profile)
|
86 |
+
engine_bytes = builder.build_serialized_network(network, config)
|
87 |
+
# save trt engine
|
88 |
+
with open(trt_model, "wb") as f:
|
89 |
+
f.write(engine_bytes)
|
third_party/cosyvoice/utils/frontend_utils.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import re
|
16 |
+
import regex
|
17 |
+
chinese_char_pattern = re.compile(r'[\u4e00-\u9fff]+')
|
18 |
+
|
19 |
+
|
20 |
+
# whether contain chinese character
|
21 |
+
def contains_chinese(text):
|
22 |
+
return bool(chinese_char_pattern.search(text))
|
23 |
+
|
24 |
+
|
25 |
+
# replace special symbol
|
26 |
+
def replace_corner_mark(text):
|
27 |
+
text = text.replace('²', '平方')
|
28 |
+
text = text.replace('³', '立方')
|
29 |
+
return text
|
30 |
+
|
31 |
+
|
32 |
+
# remove meaningless symbol
|
33 |
+
def remove_bracket(text):
|
34 |
+
text = text.replace('(', '').replace(')', '')
|
35 |
+
text = text.replace('【', '').replace('】', '')
|
36 |
+
text = text.replace('`', '').replace('`', '')
|
37 |
+
text = text.replace("——", " ")
|
38 |
+
return text
|
39 |
+
|
40 |
+
|
41 |
+
# spell Arabic numerals
|
42 |
+
def spell_out_number(text: str, inflect_parser):
|
43 |
+
new_text = []
|
44 |
+
st = None
|
45 |
+
for i, c in enumerate(text):
|
46 |
+
if not c.isdigit():
|
47 |
+
if st is not None:
|
48 |
+
num_str = inflect_parser.number_to_words(text[st: i])
|
49 |
+
new_text.append(num_str)
|
50 |
+
st = None
|
51 |
+
new_text.append(c)
|
52 |
+
else:
|
53 |
+
if st is None:
|
54 |
+
st = i
|
55 |
+
if st is not None and st < len(text):
|
56 |
+
num_str = inflect_parser.number_to_words(text[st:])
|
57 |
+
new_text.append(num_str)
|
58 |
+
return ''.join(new_text)
|
59 |
+
|
60 |
+
|
61 |
+
# split paragrah logic:
|
62 |
+
# 1. per sentence max len token_max_n, min len token_min_n, merge if last sentence len less than merge_len
|
63 |
+
# 2. cal sentence len according to lang
|
64 |
+
# 3. split sentence according to puncatation
|
65 |
+
def split_paragraph(text: str, tokenize, lang="zh", token_max_n=80, token_min_n=60, merge_len=20, comma_split=False):
|
66 |
+
def calc_utt_length(_text: str):
|
67 |
+
if lang == "zh":
|
68 |
+
return len(_text)
|
69 |
+
else:
|
70 |
+
return len(tokenize(_text))
|
71 |
+
|
72 |
+
def should_merge(_text: str):
|
73 |
+
if lang == "zh":
|
74 |
+
return len(_text) < merge_len
|
75 |
+
else:
|
76 |
+
return len(tokenize(_text)) < merge_len
|
77 |
+
|
78 |
+
if lang == "zh":
|
79 |
+
pounc = ['。', '?', '!', ';', ':', '、', '.', '?', '!', ';']
|
80 |
+
else:
|
81 |
+
pounc = ['.', '?', '!', ';', ':']
|
82 |
+
if comma_split:
|
83 |
+
pounc.extend([',', ','])
|
84 |
+
|
85 |
+
if text[-1] not in pounc:
|
86 |
+
if lang == "zh":
|
87 |
+
text += "。"
|
88 |
+
else:
|
89 |
+
text += "."
|
90 |
+
|
91 |
+
st = 0
|
92 |
+
utts = []
|
93 |
+
for i, c in enumerate(text):
|
94 |
+
if c in pounc:
|
95 |
+
if len(text[st: i]) > 0:
|
96 |
+
utts.append(text[st: i] + c)
|
97 |
+
if i + 1 < len(text) and text[i + 1] in ['"', '”']:
|
98 |
+
tmp = utts.pop(-1)
|
99 |
+
utts.append(tmp + text[i + 1])
|
100 |
+
st = i + 2
|
101 |
+
else:
|
102 |
+
st = i + 1
|
103 |
+
|
104 |
+
final_utts = []
|
105 |
+
cur_utt = ""
|
106 |
+
for utt in utts:
|
107 |
+
if calc_utt_length(cur_utt + utt) > token_max_n and calc_utt_length(cur_utt) > token_min_n:
|
108 |
+
final_utts.append(cur_utt)
|
109 |
+
cur_utt = ""
|
110 |
+
cur_utt = cur_utt + utt
|
111 |
+
if len(cur_utt) > 0:
|
112 |
+
if should_merge(cur_utt) and len(final_utts) != 0:
|
113 |
+
final_utts[-1] = final_utts[-1] + cur_utt
|
114 |
+
else:
|
115 |
+
final_utts.append(cur_utt)
|
116 |
+
|
117 |
+
return final_utts
|
118 |
+
|
119 |
+
|
120 |
+
# remove blank between chinese character
|
121 |
+
def replace_blank(text: str):
|
122 |
+
out_str = []
|
123 |
+
for i, c in enumerate(text):
|
124 |
+
if c == " ":
|
125 |
+
if ((text[i + 1].isascii() and text[i + 1] != " ") and
|
126 |
+
(text[i - 1].isascii() and text[i - 1] != " ")):
|
127 |
+
out_str.append(c)
|
128 |
+
else:
|
129 |
+
out_str.append(c)
|
130 |
+
return "".join(out_str)
|
131 |
+
|
132 |
+
|
133 |
+
def is_only_punctuation(text):
|
134 |
+
# Regular expression: Match strings that consist only of punctuation marks or are empty.
|
135 |
+
punctuation_pattern = r'^[\p{P}\p{S}]*$'
|
136 |
+
return bool(regex.fullmatch(punctuation_pattern, text))
|
third_party/cosyvoice/utils/losses.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
|
4 |
+
|
5 |
+
def tpr_loss(disc_real_outputs, disc_generated_outputs, tau):
|
6 |
+
loss = 0
|
7 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
8 |
+
m_DG = torch.median((dr - dg))
|
9 |
+
L_rel = torch.mean((((dr - dg) - m_DG) ** 2)[dr < dg + m_DG])
|
10 |
+
loss += tau - F.relu(tau - L_rel)
|
11 |
+
return loss
|
12 |
+
|
13 |
+
|
14 |
+
def mel_loss(real_speech, generated_speech, mel_transforms):
|
15 |
+
loss = 0
|
16 |
+
for transform in mel_transforms:
|
17 |
+
mel_r = transform(real_speech)
|
18 |
+
mel_g = transform(generated_speech)
|
19 |
+
loss += F.l1_loss(mel_g, mel_r)
|
20 |
+
return loss
|
third_party/cosyvoice/utils/mask.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019 Shigeki Karita
|
2 |
+
# 2020 Mobvoi Inc (Binbin Zhang)
|
3 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from cosyvoice.utils.file_utils import logging
|
19 |
+
'''
|
20 |
+
def subsequent_mask(
|
21 |
+
size: int,
|
22 |
+
device: torch.device = torch.device("cpu"),
|
23 |
+
) -> torch.Tensor:
|
24 |
+
"""Create mask for subsequent steps (size, size).
