Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,253 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Piece it Together: Part-Based Concepting with IP-Priors
|
2 |
+
> Elad Richardson, Kfir Goldberg, Yuval Alaluf, Daniel Cohen-Or
|
3 |
+
> Tel Aviv University, Bria AI
|
4 |
+
>
|
5 |
+
> Advanced generative models excel at synthesizing images but often rely on text-based conditioning. Visual designers, however, often work beyond language, directly drawing inspiration from existing visual elements. In many cases, these elements represent only fragments of a potential concept-such as an uniquely structured wing, or a specific hairstyle-serving as inspiration for the artist to explore how they can come together creatively into a coherent whole. Recognizing this need, we introduce a generative framework that seamlessly integrates a partial set of user-provided visual components into a coherent composition while simultaneously sampling the missing parts needed to generate a plausible and complete concept. Our approach builds on a strong and underexplored representation space, extracted from IP-Adapter+, on which we train IP-Prior, a lightweight flow-matching model that synthesizes coherent compositions based on domain-specific priors, enabling diverse and context-aware generations. Additionally, we present a LoRA-based fine-tuning strategy that significantly improves prompt adherence in IP-Adapter+ for a given task, addressing its common trade-off between reconstruction quality and prompt adherence.
|
6 |
+
|
7 |
+
<a href="https://arxiv.org/abs/2503.10365"><img src="https://img.shields.io/badge/arXiv-2503.10365-b31b1b.svg" height=20.5></a>
|
8 |
+
<a href="https://eladrich.github.io/PiT/"><img src="https://img.shields.io/static/v1?label=Project&message=Website&color=red" height=20.5></a>
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
<p align="center">
|
14 |
+
<img src="https://eladrich.github.io/PiT/static/figures/teaser.jpg" width="800px"/>
|
15 |
+
<br>
|
16 |
+
Using a dedicated prior for the target domain, our method, Piece it Together (PiT), effectively completes missing information by seamlessly integrating given elements into a coherent composition while adding the necessary missing pieces needed for the complete concept to reside in the prior domain.
|
17 |
+
</p>
|
18 |
+
|
19 |
+
## Description :scroll:
|
20 |
+
Official implementation of the paper "Piece it Together: Part-Based Concepting with IP-Priors"
|
21 |
+
|
22 |
+
|
23 |
+
## Table of contents
|
24 |
+
- [Piece it Together: Part-Based Concepting with IP-Priors](#piece-it-together-part-based-concepting-with-ip-priors)
|
25 |
+
- [Description :scroll:](#description-scroll)
|
26 |
+
- [Table of contents](#table-of-contents)
|
27 |
+
- [Getting started with PiT :rocket:](#getting-started-with-pit-rocket)
|
28 |
+
- [Setup your environment](#setup-your-environment)
|
29 |
+
- [Inference with PiT](#inference-with-pit)
|
30 |
+
- [Training PiT](#training-pit)
|
31 |
+
- [Inference with IP-LoRA](#inference-with-ip-lora)
|
32 |
+
- [Training IP-LoRA](#training-ip-lora)
|
33 |
+
- [Preparing your data](#preparing-your-data)
|
34 |
+
- [Running the training script](#running-the-training-script)
|
35 |
+
- [Exploring the IP+ space](#exploring-the-ip-space)
|
36 |
+
- [Finding new directions](#finding-new-directions)
|
37 |
+
- [Editing images with found directions](#editing-images-with-found-directions)
|
38 |
+
- [Acknowledgments](#acknowledgments)
|
39 |
+
- [Citation](#citation)
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
## Getting started with PiT :rocket:
|
44 |
+
|
45 |
+
### Setup your environment
|
46 |
+
|
47 |
+
1. Clone the repo:
|
48 |
+
|
49 |
+
```bash
|
50 |
+
git clone https://github.com/eladrich/PiT
|
51 |
+
cd PiT
|
52 |
+
```
|
53 |
+
|
54 |
+
2. Install `uv`:
|
55 |
+
|
56 |
+
Instructions taken from [here](https://docs.astral.sh/uv/getting-started/installation/).
