Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +443 -0
- config.json +25 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sentence-transformers
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- sentence-similarity
|
6 |
+
- feature-extraction
|
7 |
+
- generated_from_trainer
|
8 |
+
- dataset_size:7999
|
9 |
+
- loss:MultipleNegativesRankingLoss
|
10 |
+
base_model: medicalai/ClinicalBERT
|
11 |
+
metrics:
|
12 |
+
- cosine_accuracy
|
13 |
+
widget:
|
14 |
+
- source_sentence: pt,dressing,pi,surgery,2 weeks,o,ozing,regular,dressing,weight,111.
|
15 |
+
800,height,179. 000,temperature,97. 700,pulse,88. 000,res,19. 000 bp,sy,sto,145.
|
16 |
+
000 bp,dia,sto,82. 000 spo,2,:,99,cap,blood sugar,ja,undice,ec,no past medical
|
17 |
+
history,no past medical history,no past medical history,no past medical history,no
|
18 |
+
past medical history,no past medical history,no past,no,no,no past,no,past,no,no,no,no,no,no,no,no,no,no,no,stable,stable,stable,stable,stable,stable,stable,stable,stable,stable,normal,no,surgical
|
19 |
+
history,no,surgical history,no,surgical history,no,no
|
20 |
+
sentences:
|
21 |
+
- Acne vulgaris
|
22 |
+
- Encounter for change or removal of surgical wound dressing
|
23 |
+
- Irritant contact dermatitis due to detergents
|
24 |
+
- source_sentence: 'fa,dubai,arab emirates,cardiac assessment,chest,pain,nausea,mild,dizzy,sleep,clinic,pulse,70,res,18,res,normal,sao,:,98,air
|
25 |
+
time,00 : 39 : 00,bp,140 / 100,cap,< 2 sec,temperature,36,>,3 reacts,right,>,3
|
26 |
+
reacts,total,gcs,15,car,mild'
|
27 |
+
sentences:
|
28 |
+
- Dizziness and giddiness
|
29 |
+
- Pruritus, unspecified
|
30 |
+
- Acute gastritis without bleeding
|
31 |
+
- source_sentence: low,back,pain,1,no,sp,fine,lower back,moderate,1 month,no,diseases,no,no,no,no,no,no,single,normal,no,no,no,normal,normal,normal,normal,cvs,cv,normal,abnormal,-
|
32 |
+
genito - urinary,normal,systems _ cns - cns,normal,musc,mu,normal,ps,normal,systems,endo
|
33 |
+
- end,normal,normal,haemo,haem,normal,low,back,pain,1 month
|
34 |
+
sentences:
|
35 |
+
- Headache
|
36 |
+
- Muscle spasm of back
|
37 |
+
- Other chest pain
|
38 |
+
- source_sentence: 'fa,ap,arab,mobility,knee assessment,ambula,tory,c,/,o,pain,swelling,right,cold
|
39 |
+
pack,crepebanda,v,pt,transfer,pulse,68r,16,res,normal,sao,: 100,air time,07 :
|
40 |
+
29 : 00,bp,112 / 78,cap,< 2 sec,4 reacts,right,-,>,3,reacts,gcs,15,pain,4,blood,car
|
41 |
+
accident,twisted,right ankle'
|
42 |
+
sentences:
|
43 |
+
- Unspecified injury of right ankle, initial encounter
|
44 |
+
- Other spondylosis with radiculopathy, lumbosacral region
|
45 |
+
- Right upper quadrant pain
|
46 |
+
- source_sentence: irregular,period,few months,moderate,few months ago,none,weight,90.
|
47 |
+
000,height,163. 000,temperature,98. 600,pulse,82. 000,respiration,19. 000 bp,systolic,110.
