khushidhar1210 commited on
Commit
44fdc1e
·
verified ·
1 Parent(s): deb6746
Files changed (1) hide show
  1. app.py +135 -0
app.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import geopandas as gpd
2
+ import sqlite3
3
+ import pandas as pd
4
+ import torch
5
+ import faiss
6
+ import numpy as np
7
+ import os
8
+ from shapely.geometry import shape
9
+ from sentence_transformers import SentenceTransformer
10
+ from transformers import AutoTokenizer, AutoModelForCausalLM
11
+ import streamlit as st
12
+
13
+ # Set the environment variables for GPU usage in Hugging Face
14
+ os.environ["CUDA_VISIBLE_DEVICES"] = "0" # Hugging Face uses GPU 0 by default
15
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
16
+
17
+ # Set device to GPU if available
18
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
19
+ st.write(f"Using device: {device}")
20
+
21
+ # Step 1: Load and Process Floodland Data
22
+ conn = sqlite3.connect('NY.db')
23
+ cursor = conn.cursor()
24
+
25
+ # Load shapefile
26
+ gdf = gpd.read_file('S_FLD_HAZ_AR.shp')
27
+
28
+ # Validate geometries
29
+ gdf['geometry'] = gdf['geometry'].apply(lambda geom: geom if geom.is_valid else None)
30
+ gdf = gdf.dropna(subset=['geometry'])
31
+
32
+ # Convert CRS to UTM Zone 18N (New York)
33
+ gdf = gdf.to_crs(epsg=32618)
34
+
35
+ # Calculate acreage (1 square meter = 0.000247105 acres)
36
+ gdf['acreage'] = gdf.geometry.area * 0.000247105
37
+
38
+ # Define flood-prone zones and calculate usable area
39
+ flood_prone_zones = ['A', 'AE', 'AH', 'AO', 'VE']
40
+ gdf['usable_area'] = gdf.apply(lambda row: row['acreage'] if row['FLD_ZONE'] not in flood_prone_zones else 0, axis=1)
41
+
42
+ # Convert geometry to WKT format
43
+ gdf['wkt_geometry'] = gdf['geometry'].apply(lambda geom: geom.wkt)
44
+
45
+ # Step 2: Load Embedding Model (Sentence-Transformer)
46
+ embedder = SentenceTransformer('all-MiniLM-L6-v2')
47
+
48
+ # Convert floodland descriptions into text
49
+ gdf['text'] = gdf.apply(
50
+ lambda row: f"Flood Zone: {row['FLD_ZONE']}, Subtype: {row['ZONE_SUBTY']}, Acreage: {row['acreage']:.2f} acres, Usable Area: {row['usable_area']:.2f} acres",
51
+ axis=1
52
+ )
53
+
54
+ # Generate text embeddings
55
+ embeddings = embedder.encode(gdf['text'].tolist(), show_progress_bar=True)
56
+
57
+ # Create FAISS index
58
+ d = embeddings.shape[1]
59
+ index = faiss.IndexFlatL2(d)
60
+ index.add(embeddings)
61
+
62
+ # Store embeddings in DataFrame
63
+ gdf['embedding'] = list(embeddings)
64
+
65
+ # Step 3: Load LLaMA Model for Summarization
66
+ llama_model_name = "meta-llama/Llama-2-7b-chat-hf"
67
+ tokenizer = AutoTokenizer.from_pretrained(llama_model_name)
68
+ model = AutoModelForCausalLM.from_pretrained(llama_model_name, torch_dtype=torch.float16, device_map="auto")
69
+
70
+ # Function to Generate Summary using LLaMA
71
+ def llama_summarize(text, total_acreage, usable_acreage, location_data, max_length=250):
72
+ input_text = f"""
73
+ **Total Land Area**: {total_acreage:.2f} acres
74
+ **Usable Area**: {usable_acreage:.2f} acres
75
+ **Flood-prone Zones**:
76
+ {location_data}
77
+
78
+ Summarization in sentence
79
+ """
80
+
81
+ inputs = tokenizer(input_text, return_tensors="pt").to(device)
82
+
83
+ # Calculate max_new_tokens based on input size
84
+ input_length = inputs['input_ids'].shape[1]
85
+ max_new_tokens = max_length - input_length
86
+ if max_new_tokens <= 0:
87
+ max_new_tokens = 200 # Ensure at least a few tokens are generated
88
+
89
+ with torch.no_grad():
90
+ output_tokens = model.generate(
91
+ **inputs,
92
+ max_new_tokens=max_new_tokens, # Use max_new_tokens to control the generated length
93
+ temperature=0.7,
94
+ top_k=50,
95
+ top_p=0.9,
96
+ repetition_penalty=1.2
97
+ )
98
+
99
+ summary = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
100
+ return summary
101
+
102
+ # Step 4: RAG Summarization Function
103
+ def rag_summarize(query, gdf, index, k=5):
104
+ query = query.lower().strip()
105
+ query_embedding = embedder.encode([query])[0]
106
+
107
+ # Retrieve top-k relevant documents
108
+ distances, indices = index.search(np.array([query_embedding]), k)
109
+ retrieved_docs = gdf.iloc[indices[0]]
110
+
111
+ # Aggregate data
112
+ total_acreage = retrieved_docs['acreage'].sum()
113
+ usable_acreage = retrieved_docs['usable_area'].sum()
114
+ location_data = "\n".join([
115
+ f"- **Flood Zone**: {row['FLD_ZONE']}, **Subtype**: {row['ZONE_SUBTY']}, "
116
+ f"**Acreage**: {row['acreage']:.2f}, **Usable Area**: {row['usable_area']:.2f} acres"
117
+ for _, row in retrieved_docs.iterrows()
118
+ ])
119
+
120
+ # Use LLaMA for summarization
121
+ summary = llama_summarize(query, total_acreage, usable_acreage, location_data)
122
+
123
+ return summary
124
+
125
+ # Streamlit Interface
126
+ st.title("🌊 Floodland Summary Bot (Powered by LLaMA-2)")
127
+
128
+ # Input for location
129
+ user_input = st.text_input("Enter a location (e.g., New York)", "")
130
+
131
+ # When the user inputs a query, display the summary
132
+ if user_input:
133
+ query = user_input.lower().strip()
134
+ summary = rag_summarize(query, gdf, index)
135
+ st.write(summary)