|
57 |
+
|
58 |
+
For linux systems this should be:
|
59 |
+
```bash
|
60 |
+
curl -LsSf https://astral.sh/uv/install.sh | sh
|
61 |
+
source $HOME/.local/bin/env
|
62 |
+
```
|
63 |
+
|
64 |
+
3. Install the dependencies:
|
65 |
+
|
66 |
+
```bash
|
67 |
+
uv sync
|
68 |
+
```
|
69 |
+
|
70 |
+
4. Activate your `.venv` and set the Python env:
|
71 |
+
|
72 |
+
```bash
|
73 |
+
source .venv/bin/activate
|
74 |
+
export PYTHONPATH=${PYTHONPATH}:${PWD}
|
75 |
+
```
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
## Inference with PiT
|
80 |
+
| Domain | Examples | Link |
|
81 |
+
|--------|--------------|----------------------------------------------------------------------------------------------|
|
82 |
+
| Characters | <img src="https://eladrich.github.io/PiT/static/figures/model_results/results_creatures.png" width="400px"/> | [Here](https://huggingface.co/kfirgold99/Piece-it-Together/tree/main/models/characters_ckpt) |
|
83 |
+
| Products | <img src="https://eladrich.github.io/PiT/static/figures/model_results/results_products.png" width="400px"/> | [Here](https://huggingface.co/kfirgold99/Piece-it-Together/tree/main/models/products_ckpt) |
|
84 |
+
| Toys | <img src="https://eladrich.github.io/PiT/static/figures/model_results/results_toys.png" width="400px"/> | [Here](https://huggingface.co/kfirgold99/Piece-it-Together/tree/main/models/plush_ckpt) |
|
85 |
+
|
86 |
+
|
87 |
+
## Training PiT
|
88 |
+
|
89 |
+
### Data Generation
|
90 |
+
PiT assumes that the data is structured so that the the target images and part images are in the same directory with the naming convention being `image_name.jpg` for hte base image and `image_name_i.jpg` for the parts.
|
91 |
+
|
92 |
+
To use a generated data see the sample scripts
|
93 |
+
```bash
|
94 |
+
python -m scripts.generate_characters
|
95 |
+
```
|
96 |
+
|
97 |
+
```bash
|
98 |
+
python -m scripts.generate_products
|
99 |
+
```
|
100 |
+
|
101 |
+
### Training
|
102 |
+
|
103 |
+
For training see the `training/coach.py` file and the example below
|
104 |
+
|
105 |
+
``bash
|
106 |
+
python -m scripts.train --config_path=configs/train/train_characters.yaml
|
107 |
+
``
|
108 |
+
|
109 |
+
## PiT Inference
|
110 |
+
|
111 |
+
For inference see `scripts.infer.py` with the corresponding configs under `configs/infer`
|
112 |
+
|
113 |
+
```bash
|
114 |
+
python -m scripts.infer --config_path=configs/infer/infer_characters.yaml
|
115 |
+
```
|
116 |
+
|
117 |
+
|
118 |
+
## Inference with IP-LoRA
|
119 |
+
|
120 |
+
1. Download the IP checkpoint and the LoRAs
|
121 |
+
|
122 |
+
```bash
|
123 |
+
ip_lora_inference/download_ip_adapter.sh
|
124 |
+
ip_lora_inference/download_loras.sh
|
125 |
+
```
|
126 |
+
|
127 |
+
2. Run inference with your preferred model
|
128 |
+
|
129 |
+
example for running the styled-generation LoRA
|
130 |
+
|
131 |
+
```bash
|
132 |
+
python ip_lora_inference/inference_ip_lora.py --lora_type "character_sheet" --lora_path "weights/character_sheet/pytorch_lora_weights.safetensors" --prompt "a character sheet displaying a creature, from several angles with 1 large front view in the middle, clean white background. In the background we can see half-completed, partially colored, sketches of different parts of the object" --output_dir "ip_lora_inference/character_sheet/" --ref_images_paths "assets/character_sheet_default_ref.jpg"
|
133 |
+
--ip_adapter_path "weights/ip_adapter/sdxl_models/ip-adapter-plus_sdxl_vit-h.bin"
|
134 |
+
```
|
135 |
+
|
136 |
+
## Training IP-LoRA
|
137 |
+
|
138 |
+
### Preparing your data
|
139 |
+
|
140 |
+
The expected data format for the training script is as follows:
|
141 |
+
|
142 |
+
```
|
143 |
+
--base_dir/
|
144 |
+
----targets/
|
145 |
+
------img1.jpg
|
146 |
+
------img1.txt
|
147 |
+
------img2.jpg
|
148 |
+
------img2.txt
|
149 |
+
------img3.jpg
|
150 |
+
------img3.txt
|
151 |
+
.
|
152 |
+
.
|
153 |
+
.
|
154 |
+
----refs/
|
155 |
+
------img1_ref.jpg
|
156 |
+
------img2_ref.jpg
|
157 |
+
------img3_ref.jpg
|
158 |
+
.
|
159 |
+
.
|
160 |
+
.