|
48 |
+
000 bp,diastolic,70. 000,sp,o,2,:,99,cap,blood sugar,ja,und,ice,ec,abd,an,l,girth,head,chest,ch
|
49 |
+
ida ch vitamin d deficiency,polycystic ovary syndrome,ch ida ch vitamin d deficiency,polycystic
|
50 |
+
ovary syndrome,ch,ida ch vitamin d deficiency,polycystic ovary syndrome,ch,ida
|
51 |
+
ch vitamin d deficiency,polycystic ovary syndrome,no,no family,no,no,nation,grade
|
52 |
+
11,grade 11,grade 11,grade 11,no,no,no,no,normal,normal,normal,normal,_ cvs,cv,normal,normal,irregular
|
53 |
+
period,cns,cn,normal,mu,normal,normal,normal,normal,normal,normal,irregular period
|
54 |
+
sentences:
|
55 |
+
- Pain in right hip
|
56 |
+
- Radial styloid tenosynovitis [de Quervain]
|
57 |
+
- Irregular menstruation, unspecified
|
58 |
+
pipeline_tag: sentence-similarity
|
59 |
+
model-index:
|
60 |
+
- name: SentenceTransformer based on medicalai/ClinicalBERT
|
61 |
+
results:
|
62 |
+
- task:
|
63 |
+
type: triplet
|
64 |
+
name: Triplet
|
65 |
+
dataset:
|
66 |
+
name: ai job validation
|
67 |
+
type: ai-job-validation
|
68 |
+
metrics:
|
69 |
+
- type: cosine_accuracy
|
70 |
+
value: 0.9429429173469543
|
71 |
+
name: Cosine Accuracy
|
72 |
+
- task:
|
73 |
+
type: triplet
|
74 |
+
name: Triplet
|
75 |
+
dataset:
|
76 |
+
name: ai job test
|
77 |
+
type: ai-job-test
|
78 |
+
metrics:
|
79 |
+
- type: cosine_accuracy
|
80 |
+
value: 0.9290709495544434
|
81 |
+
name: Cosine Accuracy
|
82 |
+
---
|
83 |
+
|
84 |
+
# SentenceTransformer based on medicalai/ClinicalBERT
|
85 |
+
|
86 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [medicalai/ClinicalBERT](https://huggingface.co/medicalai/ClinicalBERT) on the parquet dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
87 |
+
|
88 |
+
## Model Details
|
89 |
+
|
90 |
+
### Model Description
|
91 |
+
- **Model Type:** Sentence Transformer
|
92 |
+
- **Base model:** [medicalai/ClinicalBERT](https://huggingface.co/medicalai/ClinicalBERT) <!-- at revision 3bb5faa9f33458dd7801549e88767c3b23264942 -->
|
93 |
+
- **Maximum Sequence Length:** 512 tokens
|
94 |
+
- **Output Dimensionality:** 768 dimensions
|
95 |
+
- **Similarity Function:** Cosine Similarity
|
96 |
+
- **Training Dataset:**
|
97 |
+
- parquet
|
98 |
+
<!-- - **Language:** Unknown -->
|
99 |
+
<!-- - **License:** Unknown -->
|
100 |
+
|
101 |
+
### Model Sources
|
102 |
+
|
103 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
104 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
105 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
106 |
+
|
107 |
+
### Full Model Architecture
|
108 |
+
|
109 |
+
```
|
110 |
+
SentenceTransformer(
|
111 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
|
112 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
113 |
+
)
|
114 |
+
```
|
115 |
+
|
116 |
+
## Usage
|
117 |
+
|
118 |
+
### Direct Usage (Sentence Transformers)
|
119 |
+
|
120 |
+
First install the Sentence Transformers library:
|
121 |
+
|
122 |
+
```bash
|
123 |
+
pip install -U sentence-transformers
|
124 |
+
```
|
125 |
+
|
126 |
+
Then you can load this model and run inference.