|
25 |
+
|
26 |
+
This mask is used only in decoder which works in an auto-regressive mode.
|
27 |
+
This means the current step could only do attention with its left steps.
|
28 |
+
|
29 |
+
In encoder, fully attention is used when streaming is not necessary and
|
30 |
+
the sequence is not long. In this case, no attention mask is needed.
|
31 |
+
|
32 |
+
When streaming is need, chunk-based attention is used in encoder. See
|
33 |
+
subsequent_chunk_mask for the chunk-based attention mask.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
size (int): size of mask
|
37 |
+
str device (str): "cpu" or "cuda" or torch.Tensor.device
|
38 |
+
dtype (torch.device): result dtype
|
39 |
+
|
40 |
+
Returns:
|
41 |
+
torch.Tensor: mask
|
42 |
+
|
43 |
+
Examples:
|
44 |
+
>>> subsequent_mask(3)
|
45 |
+
[[1, 0, 0],
|
46 |
+
[1, 1, 0],
|
47 |
+
[1, 1, 1]]
|
48 |
+
"""
|
49 |
+
ret = torch.ones(size, size, device=device, dtype=torch.bool)
|
50 |
+
return torch.tril(ret)
|
51 |
+
'''
|
52 |
+
|
53 |
+
|
54 |
+
def subsequent_mask(
|
55 |
+
size: int,
|
56 |
+
device: torch.device = torch.device("cpu"),
|
57 |
+
) -> torch.Tensor:
|
58 |
+
"""Create mask for subsequent steps (size, size).
|
59 |
+
|
60 |
+
This mask is used only in decoder which works in an auto-regressive mode.
|
61 |
+
This means the current step could only do attention with its left steps.
|
62 |
+
|
63 |
+
In encoder, fully attention is used when streaming is not necessary and
|
64 |
+
the sequence is not long. In this case, no attention mask is needed.
|
65 |
+
|
66 |
+
When streaming is need, chunk-based attention is used in encoder. See
|
67 |
+
subsequent_chunk_mask for the chunk-based attention mask.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
size (int): size of mask
|
71 |
+
str device (str): "cpu" or "cuda" or torch.Tensor.device
|
72 |
+
dtype (torch.device): result dtype
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
torch.Tensor: mask
|
76 |
+
|
77 |
+
Examples:
|
78 |
+
>>> subsequent_mask(3)
|
79 |
+
[[1, 0, 0],
|
80 |
+
[1, 1, 0],
|
81 |
+
[1, 1, 1]]
|
82 |
+
"""
|
83 |
+
arange = torch.arange(size, device=device)
|
84 |
+
mask = arange.expand(size, size)
|
85 |
+
arange = arange.unsqueeze(-1)
|
86 |
+
mask = mask <= arange
|
87 |
+
return mask
|
88 |
+
|
89 |
+
|
90 |
+
def subsequent_chunk_mask_deprecated(
|
91 |
+
size: int,
|
92 |
+
chunk_size: int,
|
93 |
+
num_left_chunks: int = -1,
|
94 |
+
device: torch.device = torch.device("cpu"),
|
95 |
+
) -> torch.Tensor:
|
96 |
+
"""Create mask for subsequent steps (size, size) with chunk size,
|
97 |
+
this is for streaming encoder
|
98 |
+
|
99 |
+
Args:
|
100 |
+
size (int): size of mask
|
101 |
+
chunk_size (int): size of chunk
|
102 |
+
num_left_chunks (int): number of left chunks
|
103 |
+
<0: use full chunk
|
104 |
+
>=0: use num_left_chunks
|
105 |
+
device (torch.device): "cpu" or "cuda" or torch.Tensor.device
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
torch.Tensor: mask
|
109 |
+
|
110 |
+
Examples:
|
111 |
+
>>> subsequent_chunk_mask(4, 2)
|
112 |
+
[[1, 1, 0, 0],
|
113 |
+
[1, 1, 0, 0],
|
114 |
+
[1, 1, 1, 1],
|
115 |
+
[1, 1, 1, 1]]
|
116 |
+
"""
|
117 |
+
ret = torch.zeros(size, size, device=device, dtype=torch.bool)
|
118 |
+
for i in range(size):
|
119 |
+
if num_left_chunks < 0:
|
120 |
+
start = 0
|
121 |
+
else:
|
122 |
+
start = max((i // chunk_size - num_left_chunks) * chunk_size, 0)
|
123 |
+
ending = min((i // chunk_size + 1) * chunk_size, size)
|
124 |
+
ret[i, start:ending] = True
|
125 |
+
return ret
|
126 |
+
|
127 |
+
|
128 |
+
def subsequent_chunk_mask(
|
129 |
+
size: int,
|
130 |
+
chunk_size: int,
|
131 |
+
num_left_chunks: int = -1,
|
132 |
+
device: torch.device = torch.device("cpu"),
|
133 |
+
) -> torch.Tensor:
|
134 |
+
"""Create mask for subsequent steps (size, size) with chunk size,
|
135 |
+
this is for streaming encoder
|
136 |
+
|
137 |
+
Args:
|
138 |
+
size (int): size of mask
|
139 |
+
chunk_size (int): size of chunk
|
140 |
+
num_left_chunks (int): number of left chunks
|
141 |
+
<0: use full chunk
|
142 |
+
>=0: use num_left_chunks
|
143 |
+
device (torch.device): "cpu" or "cuda" or torch.Tensor.device
|
144 |
+
|
145 |
+
Returns:
|
146 |
+
torch.Tensor: mask
|
147 |
+
|
148 |
+
Examples:
|
149 |
+
>>> subsequent_chunk_mask(4, 2)
|
150 |
+
[[1, 1, 0, 0],
|
151 |
+
[1, 1, 0, 0],
|
152 |
+
[1, 1, 1, 1],
|
153 |
+
[1, 1, 1, 1]]
|
154 |
+
"""
|
155 |
+
# NOTE this modified implementation meets onnx export requirements, but it doesn't support num_left_chunks
|
156 |
+
# actually this is not needed after we have inference cache implemented, will remove it later
|
157 |
+
pos_idx = torch.arange(size, device=device)
|
158 |
+
block_value = (torch.div(pos_idx, chunk_size, rounding_mode='trunc') + 1) * chunk_size
|
159 |
+
ret = pos_idx.unsqueeze(0) < block_value.unsqueeze(1)
|
160 |
+
return ret
|
161 |
+
|
162 |
+
|
163 |
+
def add_optional_chunk_mask(xs: torch.Tensor,
|
164 |
+
masks: torch.Tensor,
|
165 |
+
use_dynamic_chunk: bool,
|
166 |
+
use_dynamic_left_chunk: bool,
|
167 |
+
decoding_chunk_size: int,
|
168 |
+
static_chunk_size: int,
|
169 |
+
num_decoding_left_chunks: int,
|
170 |
+
enable_full_context: bool = True):
|
171 |
+
""" Apply optional mask for encoder.
