neew code
Browse files
app.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import geopandas as gpd
|
2 |
+
import sqlite3
|
3 |
+
import pandas as pd
|
4 |
+
import torch
|
5 |
+
import faiss
|
6 |
+
import numpy as np
|
7 |
+
import os
|
8 |
+
from shapely.geometry import shape
|
9 |
+
from sentence_transformers import SentenceTransformer
|
10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
11 |
+
import streamlit as st
|
12 |
+
|
13 |
+
# Set the environment variables for GPU usage in Hugging Face
|
14 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # Hugging Face uses GPU 0 by default
|
15 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
16 |
+
|
17 |
+
# Set device to GPU if available
|
18 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
st.write(f"Using device: {device}")
|
20 |
+
|
21 |
+
# Step 1: Load and Process Floodland Data
|
22 |
+
conn = sqlite3.connect('NY.db')
|
23 |
+
cursor = conn.cursor()
|
24 |
+
|
25 |
+
# Load shapefile
|
26 |
+
gdf = gpd.read_file('S_FLD_HAZ_AR.shp')
|
27 |
+
|
28 |
+
# Validate geometries
|
29 |
+
gdf['geometry'] = gdf['geometry'].apply(lambda geom: geom if geom.is_valid else None)
|
30 |
+
gdf = gdf.dropna(subset=['geometry'])
|
31 |
+
|
32 |
+
# Convert CRS to UTM Zone 18N (New York)
|
33 |
+
gdf = gdf.to_crs(epsg=32618)
|
34 |
+
|
35 |
+
# Calculate acreage (1 square meter = 0.000247105 acres)
|
36 |
+
gdf['acreage'] = gdf.geometry.area * 0.000247105
|
37 |
+
|
38 |
+
# Define flood-prone zones and calculate usable area
|
39 |
+
flood_prone_zones = ['A', 'AE', 'AH', 'AO', 'VE']
|
40 |
+
gdf['usable_area'] = gdf.apply(lambda row: row['acreage'] if row['FLD_ZONE'] not in flood_prone_zones else 0, axis=1)
|
41 |
+
|
42 |
+
# Convert geometry to WKT format
|
43 |
+
gdf['wkt_geometry'] = gdf['geometry'].apply(lambda geom: geom.wkt)
|
44 |
+
|
45 |
+
# Step 2: Load Embedding Model (Sentence-Transformer)
|
46 |
+
embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
47 |
+
|
48 |
+
# Convert floodland descriptions into text
|
49 |
+
gdf['text'] = gdf.apply(
|
50 |
+
lambda row: f"Flood Zone: {row['FLD_ZONE']}, Subtype: {row['ZONE_SUBTY']}, Acreage: {row['acreage']:.2f} acres, Usable Area: {row['usable_area']:.2f} acres",
|
51 |
+
axis=1
|
52 |
+
)
|
53 |
+
|
54 |
+
# Generate text embeddings
|
55 |
+
embeddings = embedder.encode(gdf['text'].tolist(), show_progress_bar=True)
|
56 |
+
|
57 |
+
# Create FAISS index
|
58 |
+
d = embeddings.shape[1]
|
59 |
+
index = faiss.IndexFlatL2(d)
|
60 |
+
index.add(embeddings)
|
61 |
+
|
62 |
+
# Store embeddings in DataFrame
|
63 |
+
gdf['embedding'] = list(embeddings)
|
64 |
+
|
65 |
+
# Step 3: Load LLaMA Model for Summarization
|
66 |
+
llama_model_name = "meta-llama/Llama-2-7b-chat-hf"
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained(llama_model_name)
|
68 |
+
model = AutoModelForCausalLM.from_pretrained(llama_model_name, torch_dtype=torch.float16, device_map="auto")
|
69 |
+
|
70 |
+
# Function to Generate Summary using LLaMA
|
71 |
+
def llama_summarize(text, total_acreage, usable_acreage, location_data, max_length=250):
|
72 |
+
input_text = f"""
|
73 |
+
**Total Land Area**: {total_acreage:.2f} acres
|
74 |
+
**Usable Area**: {usable_acreage:.2f} acres
|
75 |
+
**Flood-prone Zones**:
|
76 |
+
{location_data}
|
77 |
+
|
78 |
+
Summarization in sentence
|
79 |
+
"""
|
80 |
+
|
81 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(device)
|
82 |
+
|
83 |
+
# Calculate max_new_tokens based on input size
|
84 |
+
input_length = inputs['input_ids'].shape[1]
|
85 |
+
max_new_tokens = max_length - input_length
|
86 |
+
if max_new_tokens <= 0:
|
87 |
+
max_new_tokens = 200 # Ensure at least a few tokens are generated
|
88 |
+
|
89 |
+
with torch.no_grad():
|
90 |
+
output_tokens = model.generate(
|
91 |
+
**inputs,
|
92 |
+
max_new_tokens=max_new_tokens, # Use max_new_tokens to control the generated length
|
93 |
+
temperature=0.7,
|
94 |
+
top_k=50,
|
95 |
+
top_p=0.9,
|
96 |
+
repetition_penalty=1.2
|
97 |
+
)
|
98 |
+
|
99 |
+
summary = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
100 |
+
return summary
|
101 |
+
|
102 |
+
# Step 4: RAG Summarization Function
|
103 |
+
def rag_summarize(query, gdf, index, k=5):
|
104 |
+
query = query.lower().strip()
|
105 |
+
query_embedding = embedder.encode([query])[0]
|
106 |
+
|
107 |
+
# Retrieve top-k relevant documents
|
108 |
+
distances, indices = index.search(np.array([query_embedding]), k)
|
109 |
+
retrieved_docs = gdf.iloc[indices[0]]
|
110 |
+
|
111 |
+
# Aggregate data
|
112 |
+
total_acreage = retrieved_docs['acreage'].sum()
|
113 |
+
usable_acreage = retrieved_docs['usable_area'].sum()
|
114 |
+
location_data = "\n".join([
|
115 |
+
f"- **Flood Zone**: {row['FLD_ZONE']}, **Subtype**: {row['ZONE_SUBTY']}, "
|
116 |
+
f"**Acreage**: {row['acreage']:.2f}, **Usable Area**: {row['usable_area']:.2f} acres"
|
117 |
+
for _, row in retrieved_docs.iterrows()
|
118 |
+
])
|
119 |
+
|
120 |
+
# Use LLaMA for summarization
|
121 |
+
summary = llama_summarize(query, total_acreage, usable_acreage, location_data)
|
122 |
+
|
123 |
+
return summary
|
124 |
+
|
125 |
+
# Streamlit Interface
|
126 |
+
st.title("🌊 Floodland Summary Bot (Powered by LLaMA-2)")
|
127 |
+
|
128 |
+
# Input for location
|
129 |
+
user_input = st.text_input("Enter a location (e.g., New York)", "")
|
130 |
+
|
131 |
+
# When the user inputs a query, display the summary
|
132 |
+
if user_input:
|
133 |
+
query = user_input.lower().strip()
|
134 |
+
summary = rag_summarize(query, gdf, index)
|
135 |
+
st.write(summary)
|