--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny tags: - automatic-speech-recognition - whisper - urdu datasets: - mozilla-foundation/common_voice_17_0 - HowMannyMore/urdu-audiodataset metrics: - wer - cer - bleu - chrf model-index: - name: whisper-tiny-urdu results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 17.0 (Urdu) type: mozilla-foundation/common_voice_17_0 config: ur split: test args: ur metrics: - name: WER on Common Voice 17.0 type: wer value: 46.908 - name: CER on Common Voice 17.0 type: cer value: 18.543 - name: BLEU on Common Voice 17.0 type: bleu value: 32.631 - name: ChrF on Common Voice 17.0 type: chrf value: 63.988 language: - ur pipeline_tag: automatic-speech-recognition --- # whisper-tiny-urdu This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7225 - Wer: 47.8529 ## Quick Usage ```python from transformers import pipeline transcriber = pipeline( "automatic-speech-recognition", model="kingabzpro/whisper-tiny-urdu" ) transcriber.model.generation_config.forced_decoder_ids = None transcriber.model.generation_config.language = "ur" transcription = transcriber("audio2.mp3") print(transcription) ``` ```sh {'text': 'دیکھیے پانی کب تک بہتا اور مچھلی کب تک تیرتی ہے'} ``` ## Evaluation | **Dataset** | **WER (%)** | **CER (%)** | **BLEU** | **ChrF** | | ------------------------------ | ----------- | ----------- | -------- | -------- | | Common Voice 17.0 (Urdu) | 46.908 | 18.543 | 32.631 | 63.988 | | HowMannyMore/urdu-audiodataset | 51.405 | 21.830 | 31.475 | 64.204 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 200 - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.6808 | 1.6949 | 500 | 0.7403 | 52.6699 | | 0.3948 | 3.3898 | 1000 | 0.6850 | 47.1247 | | 0.2873 | 5.0847 | 1500 | 0.6994 | 48.1516 | | 0.2024 | 6.7797 | 2000 | 0.7169 | 46.7326 | | 0.183 | 8.4746 | 2500 | 0.7225 | 47.8529 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1