|
172 |
+
|
173 |
+
Args:
|
174 |
+
xs (torch.Tensor): padded input, (B, L, D), L for max length
|
175 |
+
mask (torch.Tensor): mask for xs, (B, 1, L)
|
176 |
+
use_dynamic_chunk (bool): whether to use dynamic chunk or not
|
177 |
+
use_dynamic_left_chunk (bool): whether to use dynamic left chunk for
|
178 |
+
training.
|
179 |
+
decoding_chunk_size (int): decoding chunk size for dynamic chunk, it's
|
180 |
+
0: default for training, use random dynamic chunk.
|
181 |
+
<0: for decoding, use full chunk.
|
182 |
+
>0: for decoding, use fixed chunk size as set.
|
183 |
+
static_chunk_size (int): chunk size for static chunk training/decoding
|
184 |
+
if it's greater than 0, if use_dynamic_chunk is true,
|
185 |
+
this parameter will be ignored
|
186 |
+
num_decoding_left_chunks: number of left chunks, this is for decoding,
|
187 |
+
the chunk size is decoding_chunk_size.
|
188 |
+
>=0: use num_decoding_left_chunks
|
189 |
+
<0: use all left chunks
|
190 |
+
enable_full_context (bool):
|
191 |
+
True: chunk size is either [1, 25] or full context(max_len)
|
192 |
+
False: chunk size ~ U[1, 25]
|
193 |
+
|
194 |
+
Returns:
|
195 |
+
torch.Tensor: chunk mask of the input xs.
|
196 |
+
"""
|
197 |
+
# Whether to use chunk mask or not
|
198 |
+
if use_dynamic_chunk:
|
199 |
+
max_len = xs.size(1)
|
200 |
+
if decoding_chunk_size < 0:
|
201 |
+
chunk_size = max_len
|
202 |
+
num_left_chunks = -1
|
203 |
+
elif decoding_chunk_size > 0:
|
204 |
+
chunk_size = decoding_chunk_size
|
205 |
+
num_left_chunks = num_decoding_left_chunks
|
206 |
+
else:
|
207 |
+
# chunk size is either [1, 25] or full context(max_len).
|
208 |
+
# Since we use 4 times subsampling and allow up to 1s(100 frames)
|
209 |
+
# delay, the maximum frame is 100 / 4 = 25.
|
210 |
+
chunk_size = torch.randint(1, max_len, (1, )).item()
|
211 |
+
num_left_chunks = -1
|
212 |
+
if chunk_size > max_len // 2 and enable_full_context:
|
213 |
+
chunk_size = max_len
|
214 |
+
else:
|
215 |
+
chunk_size = chunk_size % 25 + 1
|
216 |
+
if use_dynamic_left_chunk:
|
217 |
+
max_left_chunks = (max_len - 1) // chunk_size
|
218 |
+
num_left_chunks = torch.randint(0, max_left_chunks,
|
219 |
+
(1, )).item()
|
220 |
+
chunk_masks = subsequent_chunk_mask(xs.size(1), chunk_size,
|
221 |
+
num_left_chunks,
|
222 |
+
xs.device) # (L, L)
|
223 |
+
chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L)
|
224 |
+
chunk_masks = masks & chunk_masks # (B, L, L)
|
225 |
+
elif static_chunk_size > 0:
|
226 |
+
num_left_chunks = num_decoding_left_chunks
|
227 |
+
chunk_masks = subsequent_chunk_mask(xs.size(1), static_chunk_size,
|
228 |
+
num_left_chunks,
|
229 |
+
xs.device) # (L, L)
|
230 |
+
chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L)
|
231 |
+
chunk_masks = masks & chunk_masks # (B, L, L)
|
232 |
+
else:
|
233 |
+
chunk_masks = masks
|
234 |
+
assert chunk_masks.dtype == torch.bool
|
235 |
+
if (chunk_masks.sum(dim=-1) == 0).sum().item() != 0:
|
236 |
+
logging.warning('get chunk_masks all false at some timestep, force set to true, make sure they are masked in futuer computation!')
|
237 |
+
chunk_masks[chunk_masks.sum(dim=-1)==0] = True
|
238 |
+
return chunk_masks
|
239 |
+
|
240 |
+
|
241 |
+
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
|
242 |
+
"""Make mask tensor containing indices of padded part.
|
243 |
+
|
244 |
+
See description of make_non_pad_mask.
|
245 |
+
|
246 |
+
Args:
|
247 |
+
lengths (torch.Tensor): Batch of lengths (B,).
|
248 |
+
Returns:
|
249 |
+
torch.Tensor: Mask tensor containing indices of padded part.
|
250 |
+
|
251 |
+
Examples:
|
252 |
+
>>> lengths = [5, 3, 2]
|
253 |
+
>>> make_pad_mask(lengths)
|
254 |
+
masks = [[0, 0, 0, 0 ,0],
|
255 |
+
[0, 0, 0, 1, 1],
|
256 |
+
[0, 0, 1, 1, 1]]
|
257 |
+
"""
|
258 |
+
batch_size = lengths.size(0)
|
259 |
+
max_len = max_len if max_len > 0 else lengths.max().item()
|
260 |
+
seq_range = torch.arange(0,
|
261 |
+
max_len,
|
262 |
+
dtype=torch.int64,
|
263 |
+
device=lengths.device)
|
264 |
+
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
|
265 |
+
seq_length_expand = lengths.unsqueeze(-1)
|
266 |
+
mask = seq_range_expand >= seq_length_expand
|
267 |
+
return mask
|
third_party/cosyvoice/utils/scheduler.py
ADDED
@@ -0,0 +1,738 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
|
2 |
+
# 2022 Ximalaya Inc (Yuguang Yang)
|
3 |
+
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
# Modified from ESPnet(https://github.com/espnet/espnet)
|
17 |
+
# NeMo(https://github.com/NVIDIA/NeMo)
|
18 |
+
|
19 |
+
from typing import Union
|
20 |
+
|
21 |
+
import math
|
22 |
+
import warnings
|
23 |
+
import torch
|
24 |
+
from torch.optim.lr_scheduler import _LRScheduler
|
25 |
+
|
26 |
+
|
27 |
+
class WarmupLR(_LRScheduler):
|
28 |
+
"""The WarmupLR scheduler
|
29 |
+
|
30 |
+
This scheduler is almost same as NoamLR Scheduler except for following
|
31 |
+
difference:
|
32 |
+
|
33 |
+
NoamLR:
|
34 |
+
lr = optimizer.lr * model_size ** -0.5
|
35 |
+
* min(step ** -0.5, step * warmup_step ** -1.5)
|
36 |
+
WarmupLR:
|
37 |
+
lr = optimizer.lr * warmup_step ** 0.5
|
38 |
+
* min(step ** -0.5, step * warmup_step ** -1.5)
|
39 |
+
|
40 |
+
Note that the maximum lr equals to optimizer.lr in this scheduler.
