Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,253 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Piece it Together: Part-Based Concepting with IP-Priors
|
| 2 |
+
> Elad Richardson, Kfir Goldberg, Yuval Alaluf, Daniel Cohen-Or
|
| 3 |
+
> Tel Aviv University, Bria AI
|
| 4 |
+
>
|
| 5 |
+
> Advanced generative models excel at synthesizing images but often rely on text-based conditioning. Visual designers, however, often work beyond language, directly drawing inspiration from existing visual elements. In many cases, these elements represent only fragments of a potential concept-such as an uniquely structured wing, or a specific hairstyle-serving as inspiration for the artist to explore how they can come together creatively into a coherent whole. Recognizing this need, we introduce a generative framework that seamlessly integrates a partial set of user-provided visual components into a coherent composition while simultaneously sampling the missing parts needed to generate a plausible and complete concept. Our approach builds on a strong and underexplored representation space, extracted from IP-Adapter+, on which we train IP-Prior, a lightweight flow-matching model that synthesizes coherent compositions based on domain-specific priors, enabling diverse and context-aware generations. Additionally, we present a LoRA-based fine-tuning strategy that significantly improves prompt adherence in IP-Adapter+ for a given task, addressing its common trade-off between reconstruction quality and prompt adherence.
|
| 6 |
+
|
| 7 |
+
<a href="https://arxiv.org/abs/2503.10365"><img src="https://img.shields.io/badge/arXiv-2503.10365-b31b1b.svg" height=20.5></a>
|
| 8 |
+
<a href="https://eladrich.github.io/PiT/"><img src="https://img.shields.io/static/v1?label=Project&message=Website&color=red" height=20.5></a>
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
<p align="center">
|
| 14 |
+
<img src="https://eladrich.github.io/PiT/static/figures/teaser.jpg" width="800px"/>
|
| 15 |
+
<br>
|
| 16 |
+
Using a dedicated prior for the target domain, our method, Piece it Together (PiT), effectively completes missing information by seamlessly integrating given elements into a coherent composition while adding the necessary missing pieces needed for the complete concept to reside in the prior domain.
|
| 17 |
+
</p>
|
| 18 |
+
|
| 19 |
+
## Description :scroll:
|
| 20 |
+
Official implementation of the paper "Piece it Together: Part-Based Concepting with IP-Priors"
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
## Table of contents
|
| 24 |
+
- [Piece it Together: Part-Based Concepting with IP-Priors](#piece-it-together-part-based-concepting-with-ip-priors)
|
| 25 |
+
- [Description :scroll:](#description-scroll)
|
| 26 |
+
- [Table of contents](#table-of-contents)
|
| 27 |
+
- [Getting started with PiT :rocket:](#getting-started-with-pit-rocket)
|
| 28 |
+
- [Setup your environment](#setup-your-environment)
|
| 29 |
+
- [Inference with PiT](#inference-with-pit)
|
| 30 |
+
- [Training PiT](#training-pit)
|
| 31 |
+
- [Inference with IP-LoRA](#inference-with-ip-lora)
|
| 32 |
+
- [Training IP-LoRA](#training-ip-lora)
|
| 33 |
+
- [Preparing your data](#preparing-your-data)
|
| 34 |
+
- [Running the training script](#running-the-training-script)
|
| 35 |
+
- [Exploring the IP+ space](#exploring-the-ip-space)
|
| 36 |
+
- [Finding new directions](#finding-new-directions)
|
| 37 |
+
- [Editing images with found directions](#editing-images-with-found-directions)
|
| 38 |
+
- [Acknowledgments](#acknowledgments)
|
| 39 |
+
- [Citation](#citation)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
## Getting started with PiT :rocket:
|
| 44 |
+
|
| 45 |
+
### Setup your environment
|
| 46 |
+
|
| 47 |
+
1. Clone the repo:
|
| 48 |
+
|
| 49 |
+
```bash
|
| 50 |
+
git clone https://github.com/eladrich/PiT
|
| 51 |
+
cd PiT
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
2. Install `uv`:
|
| 55 |
+
|
| 56 |
+
Instructions taken from [here](https://docs.astral.sh/uv/getting-started/installation/).