|
127 |
+
```python
|
128 |
+
from sentence_transformers import SentenceTransformer
|
129 |
+
|
130 |
+
# Download from the 🤗 Hub
|
131 |
+
model = SentenceTransformer("khaled-omar/distilroberta-ai-job-embeddings")
|
132 |
+
# Run inference
|
133 |
+
sentences = [
|
134 |
+
'irregular,period,few months,moderate,few months ago,none,weight,90. 000,height,163. 000,temperature,98. 600,pulse,82. 000,respiration,19. 000 bp,systolic,110. 000 bp,diastolic,70. 000,sp,o,2,:,99,cap,blood sugar,ja,und,ice,ec,abd,an,l,girth,head,chest,ch ida ch vitamin d deficiency,polycystic ovary syndrome,ch ida ch vitamin d deficiency,polycystic ovary syndrome,ch,ida ch vitamin d deficiency,polycystic ovary syndrome,ch,ida ch vitamin d deficiency,polycystic ovary syndrome,no,no family,no,no,nation,grade 11,grade 11,grade 11,grade 11,no,no,no,no,normal,normal,normal,normal,_ cvs,cv,normal,normal,irregular period,cns,cn,normal,mu,normal,normal,normal,normal,normal,normal,irregular period',
|
135 |
+
'Irregular menstruation, unspecified',
|
136 |
+
'Radial styloid tenosynovitis [de Quervain]',
|
137 |
+
]
|
138 |
+
embeddings = model.encode(sentences)
|
139 |
+
print(embeddings.shape)
|
140 |
+
# [3, 768]
|
141 |
+
|
142 |
+
# Get the similarity scores for the embeddings
|
143 |
+
similarities = model.similarity(embeddings, embeddings)
|
144 |
+
print(similarities.shape)
|
145 |
+
# [3, 3]
|
146 |
+
```
|
147 |
+
|
148 |
+
<!--
|
149 |
+
### Direct Usage (Transformers)
|
150 |
+
|
151 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
152 |
+
|
153 |
+
</details>
|
154 |
+
-->
|
155 |
+
|
156 |
+
<!--
|
157 |
+
### Downstream Usage (Sentence Transformers)
|
158 |
+
|
159 |
+
You can finetune this model on your own dataset.
|
160 |
+
|
161 |
+
<details><summary>Click to expand</summary>
|
162 |
+
|
163 |
+
</details>
|
164 |
+
-->
|
165 |
+
|
166 |
+
<!--
|
167 |
+
### Out-of-Scope Use
|
168 |
+
|
169 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
170 |
+
-->
|
171 |
+
|
172 |
+
## Evaluation
|
173 |
+
|
174 |
+
### Metrics
|
175 |
+
|
176 |
+
#### Triplet
|
177 |
+
|
178 |
+
* Datasets: `ai-job-validation` and `ai-job-test`
|
179 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
180 |
+
|
181 |
+
| Metric | ai-job-validation | ai-job-test |
|
182 |
+
|:--------------------|:------------------|:------------|
|
183 |
+
| **cosine_accuracy** | **0.9429** | **0.9291** |
|
184 |
+
|
185 |
+
<!--
|
186 |
+
## Bias, Risks and Limitations
|
187 |
+
|
188 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
189 |
+
-->
|
190 |
+
|
191 |
+
<!--
|
192 |
+
### Recommendations
|
193 |
+
|
194 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
195 |
+
-->
|
196 |
+
|
197 |
+
## Training Details
|
198 |
+
|
199 |
+
### Training Dataset
|
200 |
+
|
201 |
+
#### parquet
|
202 |
+
|
203 |
+
* Dataset: parquet
|
204 |
+
* Size: 7,999 training samples
|
205 |
+
* Columns: <code>Entities</code>, <code>PosLongDesc</code>, and <code>NegLongDesc</code>
|
206 |
+
* Approximate statistics based on the first 1000 samples:
|
207 |
+
| | Entities | PosLongDesc | NegLongDesc |
|
208 |
+
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
209 |
+
| type | string | string | string |