|
41 |
+
|
42 |
+
"""
|
43 |
+
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
optimizer: torch.optim.Optimizer,
|
47 |
+
warmup_steps: Union[int, float] = 25000,
|
48 |
+
last_epoch: int = -1,
|
49 |
+
):
|
50 |
+
self.warmup_steps = warmup_steps
|
51 |
+
|
52 |
+
# __init__() must be invoked before setting field
|
53 |
+
# because step() is also invoked in __init__()
|
54 |
+
super().__init__(optimizer, last_epoch)
|
55 |
+
|
56 |
+
def __repr__(self):
|
57 |
+
return f"{self.__class__.__name__}(warmup_steps={self.warmup_steps})"
|
58 |
+
|
59 |
+
def get_lr(self):
|
60 |
+
step_num = self.last_epoch + 1
|
61 |
+
if self.warmup_steps == 0:
|
62 |
+
return [lr * step_num**-0.5 for lr in self.base_lrs]
|
63 |
+
else:
|
64 |
+
return [
|
65 |
+
lr * self.warmup_steps**0.5 *
|
66 |
+
min(step_num**-0.5, step_num * self.warmup_steps**-1.5)
|
67 |
+
for lr in self.base_lrs
|
68 |
+
]
|
69 |
+
|
70 |
+
def set_step(self, step: int):
|
71 |
+
self.last_epoch = step
|
72 |
+
|
73 |
+
|
74 |
+
class WarmupPolicy(_LRScheduler):
|
75 |
+
"""Adds warmup kwargs and warmup logic to lr policy.
|
76 |
+
All arguments should be passed as kwargs for clarity,
|
77 |
+
Args:
|
78 |
+
warmup_steps: Number of training steps in warmup stage
|
79 |
+
warmup_ratio: Ratio of warmup steps to total steps
|
80 |
+
max_steps: Total number of steps while training or `None` for
|
81 |
+
infinite training
|
82 |
+
"""
|
83 |
+
|
84 |
+
def __init__(self,
|
85 |
+
optimizer,
|
86 |
+
*,
|
87 |
+
warmup_steps=None,
|
88 |
+
warmup_ratio=None,
|
89 |
+
max_steps=None,
|
90 |
+
min_lr=0.0,
|
91 |
+
last_epoch=-1):
|
92 |
+
assert not (warmup_steps is not None and warmup_ratio is not None),\
|
93 |
+
"Either use particular number of step or ratio"
|
94 |
+
assert warmup_ratio is None or max_steps is not None, \
|
95 |
+
"If there is a ratio, there should be a total steps"
|
96 |
+
|
97 |
+
# It is necessary to assign all attributes *before* __init__,
|
98 |
+
# as class is wrapped by an inner class.
|
99 |
+
self.max_steps = max_steps
|
100 |
+
if warmup_steps is not None:
|
101 |
+
self.warmup_steps = warmup_steps
|
102 |
+
elif warmup_ratio is not None:
|
103 |
+
self.warmup_steps = int(warmup_ratio * max_steps)
|
104 |
+
else:
|
105 |
+
self.warmup_steps = 0
|
106 |
+
|
107 |
+
self.min_lr = min_lr
|
108 |
+
super().__init__(optimizer, last_epoch)
|
109 |
+
|
110 |
+
def get_lr(self):
|
111 |
+
if not self._get_lr_called_within_step:
|
112 |
+
warnings.warn(
|
113 |
+
"To get the last learning rate computed "
|
114 |
+
"by the scheduler, please use `get_last_lr()`.",
|
115 |
+
UserWarning,
|
116 |
+
stacklevel=2)
|
117 |
+
|
118 |
+
step = self.last_epoch
|
119 |
+
|
120 |
+
if step <= self.warmup_steps and self.warmup_steps > 0:
|
121 |
+
return self._get_warmup_lr(step)
|
122 |
+
|
123 |
+
if step > self.max_steps:
|
124 |
+
return [self.min_lr for _ in self.base_lrs]
|
125 |
+
|
126 |
+
return self._get_lr(step)
|
127 |
+
|
128 |
+
def _get_warmup_lr(self, step):
|
129 |
+
lr_val = (step + 1) / (self.warmup_steps + 1)
|
130 |
+
return [initial_lr * lr_val for initial_lr in self.base_lrs]
|
131 |
+
|
132 |
+
def _get_lr(self, step):
|
133 |
+
"""Simple const lr policy"""
|
134 |
+
return self.base_lrs
|
135 |
+
|
136 |
+
|
137 |
+
class SquareRootConstantPolicy(_LRScheduler):
|
138 |
+
"""Adds warmup kwargs and warmup logic to lr policy.
|
139 |
+
All arguments should be passed as kwargs for clarity,
|
140 |
+
Args:
|
141 |
+
warmup_steps: Number of training steps in warmup stage
|
142 |
+
warmup_ratio: Ratio of warmup steps to total steps
|
143 |
+
max_steps: Total number of steps while training or `None` for
|
144 |
+
infinite training
|
145 |
+
"""
|
146 |
+
|
147 |
+
def __init__(self,
|
148 |
+
optimizer,
|
149 |
+
*,
|
150 |
+
constant_steps=None,
|
151 |
+
constant_ratio=None,
|
152 |
+
max_steps=None,
|
153 |
+
min_lr=0.0,
|
154 |
+
last_epoch=-1):
|
155 |
+
assert not (constant_steps is not None
|
156 |
+
and constant_ratio is not None), \
|
157 |
+
"Either use particular number of step or ratio"
|
158 |
+
assert constant_ratio is None or max_steps is not None, \
|
159 |
+
"If there is a ratio, there should be a total steps"