|
| 57 |
+
|
| 58 |
+
For linux systems this should be:
|
| 59 |
+
```bash
|
| 60 |
+
curl -LsSf https://astral.sh/uv/install.sh | sh
|
| 61 |
+
source $HOME/.local/bin/env
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
3. Install the dependencies:
|
| 65 |
+
|
| 66 |
+
```bash
|
| 67 |
+
uv sync
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
4. Activate your `.venv` and set the Python env:
|
| 71 |
+
|
| 72 |
+
```bash
|
| 73 |
+
source .venv/bin/activate
|
| 74 |
+
export PYTHONPATH=${PYTHONPATH}:${PWD}
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
## Inference with PiT
|
| 80 |
+
| Domain | Examples | Link |
|
| 81 |
+
|--------|--------------|----------------------------------------------------------------------------------------------|
|
| 82 |
+
| Characters | <img src="https://eladrich.github.io/PiT/static/figures/model_results/results_creatures.png" width="400px"/> | [Here](https://huggingface.co/kfirgold99/Piece-it-Together/tree/main/models/characters_ckpt) |
|
| 83 |
+
| Products | <img src="https://eladrich.github.io/PiT/static/figures/model_results/results_products.png" width="400px"/> | [Here](https://huggingface.co/kfirgold99/Piece-it-Together/tree/main/models/products_ckpt) |
|
| 84 |
+
| Toys | <img src="https://eladrich.github.io/PiT/static/figures/model_results/results_toys.png" width="400px"/> | [Here](https://huggingface.co/kfirgold99/Piece-it-Together/tree/main/models/plush_ckpt) |
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
## Training PiT
|
| 88 |
+
|
| 89 |
+
### Data Generation
|
| 90 |
+
PiT assumes that the data is structured so that the the target images and part images are in the same directory with the naming convention being `image_name.jpg` for hte base image and `image_name_i.jpg` for the parts.
|
| 91 |
+
|
| 92 |
+
To use a generated data see the sample scripts
|
| 93 |
+
```bash
|
| 94 |
+
python -m scripts.generate_characters
|
| 95 |
+
```
|
| 96 |
+
|
| 97 |
+
```bash
|
| 98 |
+
python -m scripts.generate_products
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
### Training
|
| 102 |
+
|
| 103 |
+
For training see the `training/coach.py` file and the example below
|
| 104 |
+
|
| 105 |
+
``bash
|
| 106 |
+
python -m scripts.train --config_path=configs/train/train_characters.yaml
|
| 107 |
+
``
|
| 108 |
+
|
| 109 |
+
## PiT Inference
|
| 110 |
+
|
| 111 |
+
For inference see `scripts.infer.py` with the corresponding configs under `configs/infer`
|
| 112 |
+
|
| 113 |
+
```bash
|
| 114 |
+
python -m scripts.infer --config_path=configs/infer/infer_characters.yaml
|
| 115 |
+
```
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
## Inference with IP-LoRA
|
| 119 |
+
|
| 120 |
+
1. Download the IP checkpoint and the LoRAs
|
| 121 |
+
|
| 122 |
+
```bash
|
| 123 |
+
ip_lora_inference/download_ip_adapter.sh
|
| 124 |
+
ip_lora_inference/download_loras.sh
|
| 125 |
+
```
|
| 126 |
+
|
| 127 |
+
2. Run inference with your preferred model
|
| 128 |
+
|
| 129 |
+
example for running the styled-generation LoRA
|
| 130 |
+
|
| 131 |
+
```bash
|
| 132 |
+
python ip_lora_inference/inference_ip_lora.py --lora_type "character_sheet" --lora_path "weights/character_sheet/pytorch_lora_weights.safetensors" --prompt "a character sheet displaying a creature, from several angles with 1 large front view in the middle, clean white background. In the background we can see half-completed, partially colored, sketches of different parts of the object" --output_dir "ip_lora_inference/character_sheet/" --ref_images_paths "assets/character_sheet_default_ref.jpg"
|
| 133 |
+
--ip_adapter_path "weights/ip_adapter/sdxl_models/ip-adapter-plus_sdxl_vit-h.bin"
|
| 134 |
+
```
|
| 135 |
+
|
| 136 |
+
## Training IP-LoRA
|
| 137 |
+
|
| 138 |
+
### Preparing your data
|
| 139 |
+
|
| 140 |
+
The expected data format for the training script is as follows:
|
| 141 |
+
|
| 142 |
+
```
|
| 143 |
+
--base_dir/
|
| 144 |
+
----targets/
|
| 145 |
+
------img1.jpg
|
| 146 |
+
------img1.txt
|
| 147 |
+
------img2.jpg
|
| 148 |
+
------img2.txt
|
| 149 |
+
------img3.jpg
|
| 150 |
+
------img3.txt
|
| 151 |
+
.
|
| 152 |
+
.
|
| 153 |
+
.
|
| 154 |
+
----refs/
|
| 155 |
+
------img1_ref.jpg
|
| 156 |
+
------img2_ref.jpg
|
| 157 |
+
------img3_ref.jpg
|
| 158 |
+
.
|
| 159 |
+
.
|
| 160 |
+
.