|
210 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 155.39 tokens</li><li>max: 485 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.62 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 10.35 tokens</li><li>max: 31 tokens</li></ul> |
|
211 |
+
* Samples:
|
212 |
+
| Entities | PosLongDesc | NegLongDesc |
|
213 |
+
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|
|
214 |
+
| <code>it,chiness,since 3 months,it,chiness,since,3 months,weight,90. 100,height,178. 000,temperature,98. 060,pulse,84. 000,respiration,0. 000 bp,sy,sto,122. 000 bp,dia,69. 000,sp,o,:,99,cap,blood sugar,ja,undice,ec,abd,an,rth,nonsignificant,nonsignificant,nonsignifican,t,no family,nonsignificant family,nonsignificant family,nonsignificant,no relevant family history,yes,married, smoker, carpenter,married, smoker, carpenter social,married, smoker, carpenter social history,nonsignificant,nonsignificant,nonsignificant,it,chiness,3 months,treatment</code> | <code>Rash and other nonspecific skin eruption</code> | <code>Acute nasopharyngitis [common cold]</code> |
|
215 |
+
| <code>amc,dubai,united arab emirates,uma,pa,gut,hari,val,electrocard,gram,pt,amc,sitting,coherent,w /,can,nula,bra,chia,vital,85,18,res,normal,sao,100,air time,17,: 51 : 34,bp,120 / 81,cap,<,2,sec,temperature,> 4 reacts,>,4,reacts,total,gcs,15,pain,0,blood glucose,102,car,accident,drug overdose,intentional</code> | <code>Epileptic seizures related to external causes, not intractable, without status epilepticus</code> | <code>COVID-19</code> |
|
216 |
+
| <code>amc gate,dubai,united arab emirates,ssi,test,airports,dubai,concourse,ent assessment,throat,transported,endorsed,pulse :,77r,14,res,normal %,sao,2 :,100,air time,05 :,26,:,00,bp,118 / 69,cap,<,2,sec,temperature,36. 7,pupil,left,>,4,reacts,right,>,4,reacts,gcs,15,pain,2,blood glucose,96,car,accident,no,throatpain</code> | <code>Pain in throat</code> | <code>Encounter for observation for suspected exposure to other biological agents ruled out</code> |
|
217 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
218 |
+
```json
|
219 |
+
{
|
220 |
+
"scale": 20.0,
|
221 |
+
"similarity_fct": "cos_sim"
|
222 |
+
}
|
223 |
+
```
|
224 |
+
|
225 |
+
### Evaluation Dataset
|
226 |
+
|
227 |
+
#### parquet
|
228 |
+
|
229 |
+
* Dataset: parquet
|
230 |
+
* Size: 999 evaluation samples
|
231 |
+
* Columns: <code>Entities</code>, <code>PosLongDesc</code>, and <code>NegLongDesc</code>
|
232 |
+
* Approximate statistics based on the first 999 samples:
|
233 |
+
| | Entities | PosLongDesc | NegLongDesc |
|
234 |
+
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
235 |
+
| type | string | string | string |
|
236 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 154.58 tokens</li><li>max: 470 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.61 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.12 tokens</li><li>max: 35 tokens</li></ul> |
|
237 |
+
* Samples:
|
238 |
+
| Entities | PosLongDesc | NegLongDesc |
|
239 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------|:------------------------------------------------------------|
|
240 |
+