|
160 |
+
|
161 |
+
# It is necessary to assign all attributes *before* __init__,
|
162 |
+
# as class is wrapped by an inner class.
|
163 |
+
self.max_steps = max_steps
|
164 |
+
if constant_steps is not None:
|
165 |
+
self.constant_steps = constant_steps
|
166 |
+
elif constant_ratio is not None:
|
167 |
+
self.constant_steps = int(constant_ratio * max_steps)
|
168 |
+
else:
|
169 |
+
self.constant_steps = 0
|
170 |
+
|
171 |
+
self.constant_lr = 1 / (constant_steps**0.5)
|
172 |
+
self.min_lr = min_lr
|
173 |
+
super().__init__(optimizer, last_epoch)
|
174 |
+
|
175 |
+
def get_lr(self):
|
176 |
+
if not self._get_lr_called_within_step:
|
177 |
+
warnings.warn(
|
178 |
+
"To get the last learning rate computed "
|
179 |
+
"by the scheduler, please use `get_last_lr()`.",
|
180 |
+
UserWarning,
|
181 |
+
stacklevel=2)
|
182 |
+
|
183 |
+
step = self.last_epoch
|
184 |
+
|
185 |
+
if step <= self.constant_steps:
|
186 |
+
return [self.constant_lr for _ in self.base_lrs]
|
187 |
+
|
188 |
+
if step > self.max_steps:
|
189 |
+
return [self.min_lr for _ in self.base_lrs]
|
190 |
+
|
191 |
+
return self._get_lr(step)
|
192 |
+
|
193 |
+
def _get_lr(self, step):
|
194 |
+
"""Simple const lr policy"""
|
195 |
+
return self.base_lrs
|
196 |
+
|
197 |
+
|
198 |
+
class WarmupHoldPolicy(WarmupPolicy):
|
199 |
+
"""Variant of WarmupPolicy which maintains high
|
200 |
+
learning rate for a defined number of steps.
|
201 |
+
All arguments should be passed as kwargs for clarity,
|
202 |
+
Args:
|
203 |
+
warmup_steps: Number of training steps in warmup stage
|
204 |
+
warmup_ratio: Ratio of warmup steps to total steps
|
205 |
+
hold_steps: Number of training steps to
|
206 |
+
hold the learning rate after warm up
|
207 |
+
hold_ratio: Ratio of hold steps to total steps
|
208 |
+
max_steps: Total number of steps while training or `None` for
|
209 |
+
infinite training
|
210 |
+
"""
|
211 |
+
|
212 |
+
def __init__(
|
213 |
+
self,
|
214 |
+
optimizer,
|
215 |
+
*,
|
216 |
+
warmup_steps=None,
|
217 |
+
warmup_ratio=None,
|
218 |
+
hold_steps=None,
|
219 |
+
hold_ratio=None,
|
220 |
+
max_steps=None,
|
221 |
+
min_lr=0.0,
|
222 |
+
last_epoch=-1,
|
223 |
+
):
|
224 |
+
assert not (hold_steps is not None and hold_ratio is not None), \
|
225 |
+
"Either use particular number of step or ratio"
|
226 |
+
assert hold_ratio is None or max_steps is not None, \
|
227 |
+
"If there is a ratio, there should be a total steps"
|
228 |
+
|
229 |
+
self.min_lr = min_lr
|
230 |
+
self._last_warmup_lr = 0.0
|
231 |
+
|
232 |
+
# Necessary to duplicate as class attributes are hidden in inner class
|
233 |
+
self.max_steps = max_steps
|
234 |
+
if warmup_steps is not None:
|
235 |
+
self.warmup_steps = warmup_steps
|
236 |
+
elif warmup_ratio is not None:
|
237 |
+
self.warmup_steps = int(warmup_ratio * max_steps)
|
238 |
+
else:
|
239 |
+
self.warmup_steps = 0
|
240 |
+
|
241 |
+
if hold_steps is not None:
|
242 |
+
self.hold_steps = hold_steps + self.warmup_steps
|
243 |
+
elif hold_ratio is not None:
|
244 |
+
self.hold_steps = int(hold_ratio * max_steps) + self.warmup_steps
|
245 |
+
else:
|
246 |
+
self.hold_steps = 0
|
247 |
+
|
248 |
+
super().__init__(
|
249 |
+
optimizer,
|
250 |
+
warmup_steps=warmup_steps,
|
251 |
+
warmup_ratio=warmup_ratio,
|
252 |
+
max_steps=max_steps,
|
253 |
+
last_epoch=last_epoch,
|
254 |
+
min_lr=min_lr,
|
255 |
+
)
|
256 |
+
|
257 |
+
def get_lr(self):
|
258 |
+
if not self._get_lr_called_within_step:
|
259 |
+
warnings.warn(
|
260 |
+
"To get the last learning rate computed by the scheduler,"
|
261 |
+
" "
|
262 |
+
"please use `get_last_lr()`.",
|
263 |
+
UserWarning,
|
264 |
+
stacklevel=2)
|
265 |
+
|
266 |
+
step = self.last_epoch
|
267 |
+
|
268 |
+
# Warmup phase
|
269 |
+
if step <= self.warmup_steps and self.warmup_steps > 0:
|
270 |
+
return self._get_warmup_lr(step)
|
271 |
+
|
272 |
+
# Hold phase
|
273 |
+
if (step >= self.warmup_steps) and (step < self.hold_steps):
|
274 |
+
return self.base_lrs
|
275 |
+
|
276 |
+
if step > self.max_steps:
|
277 |
+
return [self.min_lr for _ in self.base_lrs]
|
278 |
+
|
279 |
+
return self._get_lr(step)
|
280 |
+
|
281 |
+
|
282 |
+
class WarmupAnnealHoldPolicy(_LRScheduler):
|
283 |
+
"""Adds warmup kwargs and warmup logic to lr policy.
|
284 |
+
All arguments should be passed as kwargs for clarity,
|
285 |
+
Args:
|
286 |
+
warmup_steps: Number of training steps in warmup stage
|
287 |
+
warmup_ratio: Ratio of warmup steps to total steps
|
288 |
+
max_steps: Total number of steps while training or `None` for
|
289 |
+
infinite training
|
290 |
+
min_lr: Minimum lr to hold the learning rate after decay at.
|
291 |
+
constant_steps: Number of steps to keep lr constant at.
|
292 |
+
constant_ratio: Ratio of steps to keep lr constant.
