Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,138 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
|
135 |
-
|
|
|
|
|
|
|
|
|
136 |
|
137 |
-
|
138 |
|
139 |
-
|
140 |
|
141 |
-
|
|
|
|
|
142 |
|
143 |
-
|
144 |
|
145 |
-
|
146 |
|
147 |
-
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
|
153 |
-
|
|
|
154 |
|
155 |
-
|
|
|
|
|
156 |
|
157 |
-
|
|
|
|
|
158 |
|
159 |
-
|
|
|
160 |
|
161 |
-
|
162 |
|
163 |
-
|
164 |
|
165 |
-
|
166 |
|
167 |
-
|
|
|
|
|
168 |
|
169 |
-
|
170 |
|
171 |
-
##
|
172 |
|
173 |
-
|
|
|
174 |
|
175 |
-
|
176 |
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
|
|
|
180 |
|
181 |
-
|
|
|
|
|
|
|
182 |
|
183 |
-
|
|
|
184 |
|
185 |
-
|
|
|
186 |
|
187 |
-
[More Information Needed]
|
188 |
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
-
|
|
|
194 |
|
195 |
-
|
|
|
|
|
|
|
196 |
|
197 |
-
|
198 |
|
199 |
-
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- finance
|
5 |
+
- xnet
|
6 |
+
- phi
|
7 |
+
license: apache-2.0
|
8 |
+
datasets:
|
9 |
+
- TheFinAI/Fino1_Reasoning_Path_FinQA
|
10 |
+
language:
|
11 |
+
- en
|
12 |
+
base_model:
|
13 |
+
- microsoft/Phi-4-reasoning-plus
|
14 |
+
pipeline_tag: text-generation
|
15 |
---
|
16 |
|
17 |
+
# Fine-tuning Phi-4-reasoning-plus on FinQA Dataset
|
18 |
|
19 |
+
This project fine-tunes the [`microsoft/Phi-4-reasoning-plus`](https://huggingface.co/microsoft/Phi-4-reasoning-plus) model using a medical reasoning dataset (`TheFinAI/Fino1_Reasoning_Path_FinQA`).
|
20 |
|
21 |
+
---
|
22 |
|
23 |
+
## Setup
|
24 |
|
25 |
+
1. Install the required libraries:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
```bash
|
28 |
+
pip install -U datasets accelerate peft trl bitsandbytes
|
29 |
+
pip install -U transformers
|
30 |
+
pip install huggingface_hub[hf_xet]
|
31 |
+
```
|
32 |
|
33 |
+
2. Authenticate with Hugging Face Hub:
|
34 |
|
35 |
+
Make sure your Hugging Face token is stored in an environment variable:
|
36 |
|
37 |
+
```bash
|
38 |
+
export HF_TOKEN=your_huggingface_token
|
39 |
+
```
|
40 |
|
41 |
+
The notebook will automatically log you in using this token.
|
42 |
|
43 |
+
---
|
44 |
|
45 |
+
## How to Run
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
1. **Load the Model and Tokenizer**
|
48 |
+
The script downloads the full Phi-4-reasoning-plus model.
|
49 |
|
50 |
+
2. **Prepare the Dataset**
|
51 |
+
- The notebook uses `TheFinAI/Fino1_Reasoning_Path_FinQA` (first 1000 samples).
|
52 |
+
- It formats each example into an **instruction-following prompt** with step-by-step chain-of-thought reasoning.
|
53 |
|
54 |
+
3. **Fine-tuning**
|
55 |
+
- Fine-tuning is set up with PEFT (LoRA / Adapter Tuning style) to modify a small subset of model parameters.
|
56 |
+
- TRL (Transformer Reinforcement Learning) is used to fine-tune efficiently.
|
57 |
|
58 |
+
4. **Push Fine-tuned Model**
|
59 |
+
- After training, the fine-tuned model and tokenizer are pushed back to your Hugging Face account.
|
60 |
|
61 |
+
---
|
62 |
|
63 |
+
>> **Here is the training notebook:** [Fine_tuning_Phi-4-Reasoning-Plus](https://huggingface.co/kingabzpro/Phi-4-Reasoning-Plus-FinQA-COT/blob/main/fine-tuning-phi-4-reasoning.ipynb)
|
64 |
|
65 |
+
## Model Configuration
|
66 |
|
67 |
+
- **Base Model**: `microsoft/Phi-4-reasoning-plus`
|
68 |
+
- **Training**: PEFT + TRL
|
69 |
+
- **Dataset**: 1000 examples FinQA reasoning dataset
|
70 |
|
71 |
+
---
|
72 |
|
73 |
+
## Notes
|
74 |
|
75 |
+
- **GPU Required**: Make sure you have access to 1X A100s. Get it from RunPod for an hours. Training took only 7 minutes.
|
76 |
+
- **Environment**: The notebook expects an environment where NVIDIA CUDA drivers are available (`nvidia-smi` check is included).
|
77 |
|
78 |
+
---
|
79 |
|
80 |
+
## Example Prompt Format
|
81 |
+
|
82 |
+
```
|
83 |
+
<|im_start|>system<|im_sep|>
|
84 |
+
Below is an instruction that describes a task, paired with an input that provides further context.
|
85 |
+
Write a response that appropriately completes the request.
|
86 |
+
Before answering, think carefully about the question and create a step-by-step chain of thoughts to ensure a logical and accurate response.
|
87 |
+
<|im_end|>
|
88 |
+
<|im_start|>user<|im_sep|>
|
89 |
+
{}<|im_end|>
|
90 |
+
<|im_start|>assistant<|im_sep|>
|
91 |
+
<think>
|
92 |
+
{}
|
93 |
+
</think>
|
94 |
+
{}
|
95 |
+
```
|
96 |
|
97 |
+
---
|
98 |
+
## Usage Script (not-tested)
|
99 |
|
100 |
+
```python
|
101 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
102 |
+
from peft import PeftModel
|
103 |
+
import torch
|
104 |
|
105 |
+
# Base model (original model from Meta)
|
106 |
+
base_model_id = "microsoft/Phi-4-reasoning-plus"
|
107 |
|
108 |
+
# Your fine-tuned LoRA adapter repository
|
109 |
+
lora_adapter_id = "kingabzpro/Phi-4-Reasoning-Plus-FinQA-COT"
|
110 |
|
|
|
111 |
|
112 |
+
# Load base model
|
113 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
114 |
+
base_model_id,
|
115 |
+
device_map="auto",
|
116 |
+
torch_dtype=torch.bfloat16,
|
117 |
+
trust_remote_code=True,
|
118 |
+
)
|
119 |
|
120 |
+
# Attach the LoRA adapter
|
121 |
+
model = PeftModel.from_pretrained(
|
122 |
+
base_model,
|
123 |
+
lora_adapter_id,
|
124 |
+
device_map="auto",
|
125 |
+
trust_remote_code=True,
|
126 |
+
)
|
127 |
|
128 |
+
# Load tokenizer
|
129 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True)
|
130 |
|
131 |
+
# Inference example
|
132 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
133 |
+
outputs = model.generate(**inputs, max_new_tokens=1200)
|
134 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
135 |
|
136 |
+
print(response)
|
137 |
|
138 |
+
```
|