| <code>it,chy,redness,3 days,both,it,ching,mild,moderate,3 days,weight,50. 200,height,143. 000,temperature,98. 240,pulse,78. 000,respiration,0. 000 bp,systolic,0. 000 bp,dia,sto,lic,0. 000,sp,o,2,:,99,cap,blood sugar,ja,undice,ec,abd,no past medical history,no past medical history,unknown family medical history,negative family,chronic disease,no diabetic mellitus,no hypertention,negative family,chronic disease,no diabetic mellitus,no hypertention,no,7 years and,7 months,7 years,7 months,no,removal,int,removal,int,red,it,chy,it,chy,redness,3 days</code> | <code>Acute atopic conjunctivitis, bilateral</code> | <code>Deficiency of other specified B group vitamins</code> |
|
241 |
+
| <code>pi,mples,pustules,plus,minus,cyst,both side,of the face,too,it,ching,skin,4,pi,notice,increase,laser removal,facial,expose,sun,pust,cyst,it,weight,52,.,800,height,159. 000,temperature,98. 100,pulse,93. 000,res,0. 000 bp,sy,sto,99. 000 bp,sto,60. 000,sp,o,98,cap,blood sugar,ja,undice,ec,no,no,ro,course,ro,not,course,no diabetic mellitus,no,les,no diabetic,mellit,us,no,les,basic,nation,nation,13,years,months,15 years,11 months,old,pu,ules,plus,cyst,side</code> | <code>Local infection of the skin and subcutaneous tissue, unspecified</code> | <code>Inflammatory polyarthropathy</code> |
|
242 |
+
| <code>respiratory rate,sp,pain,sy,lic,bp,mm,dia,bp,mm,height,weight,00 kg,repeat,prescription</code> | <code>Menopausal and female climacteric states</code> | <code>COVID-19</code> |
|
243 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
244 |
+
```json
|
245 |
+
{
|
246 |
+
"scale": 20.0,
|
247 |
+
"similarity_fct": "cos_sim"
|
248 |
+
}
|
249 |
+
```
|
250 |
+
|
251 |
+
### Training Hyperparameters
|
252 |
+
#### Non-Default Hyperparameters
|
253 |
+
|
254 |
+
- `eval_strategy`: steps
|
255 |
+
- `per_device_train_batch_size`: 16
|
256 |
+
- `per_device_eval_batch_size`: 16
|
257 |
+
- `learning_rate`: 2e-05
|
258 |
+
- `num_train_epochs`: 1
|
259 |
+
- `warmup_ratio`: 0.1
|
260 |
+
- `batch_sampler`: no_duplicates
|
261 |
+
|
262 |
+
#### All Hyperparameters
|
263 |
+
<details><summary>Click to expand</summary>
|
264 |
+
|
265 |
+
- `overwrite_output_dir`: False
|
266 |
+
- `do_predict`: False
|
267 |
+
- `eval_strategy`: steps
|
268 |
+
- `prediction_loss_only`: True
|
269 |
+
- `per_device_train_batch_size`: 16
|
270 |
+
- `per_device_eval_batch_size`: 16
|
271 |
+
- `per_gpu_train_batch_size`: None
|
272 |
+
- `per_gpu_eval_batch_size`: None
|
273 |
+
- `gradient_accumulation_steps`: 1
|
274 |
+
- `eval_accumulation_steps`: None
|
275 |
+
- `learning_rate`: 2e-05
|
276 |
+
- `weight_decay`: 0.0
|
277 |
+
- `adam_beta1`: 0.9
|
278 |
+
- `adam_beta2`: 0.999
|
279 |
+
- `adam_epsilon`: 1e-08
|
280 |
+
- `max_grad_norm`: 1.0
|
281 |
+
- `num_train_epochs`: 1
|
282 |
+
- `max_steps`: -1
|
283 |
+
- `lr_scheduler_type`: linear
|
284 |
+
- `lr_scheduler_kwargs`: {}
|
285 |
+
- `warmup_ratio`: 0.1
|
286 |
+
- `warmup_steps`: 0
|
287 |
+
- `log_level`: passive
|
288 |
+
- `log_level_replica`: warning
|
289 |
+
- `log_on_each_node`: True
|
290 |
+
- `logging_nan_inf_filter`: True
|
291 |
+
- `save_safetensors`: True
|
292 |
+
- `save_on_each_node`: False
|
293 |
+
- `save_only_model`: False
|
294 |
+
- `restore_callback_states_from_checkpoint`: False
|