|
293 |
+
"""
|
294 |
+
|
295 |
+
def __init__(
|
296 |
+
self,
|
297 |
+
optimizer,
|
298 |
+
*,
|
299 |
+
warmup_steps=None,
|
300 |
+
warmup_ratio=None,
|
301 |
+
constant_steps=None,
|
302 |
+
constant_ratio=None,
|
303 |
+
max_steps=None,
|
304 |
+
min_lr=0.0,
|
305 |
+
last_epoch=-1,
|
306 |
+
):
|
307 |
+
assert not (warmup_steps is not None
|
308 |
+
and warmup_ratio is not None), \
|
309 |
+
"Either use particular number of step or ratio"
|
310 |
+
assert not (constant_steps is not None
|
311 |
+
and constant_ratio is not None), \
|
312 |
+
"Either use constant_steps or constant_ratio"
|
313 |
+
assert warmup_ratio is None or max_steps is not None, \
|
314 |
+
"If there is a ratio, there should be a total steps"
|
315 |
+
|
316 |
+
# It is necessary to assign all attributes *before* __init__,
|
317 |
+
# as class is wrapped by an inner class.
|
318 |
+
self.max_steps = max_steps
|
319 |
+
|
320 |
+
if warmup_steps is not None:
|
321 |
+
self.warmup_steps = warmup_steps
|
322 |
+
elif warmup_ratio is not None:
|
323 |
+
self.warmup_steps = int(warmup_ratio * max_steps)
|
324 |
+
else:
|
325 |
+
self.warmup_steps = 0
|
326 |
+
|
327 |
+
if constant_steps is not None:
|
328 |
+
self.constant_steps = constant_steps
|
329 |
+
elif constant_ratio is not None:
|
330 |
+
self.constant_steps = int(constant_ratio * max_steps)
|
331 |
+
else:
|
332 |
+
self.constant_steps = 0
|
333 |
+
|
334 |
+
self.decay_steps = max_steps - (self.constant_steps +
|
335 |
+
self.warmup_steps)
|
336 |
+
|
337 |
+
self.min_lr = min_lr
|
338 |
+
super().__init__(optimizer, last_epoch)
|
339 |
+
|
340 |
+
def get_lr(self):
|
341 |
+
if not self._get_lr_called_within_step:
|
342 |
+
warnings.warn(
|
343 |
+
"To get the last learning rate computed "
|
344 |
+
"by the scheduler, please use `get_last_lr()`.",
|
345 |
+
UserWarning,
|
346 |
+
stacklevel=2)
|
347 |
+
|
348 |
+
step = self.last_epoch
|
349 |
+
|
350 |
+
# Warmup steps
|
351 |
+
if self.warmup_steps > 0 and step <= self.warmup_steps:
|
352 |
+
return self._get_warmup_lr(step)
|
353 |
+
|
354 |
+
# Constant steps after warmup and decay
|
355 |
+
if self.constant_steps > 0 and (
|
356 |
+
self.warmup_steps + self.decay_steps) < step <= self.max_steps:
|
357 |
+
return self._get_constant_lr(step)
|
358 |
+
|
359 |
+
# Min lr after max steps of updates
|
360 |
+
if step > self.max_steps:
|
361 |
+
return [self.min_lr for _ in self.base_lrs]
|
362 |
+
|
363 |
+
return self._get_lr(step)
|
364 |
+
|
365 |
+
def _get_warmup_lr(self, step):
|
366 |
+
lr_val = (step + 1) / (self.warmup_steps + 1)
|
367 |
+
return [initial_lr * lr_val for initial_lr in self.base_lrs]
|
368 |
+
|
369 |
+
def _get_constant_lr(self, step):
|
370 |
+
return [self.min_lr for _ in self.base_lrs]
|
371 |
+
|
372 |
+
def _get_lr(self, step):
|
373 |
+
"""Simple const lr policy"""
|
374 |
+
return self.base_lrs
|
375 |
+
|
376 |
+
|
377 |
+
def _squareroot_annealing(initial_lr, step, max_steps, min_lr):
|
378 |
+
mult = ((max_steps - step) / max_steps)**0.5
|
379 |
+
out_lr = initial_lr * mult
|
380 |
+
out_lr = max(out_lr, min_lr)
|
381 |
+
return out_lr
|
382 |
+
|
383 |
+
|
384 |
+
def _square_annealing(initial_lr, step, max_steps, min_lr):
|
385 |
+
mult = ((max_steps - step) / max_steps)**2
|
386 |
+
out_lr = initial_lr * mult
|
387 |
+
out_lr = max(out_lr, min_lr)
|
388 |
+
return out_lr
|
389 |
+
|
390 |
+
|
391 |
+
def _cosine_annealing(initial_lr, step, max_steps, min_lr):
|
392 |
+
mult = 0.5 * (1 + math.cos(math.pi * step / max_steps))
|
393 |
+
out_lr = (initial_lr - min_lr) * mult + min_lr
|
394 |
+
return out_lr
|
395 |
+
|
396 |
+
|
397 |
+
def _linear_warmup_with_cosine_annealing(max_lr, warmup_steps, step,
|
398 |
+
decay_steps, min_lr):
|
399 |
+
assert max_lr > min_lr
|
400 |
+
# Use linear warmup for the initial part.
|
401 |
+
if warmup_steps > 0 and step <= warmup_steps:
|
402 |
+
return max_lr * float(step) / float(warmup_steps)
|
403 |
+
|
404 |
+
# For any steps larger than `decay_steps`, use `min_lr`.
|
405 |
+
if step > warmup_steps + decay_steps:
|
406 |
+
return min_lr
|
407 |
+
|
408 |
+
# If we are done with the warmup period, use the decay style.
|
409 |
+
num_steps_ = step - warmup_steps
|
410 |
+
decay_steps_ = decay_steps
|
411 |
+
decay_ratio = float(num_steps_) / float(decay_steps_)
|
412 |
+
assert decay_ratio >= 0.0
|
413 |
+
assert decay_ratio <= 1.0
|
414 |
+
delta_lr = max_lr - min_lr
|
415 |
+
|
416 |
+
coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0)
|
417 |
+
|
418 |
+
return min_lr + coeff * delta_lr
|
419 |
+
|
420 |
+
|
421 |
+
def _poly_decay(initial_lr, step, decay_steps, power, min_lr, cycle):
|
422 |
+
if cycle:
|
423 |
+
multiplier = 1.0 if step == 0 else math.ceil(step / decay_steps)
|
424 |
+
decay_steps *= multiplier
|
425 |
+
else:
|
426 |
+
step = min(step, decay_steps)
|
427 |
+
p = step / decay_steps
|
428 |
+
lr = (initial_lr - min_lr) * math.pow(1.0 - p, power)
|
429 |
+
lr += min_lr
|
430 |
+
return lr
|
431 |
+
|
432 |
+
|
433 |
+
def _noam_hold_annealing(initial_lr, step, warmup_steps, hold_steps,
|
434 |
+
decay_rate, min_lr):