|
| 161 |
+
```
|
| 162 |
+
|
| 163 |
+
Where `imgX.jpg` is the target image for the input reference image `imgX_ref.jpg` with the prompt `imgX.txt`
|
| 164 |
+
|
| 165 |
+
### Running the training script
|
| 166 |
+
|
| 167 |
+
For training a character-sheet styled generation LoRA, run the following command:
|
| 168 |
+
|
| 169 |
+
```bash
|
| 170 |
+
python ./ip_lora_train/train_ip_lora.py \
|
| 171 |
+
--rank 64 \
|
| 172 |
+
--resolution 1024 \
|
| 173 |
+
--validation_epochs 1 \
|
| 174 |
+
--num_train_epochs 100 \
|
| 175 |
+
--checkpointing_steps 50 \
|
| 176 |
+
--train_batch_size 2 \
|
| 177 |
+
--learning_rate 1e-4 \
|
| 178 |
+
--dataloader_num_workers 1 \
|
| 179 |
+
--gradient_accumulation_steps 8 \
|
| 180 |
+
--dataset_base_dir <base_dir> \
|
| 181 |
+
--prompt_mode character_sheet \
|
| 182 |
+
--output_dir ./output/train_ip_lora/character_sheet
|
| 183 |
+
|
| 184 |
+
```
|
| 185 |
+
|
| 186 |
+
and for the text adherence LoRA, run the following command:
|
| 187 |
+
|
| 188 |
+
```bash
|
| 189 |
+
python ./ip_lora_train/train_ip_lora.py \
|
| 190 |
+
--rank 64 \
|
| 191 |
+
--resolution 1024 \
|
| 192 |
+
--validation_epochs 1 \
|
| 193 |
+
--num_train_epochs 100 \
|
| 194 |
+
--checkpointing_steps 50 \
|
| 195 |
+
--train_batch_size 2 \
|
| 196 |
+
--learning_rate 1e-4 \
|
| 197 |
+
--dataloader_num_workers 1 \
|
| 198 |
+
--gradient_accumulation_steps 8 \
|
| 199 |
+
--dataset_base_dir <base_dir> \
|
| 200 |
+
--prompt_mode creature_in_scene \
|
| 201 |
+
--output_dir ./output/train_ip_lora/creature_in_scene
|
| 202 |
+
```
|
| 203 |
+
|
| 204 |
+
## Exploring the IP+ space
|
| 205 |
+
|
| 206 |
+
Start by downloading the needed IP+ checkpoint and the directions presented in the paper:
|
| 207 |
+
|
| 208 |
+
```bash
|
| 209 |
+
ip_plus_space_exploration/download_directions.sh
|
| 210 |
+
ip_plus_space_exploration/download_ip_adapter.sh
|
| 211 |
+
```
|
| 212 |
+
|
| 213 |
+
### Finding new directions
|
| 214 |
+
|
| 215 |
+
To find a direction in the IP+ space from "class1" (e.g. "scrawny") to "class2" (e.g. "muscular"):
|
| 216 |
+
|
| 217 |
+
1. Create `class1_dir` and `class2_dir` containing images of the source and target classes respectively
|
| 218 |
+
|
| 219 |
+
2. Run the `find_direction` script:
|
| 220 |
+
|
| 221 |
+
```bash
|
| 222 |
+
python ip_plus_space_exploration/find_direction.py --class1_dir <path_to_source_class> --class2_dir <path_to_target_class> --output_dir ./ip_directions --ip_model_type "plus"
|
| 223 |
+
```
|
| 224 |
+
|
| 225 |
+
### Editing images with found directions
|
| 226 |
+
|
| 227 |
+
Use the direction found in the previous stage, or one downloaded from [HuggingFace](https://huggingface.co/kfirgold99/Piece-it-Together) in the previous stage.
|
| 228 |
+
|
| 229 |
+
```bash
|
| 230 |
+
python ip_plus_space_exploration/edit_by_direction.py --ip_model_type "plus" --image_path <source_image> --direction_path <path_to_chosen_direction> --direction_type "ip" --output_dir "./edit_by_direction/"
|
| 231 |
+
```
|
| 232 |
+
|
| 233 |
+
## Acknowledgments
|
| 234 |
+
|
| 235 |
+
Code is based on
|
| 236 |
+
- https://github.com/pOpsPaper/pOps
|
| 237 |
+
- https://github.com/cloneofsimo/minRF by the great [@cloneofsimo](https://github.com/cloneofsimo)
|
| 238 |
+
|
| 239 |
+
## Citation
|
| 240 |
+
|
| 241 |
+
If you use this code for your research, please cite the following paper:
|
| 242 |
+
|
| 243 |
+
```
|
| 244 |
+
@misc{richardson2025piece,
|
| 245 |
+
title={Piece it Together: Part-Based Concepting with IP-Priors},
|
| 246 |
+
author={Richardson, Elad and Goldberg, Kfir and Alaluf, Yuval and Cohen-Or, Daniel},
|
| 247 |
+
year={2025},
|
| 248 |
+
eprint={2503.10365},
|
| 249 |
+
archivePrefix={arXiv},
|
| 250 |
+
primaryClass={cs.CV},
|
| 251 |
+
url={https://arxiv.org/abs/2503.10365},
|
| 252 |
+
}
|
| 253 |
+
```
|