295 |
+
- `no_cuda`: False
|
296 |
+
- `use_cpu`: False
|
297 |
+
- `use_mps_device`: False
|
298 |
+
- `seed`: 42
|
299 |
+
- `data_seed`: None
|
300 |
+
- `jit_mode_eval`: False
|
301 |
+
- `use_ipex`: False
|
302 |
+
- `bf16`: False
|
303 |
+
- `fp16`: False
|
304 |
+
- `fp16_opt_level`: O1
|
305 |
+
- `half_precision_backend`: auto
|
306 |
+
- `bf16_full_eval`: False
|
307 |
+
- `fp16_full_eval`: False
|
308 |
+
- `tf32`: None
|
309 |
+
- `local_rank`: 0
|
310 |
+
- `ddp_backend`: None
|
311 |
+
- `tpu_num_cores`: None
|
312 |
+
- `tpu_metrics_debug`: False
|
313 |
+
- `debug`: []
|
314 |
+
- `dataloader_drop_last`: False
|
315 |
+
- `dataloader_num_workers`: 0
|
316 |
+
- `dataloader_prefetch_factor`: None
|
317 |
+
- `past_index`: -1
|
318 |
+
- `disable_tqdm`: False
|
319 |
+
- `remove_unused_columns`: True
|
320 |
+
- `label_names`: None
|
321 |
+
- `load_best_model_at_end`: False
|
322 |
+
- `ignore_data_skip`: False
|
323 |
+
- `fsdp`: []
|
324 |
+
- `fsdp_min_num_params`: 0
|
325 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
326 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
327 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
328 |
+
- `deepspeed`: None
|
329 |
+
- `label_smoothing_factor`: 0.0
|
330 |
+
- `optim`: adamw_torch
|
331 |
+
- `optim_args`: None
|
332 |
+
- `adafactor`: False
|
333 |
+
- `group_by_length`: False
|
334 |
+
- `length_column_name`: length
|
335 |
+
- `ddp_find_unused_parameters`: None
|
336 |
+
- `ddp_bucket_cap_mb`: None
|
337 |
+
- `ddp_broadcast_buffers`: False
|
338 |
+
- `dataloader_pin_memory`: True
|
339 |
+
- `dataloader_persistent_workers`: False
|
340 |
+
- `skip_memory_metrics`: True
|
341 |
+
- `use_legacy_prediction_loop`: False
|
342 |
+
- `push_to_hub`: False
|
343 |
+
- `resume_from_checkpoint`: None
|
344 |
+
- `hub_model_id`: None
|
345 |
+
- `hub_strategy`: every_save
|
346 |
+
- `hub_private_repo`: False
|
347 |
+
- `hub_always_push`: False
|
348 |
+
- `gradient_checkpointing`: False
|
349 |
+
- `gradient_checkpointing_kwargs`: None
|
350 |
+
- `include_inputs_for_metrics`: False
|
351 |
+
- `eval_do_concat_batches`: True
|
352 |
+
- `fp16_backend`: auto
|
353 |
+
- `push_to_hub_model_id`: None
|
354 |
+
- `push_to_hub_organization`: None
|
355 |
+
- `mp_parameters`:
|
356 |
+
- `auto_find_batch_size`: False
|
357 |
+
- `full_determinism`: False
|
358 |
+
- `torchdynamo`: None
|
359 |
+
- `ray_scope`: last
|
360 |
+
- `ddp_timeout`: 1800
|
361 |
+
- `torch_compile`: False
|
362 |
+
- `torch_compile_backend`: None
|
363 |
+
- `torch_compile_mode`: None
|
364 |
+
- `dispatch_batches`: None
|
365 |
+
- `split_batches`: None
|
366 |
+
- `include_tokens_per_second`: False
|
367 |
+
- `include_num_input_tokens_seen`: False
|
368 |
+
- `neftune_noise_alpha`: None
|
369 |
+
- `optim_target_modules`: None
|
370 |
+
- `batch_eval_metrics`: False
|
371 |
+
- `prompts`: None
|
372 |
+
- `batch_sampler`: no_duplicates
|
373 |
+
- `multi_dataset_batch_sampler`: proportional
|
374 |
+
|
375 |
+
</details>
|
376 |
+
|
377 |
+
### Training Logs
|
378 |
+
| Epoch | Step | Training Loss | Validation Loss | ai-job-validation_cosine_accuracy | ai-job-test_cosine_accuracy |
|
379 |
+