|
435 |
+
# hold_steps = total number of steps
|
436 |
+
# to hold the LR, not the warmup + hold steps.
|
437 |
+
T_warmup_decay = max(1, warmup_steps**decay_rate)
|
438 |
+
T_hold_decay = max(1, (step - hold_steps)**decay_rate)
|
439 |
+
lr = (initial_lr * T_warmup_decay) / T_hold_decay
|
440 |
+
lr = max(lr, min_lr)
|
441 |
+
return lr
|
442 |
+
|
443 |
+
|
444 |
+
class SquareAnnealing(WarmupPolicy):
|
445 |
+
|
446 |
+
def __init__(self,
|
447 |
+
optimizer,
|
448 |
+
*,
|
449 |
+
max_steps,
|
450 |
+
min_lr=1e-5,
|
451 |
+
last_epoch=-1,
|
452 |
+
**kwargs):
|
453 |
+
super().__init__(optimizer=optimizer,
|
454 |
+
max_steps=max_steps,
|
455 |
+
last_epoch=last_epoch,
|
456 |
+
min_lr=min_lr,
|
457 |
+
**kwargs)
|
458 |
+
|
459 |
+
def _get_lr(self, step):
|
460 |
+
new_lrs = [
|
461 |
+
_square_annealing(
|
462 |
+
initial_lr=initial_lr,
|
463 |
+
step=step - self.warmup_steps,
|
464 |
+
max_steps=self.max_steps - self.warmup_steps,
|
465 |
+
min_lr=self.min_lr,
|
466 |
+
) for initial_lr in self.base_lrs
|
467 |
+
]
|
468 |
+
return new_lrs
|
469 |
+
|
470 |
+
|
471 |
+
class SquareRootAnnealing(WarmupPolicy):
|
472 |
+
|
473 |
+
def __init__(self,
|
474 |
+
optimizer,
|
475 |
+
*,
|
476 |
+
max_steps,
|
477 |
+
min_lr=0,
|
478 |
+
last_epoch=-1,
|
479 |
+
**kwargs):
|
480 |
+
super().__init__(optimizer=optimizer,
|
481 |
+
max_steps=max_steps,
|
482 |
+
last_epoch=last_epoch,
|
483 |
+
min_lr=min_lr,
|
484 |
+
**kwargs)
|
485 |
+
|
486 |
+
def _get_lr(self, step):
|
487 |
+
new_lrs = [
|
488 |
+
_squareroot_annealing(initial_lr=initial_lr,
|
489 |
+
step=step,
|
490 |
+
max_steps=self.max_steps,
|
491 |
+
min_lr=self.min_lr)
|
492 |
+
for initial_lr in self.base_lrs
|
493 |
+
]
|
494 |
+
return new_lrs
|
495 |
+
|
496 |
+
|
497 |
+
class CosineAnnealing(WarmupAnnealHoldPolicy):
|
498 |
+
|
499 |
+
def __init__(self,
|
500 |
+
optimizer,
|
501 |
+
*,
|
502 |
+
max_steps,
|
503 |
+
min_lr=0,
|
504 |
+
last_epoch=-1,
|
505 |
+
**kwargs):
|
506 |
+
super().__init__(optimizer=optimizer,
|
507 |
+
max_steps=max_steps,
|
508 |
+
last_epoch=last_epoch,
|
509 |
+
min_lr=min_lr,
|
510 |
+
**kwargs)
|
511 |
+
|
512 |
+
def _get_lr(self, step):
|
513 |
+
for initial_lr in self.base_lrs:
|
514 |
+
if initial_lr < self.min_lr:
|
515 |
+
raise ValueError(
|
516 |
+
f"{self} received an initial learning rate "
|
517 |
+
f"that was lower than the minimum learning rate.")
|
518 |
+
|
519 |
+
if self.constant_steps is None or self.constant_steps == 0:
|
520 |
+
new_lrs = [
|
521 |
+
_cosine_annealing(
|
522 |
+
initial_lr=initial_lr,
|
523 |
+
step=step - self.warmup_steps,
|
524 |
+
max_steps=self.max_steps - self.warmup_steps,
|
525 |
+
min_lr=self.min_lr,
|
526 |
+
) for initial_lr in self.base_lrs
|
527 |
+
]
|
528 |
+
else:
|
529 |
+
new_lrs = self._get_linear_warmup_with_cosine_annealing_lr(step)
|
530 |
+
return new_lrs
|
531 |
+
|
532 |
+
def _get_warmup_lr(self, step):
|
533 |
+
if self.constant_steps is None or self.constant_steps == 0:
|
534 |
+
return super()._get_warmup_lr(step)
|
535 |
+
else:
|
536 |
+
# Use linear warmup for the initial part.
|
537 |
+
return self._get_linear_warmup_with_cosine_annealing_lr(step)
|
538 |
+
|
539 |
+
def _get_constant_lr(self, step):
|
540 |
+
# Only called when `constant_steps` > 0.
|
541 |
+
return self._get_linear_warmup_with_cosine_annealing_lr(step)
|
542 |
+
|
543 |
+
def _get_linear_warmup_with_cosine_annealing_lr(self, step):
|
544 |
+
# Cosine Schedule for Megatron LM,
|
545 |
+
# slightly different warmup schedule + constant LR at the end.
|
546 |
+
new_lrs = [
|
547 |
+
_linear_warmup_with_cosine_annealing(
|
548 |
+
max_lr=self.base_lrs[0],
|
549 |
+
warmup_steps=self.warmup_steps,
|
550 |
+
step=step,
|
551 |
+
decay_steps=self.decay_steps,
|
552 |
+
min_lr=self.min_lr,
|
553 |
+
) for _ in self.base_lrs
|
554 |
+
]
|
555 |
+
return new_lrs
|
556 |
+
|
557 |
+
|
558 |
+
class NoamAnnealing(_LRScheduler):
|
559 |
+
|
560 |
+
def __init__(self,
|
561 |
+
optimizer,
|
562 |
+
*,
|
563 |
+
d_model,
|
564 |
+
warmup_steps=None,
|
565 |
+
warmup_ratio=None,
|
566 |
+
max_steps=None,
|
567 |
+
min_lr=0.0,
|
568 |
+
last_epoch=-1):
|
569 |
+
self._normalize = d_model**(-0.5)
|
570 |
+
assert not (warmup_steps is not None and warmup_ratio is not None), \
|
571 |
+
"Either use particular number of step or ratio"
|
572 |
+
assert warmup_ratio is None or max_steps is not None, \
|
573 |
+
"If there is a ratio, there should be a total steps"
|
574 |
+
|
575 |
+
# It is necessary to assign all attributes *before* __init__,
|
576 |
+
# as class is wrapped by an inner class.
|
577 |
+
self.max_steps = max_steps
|
578 |
+
if warmup_steps is not None:
|
579 |
+
self.warmup_steps = warmup_steps
|
580 |
+
elif warmup_ratio is not None:
|
581 |
+
self.warmup_steps = int(warmup_ratio * max_steps)
|
582 |
+
else:
|
583 |
+
self.warmup_steps = 0
|
584 |
+
|
585 |
+
self.min_lr = min_lr
|
586 |
+
super().__init__(optimizer, last_epoch)
|
587 |
+
|
588 |
+
def get_lr(self):
|
589 |
+
if not self._get_lr_called_within_step:
|
590 |
+
warnings.warn(
|
591 |
+
"To get the last learning rate computed "
|
592 |
+
"by the scheduler, please use `get_last_lr()`.",
|
593 |
+
UserWarning,
|
594 |
+
stacklevel=2)
|
595 |
+
|
596 |
+
step = max(1, self.last_epoch)
|
597 |
+
|
598 |
+
for initial_lr in self.base_lrs:
|
599 |
+
if initial_lr < self.min_lr:
|
600 |
+
raise ValueError(
|
601 |
+
f"{self} received an initial learning rate "
|
602 |
+
f"that was lower than the minimum learning rate.")