|
161 |
+
```
|
162 |
+
|
163 |
+
Where `imgX.jpg` is the target image for the input reference image `imgX_ref.jpg` with the prompt `imgX.txt`
|
164 |
+
|
165 |
+
### Running the training script
|
166 |
+
|
167 |
+
For training a character-sheet styled generation LoRA, run the following command:
|
168 |
+
|
169 |
+
```bash
|
170 |
+
python ./ip_lora_train/train_ip_lora.py \
|
171 |
+
--rank 64 \
|
172 |
+
--resolution 1024 \
|
173 |
+
--validation_epochs 1 \
|
174 |
+
--num_train_epochs 100 \
|
175 |
+
--checkpointing_steps 50 \
|
176 |
+
--train_batch_size 2 \
|
177 |
+
--learning_rate 1e-4 \
|
178 |
+
--dataloader_num_workers 1 \
|
179 |
+
--gradient_accumulation_steps 8 \
|
180 |
+
--dataset_base_dir <base_dir> \
|
181 |
+
--prompt_mode character_sheet \
|
182 |
+
--output_dir ./output/train_ip_lora/character_sheet
|
183 |
+
|
184 |
+
```
|
185 |
+
|
186 |
+
and for the text adherence LoRA, run the following command:
|
187 |
+
|
188 |
+
```bash
|
189 |
+
python ./ip_lora_train/train_ip_lora.py \
|
190 |
+
--rank 64 \
|
191 |
+
--resolution 1024 \
|
192 |
+
--validation_epochs 1 \
|
193 |
+
--num_train_epochs 100 \
|
194 |
+
--checkpointing_steps 50 \
|
195 |
+
--train_batch_size 2 \
|
196 |
+
--learning_rate 1e-4 \
|
197 |
+
--dataloader_num_workers 1 \
|
198 |
+
--gradient_accumulation_steps 8 \
|
199 |
+
--dataset_base_dir <base_dir> \
|
200 |
+
--prompt_mode creature_in_scene \
|
201 |
+
--output_dir ./output/train_ip_lora/creature_in_scene
|
202 |
+
```
|
203 |
+
|
204 |
+
## Exploring the IP+ space
|
205 |
+
|
206 |
+
Start by downloading the needed IP+ checkpoint and the directions presented in the paper:
|
207 |
+
|
208 |
+
```bash
|
209 |
+
ip_plus_space_exploration/download_directions.sh
|
210 |
+
ip_plus_space_exploration/download_ip_adapter.sh
|
211 |
+
```
|
212 |
+
|
213 |
+
### Finding new directions
|
214 |
+
|
215 |
+
To find a direction in the IP+ space from "class1" (e.g. "scrawny") to "class2" (e.g. "muscular"):
|
216 |
+
|
217 |
+
1. Create `class1_dir` and `class2_dir` containing images of the source and target classes respectively
|
218 |
+
|
219 |
+
2. Run the `find_direction` script:
|
220 |
+
|
221 |
+
```bash
|
222 |
+
python ip_plus_space_exploration/find_direction.py --class1_dir <path_to_source_class> --class2_dir <path_to_target_class> --output_dir ./ip_directions --ip_model_type "plus"
|
223 |
+
```
|
224 |
+
|
225 |
+
### Editing images with found directions
|
226 |
+
|
227 |
+
Use the direction found in the previous stage, or one downloaded from [HuggingFace](https://huggingface.co/kfirgold99/Piece-it-Together) in the previous stage.
|
228 |
+
|
229 |
+
```bash
|
230 |
+
python ip_plus_space_exploration/edit_by_direction.py --ip_model_type "plus" --image_path <source_image> --direction_path <path_to_chosen_direction> --direction_type "ip" --output_dir "./edit_by_direction/"
|
231 |
+
```
|
232 |
+
|
233 |
+
## Acknowledgments
|
234 |
+
|
235 |
+
Code is based on
|
236 |
+
- https://github.com/pOpsPaper/pOps
|
237 |
+
- https://github.com/cloneofsimo/minRF by the great [@cloneofsimo](https://github.com/cloneofsimo)
|
238 |
+
|
239 |
+
## Citation
|
240 |
+
|
241 |
+
If you use this code for your research, please cite the following paper:
|
242 |
+
|
243 |
+
```
|
244 |
+
@misc{richardson2025piece,
|
245 |
+
title={Piece it Together: Part-Based Concepting with IP-Priors},
|
246 |
+
author={Richardson, Elad and Goldberg, Kfir and Alaluf, Yuval and Cohen-Or, Daniel},
|
247 |
+
year={2025},
|
248 |
+
eprint={2503.10365},
|
249 |
+
archivePrefix={arXiv},
|
250 |
+
primaryClass={cs.CV},
|
251 |
+
url={https://arxiv.org/abs/2503.10365},
|
252 |
+
}
|
253 |
+
```
|