|:-----:|:----:|:-------------:|:---------------:|:---------------------------------:|:---------------------------:|
|
380 |
+
| -1 | -1 | - | - | 0.5495 | - |
|
381 |
+
| 0.2 | 100 | 2.8729 | 1.8172 | 0.8789 | - |
|
382 |
+
| 0.4 | 200 | 2.085 | 1.4398 | 0.9259 | - |
|
383 |
+
| 0.6 | 300 | 1.8233 | 1.3448 | 0.9339 | - |
|
384 |
+
| 0.8 | 400 | 1.6871 | 1.2579 | 0.9409 | - |
|
385 |
+
| 1.0 | 500 | 1.4881 | 1.2327 | 0.9429 | - |
|
386 |
+
| -1 | -1 | - | - | 0.9429 | 0.9291 |
|
387 |
+
|
388 |
+
|
389 |
+
### Framework Versions
|
390 |
+
- Python: 3.11.4
|
391 |
+
- Sentence Transformers: 3.4.1
|
392 |
+
- Transformers: 4.41.2
|
393 |
+
- PyTorch: 2.3.1+cpu
|
394 |
+
- Accelerate: 1.3.0
|
395 |
+
- Datasets: 3.2.0
|
396 |
+
- Tokenizers: 0.19.1
|
397 |
+
|
398 |
+
## Citation
|
399 |
+
|
400 |
+
### BibTeX
|
401 |
+
|
402 |
+
#### Sentence Transformers
|
403 |
+
```bibtex
|
404 |
+
@inproceedings{reimers-2019-sentence-bert,
|
405 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
406 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
407 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
408 |
+
month = "11",
|
409 |
+
year = "2019",
|
410 |
+
publisher = "Association for Computational Linguistics",
|
411 |
+
url = "https://arxiv.org/abs/1908.10084",
|
412 |
+
}
|
413 |
+
```
|
414 |
+
|
415 |
+
#### MultipleNegativesRankingLoss
|
416 |
+
```bibtex
|
417 |
+
@misc{henderson2017efficient,
|
418 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
419 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
420 |
+
year={2017},
|
421 |
+
eprint={1705.00652},
|
422 |
+
archivePrefix={arXiv},
|
423 |
+
primaryClass={cs.CL}
|
424 |
+
}
|
425 |
+
```
|
426 |
+
|
427 |
+
<!--
|
428 |
+
## Glossary
|
429 |
+
|
430 |
+
*Clearly define terms in order to be accessible across audiences.*
|
431 |
+
-->
|
432 |
+
|
433 |
+
<!--
|
434 |
+
## Model Card Authors
|
435 |
+
|
436 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
437 |
+
-->
|
438 |
+
|
439 |
+
<!--
|
440 |
+
## Model Card Contact
|
441 |
+
|
442 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
443 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "medicalai/ClinicalBERT",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertModel"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "distilbert",
|
14 |
+
"n_heads": 12,
|
15 |
+
"n_layers": 6,
|
16 |
+
"output_past": true,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"qa_dropout": 0.1,
|
19 |
+
"seq_classif_dropout": 0.2,
|
20 |
+
"sinusoidal_pos_embds": false,
|
21 |
+
"tie_weights_": true,
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.41.2",
|
24 |
+
"vocab_size": 119547
|
25 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.1",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.3.1+cpu"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7280c630189118252ab9c92eb1c50ee4c1fd243dc1c41f068e700c33f0664e97
|
3 |
+
size 538947416
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"full_tokenizer_file": null,
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 1000000000000000019884624838656,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "DistilBertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|