|
603 |
+
|
604 |
+
new_lrs = [
|
605 |
+
self._noam_annealing(initial_lr=initial_lr, step=step)
|
606 |
+
for initial_lr in self.base_lrs
|
607 |
+
]
|
608 |
+
return new_lrs
|
609 |
+
|
610 |
+
def _noam_annealing(self, initial_lr, step):
|
611 |
+
if self.warmup_steps > 0:
|
612 |
+
mult = self._normalize * min(step**(-0.5),
|
613 |
+
step * (self.warmup_steps**(-1.5)))
|
614 |
+
else:
|
615 |
+
mult = self._normalize * step**(-0.5)
|
616 |
+
|
617 |
+
out_lr = initial_lr * mult
|
618 |
+
if step > self.warmup_steps:
|
619 |
+
out_lr = max(out_lr, self.min_lr)
|
620 |
+
return out_lr
|
621 |
+
|
622 |
+
|
623 |
+
class NoamHoldAnnealing(WarmupHoldPolicy):
|
624 |
+
|
625 |
+
def __init__(self,
|
626 |
+
optimizer,
|
627 |
+
*,
|
628 |
+
max_steps,
|
629 |
+
decay_rate=0.5,
|
630 |
+
min_lr=0.0,
|
631 |
+
last_epoch=-1,
|
632 |
+
**kwargs):
|
633 |
+
"""
|
634 |
+
From Nemo:
|
635 |
+
Implementation of the Noam Hold Annealing policy
|
636 |
+
from the SqueezeFormer paper.
|
637 |
+
|
638 |
+
Unlike NoamAnnealing, the peak learning rate
|
639 |
+
can be explicitly set for this scheduler.
|
640 |
+
The schedule first performs linear warmup,
|
641 |
+
then holds the peak LR, then decays with some schedule for
|
642 |
+
the remainder of the steps.
|
643 |
+
Therefore the min-lr is still dependent
|
644 |
+
on the hyper parameters selected.
|
645 |
+
|
646 |
+
It's schedule is determined by three factors-
|
647 |
+
|
648 |
+
Warmup Steps: Initial stage, where linear warmup
|
649 |
+
occurs uptil the peak LR is reached. Unlike NoamAnnealing,
|
650 |
+
the peak LR is explicitly stated here instead of a scaling factor.
|
651 |
+
|
652 |
+
Hold Steps: Intermediate stage, where the peak LR
|
653 |
+
is maintained for some number of steps. In this region,
|
654 |
+
the high peak LR allows the model to converge faster
|
655 |
+
if training is stable. However the high LR
|
656 |
+
may also cause instability during training.
|
657 |
+
Should usually be a significant fraction of training
|
658 |
+
steps (around 30-40% of the entire training steps).
|
659 |
+
|
660 |
+
Decay Steps: Final stage, where the LR rapidly decays
|
661 |
+
with some scaling rate (set by decay rate).
|
662 |
+
To attain Noam decay, use 0.5,
|
663 |
+
for Squeezeformer recommended decay, use 1.0.
|
664 |
+
The fast decay after prolonged high LR during
|
665 |
+
hold phase allows for rapid convergence.
|
666 |
+
|
667 |
+
References:
|
668 |
+
- [Squeezeformer:
|
669 |
+
An Efficient Transformer for Automatic Speech Recognition]
|
670 |
+
(https://arxiv.org/abs/2206.00888)
|
671 |
+
|
672 |
+
Args:
|
673 |
+
optimizer: Pytorch compatible Optimizer object.
|
674 |
+
warmup_steps: Number of training steps in warmup stage
|
675 |
+
warmup_ratio: Ratio of warmup steps to total steps
|
676 |
+
hold_steps: Number of training steps to
|
677 |
+
hold the learning rate after warm up
|
678 |
+
hold_ratio: Ratio of hold steps to total steps
|
679 |
+
max_steps: Total number of steps while training or `None` for
|
680 |
+
infinite training
|
681 |
+
decay_rate: Float value describing the polynomial decay
|
682 |
+
after the hold period. Default value
|
683 |
+
of 0.5 corresponds to Noam decay.
|
684 |
+
min_lr: Minimum learning rate.
|
685 |
+
"""
|
686 |
+
self.decay_rate = decay_rate
|
687 |
+
super().__init__(optimizer=optimizer,
|
688 |
+
max_steps=max_steps,
|
689 |
+
last_epoch=last_epoch,
|
690 |
+
min_lr=min_lr,
|
691 |
+
**kwargs)
|
692 |
+
|
693 |
+
def _get_lr(self, step):
|
694 |
+
if self.warmup_steps is None or self.warmup_steps == 0:
|
695 |
+
raise ValueError(
|
696 |
+
"Noam scheduler cannot be used without warmup steps")
|
697 |
+
|
698 |
+
if self.hold_steps > 0:
|
699 |
+
hold_steps = self.hold_steps - self.warmup_steps
|
700 |
+
else:
|
701 |
+
hold_steps = 0
|
702 |
+
|
703 |
+
new_lrs = [
|
704 |
+
_noam_hold_annealing(
|
705 |
+
initial_lr,
|
706 |
+
step=step,
|
707 |
+
warmup_steps=self.warmup_steps,
|
708 |
+
hold_steps=hold_steps,
|
709 |
+
decay_rate=self.decay_rate,
|
710 |
+
min_lr=self.min_lr,
|
711 |
+
) for initial_lr in self.base_lrs
|
712 |
+
]
|
713 |
+
return new_lrs
|
714 |
+
|
715 |
+
def set_step(self, step: int):
|
716 |
+
self.last_epoch = step
|
717 |
+
|
718 |
+
|
719 |
+
class ConstantLR(_LRScheduler):
|
720 |
+
"""The ConstantLR scheduler
|
721 |
+
|
722 |
+
This scheduler keeps a constant lr
|
723 |
+
|
724 |
+
"""
|
725 |
+
|
726 |
+
def __init__(
|
727 |
+
self,
|
728 |
+
optimizer: torch.optim.Optimizer,
|
729 |
+
):
|
730 |
+
# __init__() must be invoked before setting field
|
731 |
+
# because step() is also invoked in __init__()
|
732 |
+
super().__init__(optimizer)
|
733 |
+
|
734 |
+
def get_lr(self):
|
735 |
+
return self.base_lrs
|
736 |
+
|
737 |
+
def set_step(self, step: int):
|
738 |
+
self.last_epoch = step
|